Research Article
BibTex RIS Cite

Sırt Pülverizatörü ile İlaçlanan Badem Ağaçlarında Bazı Meme Tiplerinin Pestisit Maruziyetlerinin Belirlenmesi

Year 2024, Volume: 29 Issue: 3, 1012 - 1022, 31.12.2024
https://doi.org/10.53433/yyufbed.1532365

Abstract

Bu çalışmada, badem ağacı ilaçlamasında pestisit uygulaması yapan tarım işçilerinin (operatör) pestisit maruziyetini belirlemek amacıyla bir sırt pülverizatörü kullanılarak saha denemeleri yapılmış ve pestisit maruziyeti tüm vücut yaklaşım tekniği ile belirlenmiştir. Çalışmada 20 litrelik tank kapasitesine sahip elektrikli sırt pülverizatörü kullanılmıştır. Sırt pülverizatörünün püskürtme çubuğuna takılan memeler pratik olarak değiştirilebilmektedir. Tarım işçilerinin pestisit maruziyetini ölçmek için üç püskürtme memesi kullanılmıştır. Bu memeler; (M1) Hava emişli meme (11002) (M2) Yelpaze hüzmeli meme (XR 11002) (M3) Konik hüzmeli meme (TXA8002). Her yöntem iki farklı püskürtme mesafesinde (50 ve 100 cm) uygulanmış ve tüm yöntemlerde örnek yüzey olarak suya duyarlı kartlar (WSP) kullanılmıştır. Koruyucu giysiler incelendiğinde, tüm vücudun pestisitlere maruz kalabileceğini anlaşılmıştır. Sonuçlara göre, en yüksek kaplama 23,6 (% kaplama) ve 3.956 (µL.cm-²) birikim ile standart yelpaze huzmeli meme (M2) yönteminden elde edilmiştir.

References

  • Baldi, I., Lebailly, P., Jean, S., Rougetet, L., Dulaurent, S., & Marquet, P. (2006). Pesticide contamination of workers in vineyards in France. Journal of exposure science & environmental epidemiology, 16(2), 115-124. https://doi.org/10.1038/sj.jea.7500443
  • Blanco, L. E., Aragón, A., Lundberg, I., Wesseling, C., & Nise, G. (2008). The determinants of dermal exposure ranking method (DERM): a pesticide exposure assessment approach for developing countries. Annals of Occupational Hygiene, 52(6), 535-544.https://doi.org/10.1093/annhyg/men035
  • Cao, L., Chen, B., Zheng, L., Wang, D., Liu, F., & Huang, Q. (2015). Assessment of potential dermal and inhalation exposure of workers to the insecticide imidacloprid using whole-body dosimetry in China. Journal of Environmental Sciences, 27, 139-146. https://doi.org/10.1016/j.jes.2014.07.018
  • Charistou, A., Coja, T., Craig, P., Hamey, P., Martin, S., et al. (2022). Guidance on the assessment of exposure of operators, workers, residents and bystanders in risk assessment of plant protection products. European Food Safety Authority; EFSA Journal 20(1), 7032. https://doi.org/10.2903/j.efsa.2022.7032
  • Chester, G. (1993). Evaluation of agricultural worker exposure to, and absorption of, pesticides. The Annals of Occupational Hygiene, 37(5), 509-524. https://doi.org/10.1093/annhyg/37.5.509
  • Ellis, M.B, Swan, T., Miller, PCH., Waddelow, S., Bradley, A., & Tuck, CR (2002). PM—Power and machinery: design factors affecting spray characteristics and drift performance of air induction nozzles. Biosystems Engineering, 82(3), 289-296.https://doi.org/10.1006/bioe.2002.0069
  • Erdoğan, O., Tohumcu, E., Baran, M. F., & Gökdoğan, O. (2017). Adıyaman ili badem üreticilerinin zirai mücadele uygulamalarının değerlendirilmesi. Turkish Journal of Agriculture-Food Science and Technology, 5(11), 1414-1421.https://doi.org/10.24925/turjaf.v5i11.1414-1421.1351
  • Garrod, A. N. I., Rimmer, D. A., Robertshaw, L., & Jones, T. (1998). Occupational exposure through spraying remedial pesticides. The Annals of Occupational Hygiene, 42(3), 159-165. https://doi.org/10.1093/annhyg/42.3.159
  • Großkopf, C., Mielke, H., Westphal, D., Erdtmann-Vourliotis, M., Hamey, P., Bouneb, F., & Martin, S. (2013). A new model for the prediction of agricultural agricultural workers exposure during professional application of plant protection products in outdoor crops. Journal für Verbraucherschutz und Lebensmittelsicherheit, 8, 143-153. https://doi.org/10.1007/s00003-013-0836-x
  • Hughes, E. A., Flores, A. P., Ramos, L. M., Zalts, A., Glass, C. R., & Montserrat, J. M. (2008). Potential dermal exposure to deltamethrin and risk assessment for manual sprayers: Influence of crop type. Science of the Total Environment, 391(1), 34-40. https://doi.org/10.1016/j.scitotenv.2007.09.034
  • Islam, M. S., Rahman, M. R., Prodhan, M. D. H., Sarker, D., Rahman, M. M., & Uddin, M. K. (2021). Human health risk assessment of pesticide residues in pointed gourd collected from retail markets of Dhaka City, Bangladesh. Accreditation and Quality Assurance, 26, 201-210. https://doi.org/10.1007/s00769-021-01475-7
  • Kim, E. H., Lee, H. R., Choi, H., Moon, J. K., Hong, S. S., Jeong, M. H., Park, K.H., & Kim, J. H. (2011). Methodology for quantitative monitoring of agricultural worker exposure to pesticides. The Korean Journal of Pesticide Science, 15(4), 507-528.
  • Kim, E., Moon, J.K., Lee, H., Kim, S., Hwang, Y.J., Kim, B.J., Lee, D.H., & Kim, J.H. (2013). Exposure and risk assessment of agricultural workers s to insecticide acetamiprid during treatment on apple orchard. Korean Journal of Horticultural Science and Technology, 31, 239-245.http://dx.doi.org/10.7235/hort.2013.12201
  • Kim, E., Moon, J. K., Choi, H., & Kim, J. H. (2015). Probabilistic exposure assessment for applicators during treatment of the fungicide kresoxim-methyl on an apple orchard by a speed sprayer. Journal of agricultural and food chemistry, 63(48), 10366-10371. https://doi.org/10.1021/acs.jafc.5b03217
  • Korucu, M. K., Elibol, P. S., & Isleyen, M. (2021). An environmental risk assessment for a DDX-contaminated agricultural area in Turkey: soil vs. plant or human vs. animal. Environmental Science and Pollution Research, 28(36), 50127-50140. https://doi.org/10.1007/s11356-021-14154-4
  • Lawson, A. J., Akohou, H., Lorge, S., & Schiffers, B. (2017). Three methods to assess levels of farmers’ exposure to pesticides in the urban and peri-urban areas of Northern Benin. Tunisian Journal of Plant Protection, 12(1).
  • Lee, J., Kim, E., Shin, Y., Lee, J., Lee, J., Moon, J. K., Choi, H. & Kim, J. H. (2018). Whole body dosimetry and risk assessment of agricultural agricultural workers exposure to the fungicide kresoxim-methyl in apple orchards. Ecotoxicology and environmental safety, 155, 94-100. https://doi.org/10.1016/j.ecoenv.2018.01.063
  • Lee, J., Park, E., Jung, M., Kim, S., Shin, Y., Kim, J., & Kim, J. H. (2022). Potential exposure to flubendiamide and risk assessment in Kimchi cabbage field, Gangneung, Gangwon-do, Republic of Korea: the protective role of PPE (personal protective equipment). Human and Ecological Risk Assessment: An International Journal, 28(9), 945-957.https://doi.org/10.1080/10807039.2022.2112504
  • Lee, D. Y., Song, J. W., An, J. Y., Kim, Y. J., Seo, J. S., & Kim, J. H. (2024). Exposure and risk assessment for agricultural workers during chlorothalonil and flubendiamide treatments in pepper fields. Scientific Reports, 14(1), 5338. https://doi.org/10.1038/s41598-024-55172-9
  • Li, X., Giles, D. K., Niederholzer, F. J., Andaloro, J. T., Lang, E. B., & Watson, L. J. (2021). Evaluation of an unmanned aerial vehicle as a new method of pesticide application for almond crop protection. Pest Management Science, 77(1), 527-537.https://doi.org/10.1002/ps.6052
  • Machera, K., Goumenou, M., Kapetanakis, E., Kalamarakis, A., & Glass, R. (2001). Determination of potential dermal and inhalation exposure of agricultural workers s, following spray applications of the fungicide penconazole in vineyards and greenhouses. Fresenius Environmental Bulletin, 10(5), 464-469.
  • Machera, K., Goumenou, M., Kapetanakis, E., Kalamarakis, A., & Glass, C. R. (2003). Determination of potential dermal and inhalation agricultural workers exposure to malathion in greenhouses with the whole body dosimetry method. Annals of Occupational Hygiene, 47(1), 61-70. https://doi.org/10.1093/annhyg/mef097
  • Marquez, M. C., Arrebola, F. J., González, F. E., Cano, M. C., & Vidal, J. M. (2001). Gas chromatographic–tandem mass spectrometric analytical method for the study of inhalation, potential dermal and actual exposure of agricultural workers to the pesticide malathion. Journal of Chromatography A, 939(1-2), 79-89. https://doi.org/10.1016/S0021-9673(01)01347-4
  • Moon, J. K., Park, S., Kim, E., Lee, H., & Kim, J. H. (2013). Risk assessment of the exposure of insecticide agricultural workers s to fenvalerate during treatment in apple orchards. Journal of agricultural and food chemistry, 61(2), 307-311. https://doi.org/10.1021/jf3043083
  • Nordgren, T. M., & Charavaryamath, C. (2018). Agriculture occupational exposures and factors affecting health effects. Current allergy and asthma reports, 18, 1-8.https://doi.org/10.1007/s11882-018-0820-8
  • Nuyttens, D., Braekman, P., Windey, S., & Sonck, B. (2009). Potential dermal pesticide exposure affected by greenhouse spray application technique. Pest Management Science: formerly Pesticide Science, 65(7), 781-790. https://doi.org/10.1002/ps.1755
  • Ren, J. X., Li, Z. K., Tao, C. J., Zhang, L. Y., Zhao, H. F., Wu, C. C., & She, D. M. (2019). Exposure assessment of agricultural workers s to clothianidin when using knapsack electric sprayers in greenhouses. International Journal of Environmental Science and Technology, 16, 1471-1478.https://doi.org/10.1007/s13762-018-1758-z
  • Samiee, F., Samadi, M. T., Bahrami, A., Poorolajal, J., Ghafouri-Khosrowshahi, A., & Leili, M. (2023). Risk assessment of imidacloprid and dichlorvos associated with dermal and inhalation exposure in cucumber greenhouse applicators: A cross-sectional study in Hamadan, Iran. International Journal of Environmental Analytical Chemistry, 103(3), 575-590. https://doi.org/10.1080/03067319.2020.1862811
  • Shaw, A., Sanvido, O., Wagate, G., & Röver, M. (2023). Pesticide operator safety: A global framework to support operator safety at the “local” level. CABI Reviews, (2023). https://doi.org/10.1079/cabireviews.2023.0025
  • Stamper, J. H., Nigg, H. N., Mahon, W. D., Nielsen, A. P., & Royer, M. D. (1989). Pesticide exposure to greenhouse handgunners. Archives of Environmental Contamination and Toxicology, 18, 515-529. https://doi.org/10.1007/BF01055018
  • Şimşek, M. (2015). Türkiye'de badem yetiştiriciliğinin durumu ve yapılan seleksiyon çalışmaları konusunda bir araştırma. Dicle Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 4(2), 95-100.
  • Thouvenin, I., Bouneb, F., & Mercier, T. (2016). Agricultural workers dermal exposure and individual protection provided by personal protective equipment during application using a backpack sprayer in vineyards. Journal für Verbraucherschutz und Lebensmittelsicherheit, 11, 325-336.https://doi.org/10.1007/s00003-016-1047-z
  • Tsakirakis, A. N., Kasiotis, K. M., Charistou, A. N., Arapaki, N., Tsatsakis, A., Tsakalof, A., & Machera, K. (2014). Dermal & inhalation exposure of agricultural workers s during fungicide application in vineyards. Evaluation of coverall performance. Science of the Total Environment, 470, 282-289. https://doi.org/10.1016/j.scitotenv.2013.09.021
  • Tudi, M., Li, H., Li, H., Wang, L., Lyu, J., Yang, L., Tong, S., Yu, Q. J., Ruan, H. D., Atabila, A., Puhung, D. T., Sadler, R., & Connell, D. (2022). Exposure routes and health risks associated with pesticide application. Toxics, 10(6), 335.https://doi.org/10.3390/toxics10060335
  • U.S. EPA. (2017). Office of prevention, pesticides, and toxic substances. Pesticides ındustry sales and usage 2008-2012 estimates. Washington, DC 20460 (Access date: 10.08.2024).
  • Van Hemmen, J. J., & Brouwer, D. H. (1995). Assessment of dermal exposure to chemicals. Science of the total environment, 168(2), 131-141.https://doi.org/10.1016/0048-9697(95)04617-A
  • Zhu, H., Salyani, M., Fox, R. D. (2011). A portable scanning system for evaluation of spray deposit distribution. Computers and Electronics in Agriculture, 76(1), 38-43. https://doi.org/10.1016/j.compag.2011.01.003

Determination of Pesticide Exposures of Some Nozzle Types in Almond Trees Sprayed with Knapsack Sprayer

Year 2024, Volume: 29 Issue: 3, 1012 - 1022, 31.12.2024
https://doi.org/10.53433/yyufbed.1532365

Abstract

In this study, field trials were conducted using a knapsack sprayer to determine the pesticide exposure of the pesticide application agricultural workers (The operators) in almond tree spraying, and pesticide exposure was determined by the whole-body approach technique. An electric knapsack sprayer with a 20-liter tank capacity was used in the study. The nozzles attached to the spray boom of the knapsack sprayer can be changed in practice. Three spray nozzles were used to measure the operator pesticide exposure. These nozzles are (M1) Air induction nozzle (11002), (M2) Extended range flat fan nozzle (XR 11002), and (M3) Hollow cone nozzle (TXA8002). Each method was applied at two different spray distances (50 and 100 cm), and water-sensitive papers (WSP) were used as a sample surface in all methods. When protective clothing was analyzed, it was found that the whole body could be exposed to pesticides. According to the results, the highest coverage was obtained from standard extended range flat fan nozzle (M2) method with a 23.6 (% coverage) coverage rate and deposition of 3,956 (µL.cm-²).

References

  • Baldi, I., Lebailly, P., Jean, S., Rougetet, L., Dulaurent, S., & Marquet, P. (2006). Pesticide contamination of workers in vineyards in France. Journal of exposure science & environmental epidemiology, 16(2), 115-124. https://doi.org/10.1038/sj.jea.7500443
  • Blanco, L. E., Aragón, A., Lundberg, I., Wesseling, C., & Nise, G. (2008). The determinants of dermal exposure ranking method (DERM): a pesticide exposure assessment approach for developing countries. Annals of Occupational Hygiene, 52(6), 535-544.https://doi.org/10.1093/annhyg/men035
  • Cao, L., Chen, B., Zheng, L., Wang, D., Liu, F., & Huang, Q. (2015). Assessment of potential dermal and inhalation exposure of workers to the insecticide imidacloprid using whole-body dosimetry in China. Journal of Environmental Sciences, 27, 139-146. https://doi.org/10.1016/j.jes.2014.07.018
  • Charistou, A., Coja, T., Craig, P., Hamey, P., Martin, S., et al. (2022). Guidance on the assessment of exposure of operators, workers, residents and bystanders in risk assessment of plant protection products. European Food Safety Authority; EFSA Journal 20(1), 7032. https://doi.org/10.2903/j.efsa.2022.7032
  • Chester, G. (1993). Evaluation of agricultural worker exposure to, and absorption of, pesticides. The Annals of Occupational Hygiene, 37(5), 509-524. https://doi.org/10.1093/annhyg/37.5.509
  • Ellis, M.B, Swan, T., Miller, PCH., Waddelow, S., Bradley, A., & Tuck, CR (2002). PM—Power and machinery: design factors affecting spray characteristics and drift performance of air induction nozzles. Biosystems Engineering, 82(3), 289-296.https://doi.org/10.1006/bioe.2002.0069
  • Erdoğan, O., Tohumcu, E., Baran, M. F., & Gökdoğan, O. (2017). Adıyaman ili badem üreticilerinin zirai mücadele uygulamalarının değerlendirilmesi. Turkish Journal of Agriculture-Food Science and Technology, 5(11), 1414-1421.https://doi.org/10.24925/turjaf.v5i11.1414-1421.1351
  • Garrod, A. N. I., Rimmer, D. A., Robertshaw, L., & Jones, T. (1998). Occupational exposure through spraying remedial pesticides. The Annals of Occupational Hygiene, 42(3), 159-165. https://doi.org/10.1093/annhyg/42.3.159
  • Großkopf, C., Mielke, H., Westphal, D., Erdtmann-Vourliotis, M., Hamey, P., Bouneb, F., & Martin, S. (2013). A new model for the prediction of agricultural agricultural workers exposure during professional application of plant protection products in outdoor crops. Journal für Verbraucherschutz und Lebensmittelsicherheit, 8, 143-153. https://doi.org/10.1007/s00003-013-0836-x
  • Hughes, E. A., Flores, A. P., Ramos, L. M., Zalts, A., Glass, C. R., & Montserrat, J. M. (2008). Potential dermal exposure to deltamethrin and risk assessment for manual sprayers: Influence of crop type. Science of the Total Environment, 391(1), 34-40. https://doi.org/10.1016/j.scitotenv.2007.09.034
  • Islam, M. S., Rahman, M. R., Prodhan, M. D. H., Sarker, D., Rahman, M. M., & Uddin, M. K. (2021). Human health risk assessment of pesticide residues in pointed gourd collected from retail markets of Dhaka City, Bangladesh. Accreditation and Quality Assurance, 26, 201-210. https://doi.org/10.1007/s00769-021-01475-7
  • Kim, E. H., Lee, H. R., Choi, H., Moon, J. K., Hong, S. S., Jeong, M. H., Park, K.H., & Kim, J. H. (2011). Methodology for quantitative monitoring of agricultural worker exposure to pesticides. The Korean Journal of Pesticide Science, 15(4), 507-528.
  • Kim, E., Moon, J.K., Lee, H., Kim, S., Hwang, Y.J., Kim, B.J., Lee, D.H., & Kim, J.H. (2013). Exposure and risk assessment of agricultural workers s to insecticide acetamiprid during treatment on apple orchard. Korean Journal of Horticultural Science and Technology, 31, 239-245.http://dx.doi.org/10.7235/hort.2013.12201
  • Kim, E., Moon, J. K., Choi, H., & Kim, J. H. (2015). Probabilistic exposure assessment for applicators during treatment of the fungicide kresoxim-methyl on an apple orchard by a speed sprayer. Journal of agricultural and food chemistry, 63(48), 10366-10371. https://doi.org/10.1021/acs.jafc.5b03217
  • Korucu, M. K., Elibol, P. S., & Isleyen, M. (2021). An environmental risk assessment for a DDX-contaminated agricultural area in Turkey: soil vs. plant or human vs. animal. Environmental Science and Pollution Research, 28(36), 50127-50140. https://doi.org/10.1007/s11356-021-14154-4
  • Lawson, A. J., Akohou, H., Lorge, S., & Schiffers, B. (2017). Three methods to assess levels of farmers’ exposure to pesticides in the urban and peri-urban areas of Northern Benin. Tunisian Journal of Plant Protection, 12(1).
  • Lee, J., Kim, E., Shin, Y., Lee, J., Lee, J., Moon, J. K., Choi, H. & Kim, J. H. (2018). Whole body dosimetry and risk assessment of agricultural agricultural workers exposure to the fungicide kresoxim-methyl in apple orchards. Ecotoxicology and environmental safety, 155, 94-100. https://doi.org/10.1016/j.ecoenv.2018.01.063
  • Lee, J., Park, E., Jung, M., Kim, S., Shin, Y., Kim, J., & Kim, J. H. (2022). Potential exposure to flubendiamide and risk assessment in Kimchi cabbage field, Gangneung, Gangwon-do, Republic of Korea: the protective role of PPE (personal protective equipment). Human and Ecological Risk Assessment: An International Journal, 28(9), 945-957.https://doi.org/10.1080/10807039.2022.2112504
  • Lee, D. Y., Song, J. W., An, J. Y., Kim, Y. J., Seo, J. S., & Kim, J. H. (2024). Exposure and risk assessment for agricultural workers during chlorothalonil and flubendiamide treatments in pepper fields. Scientific Reports, 14(1), 5338. https://doi.org/10.1038/s41598-024-55172-9
  • Li, X., Giles, D. K., Niederholzer, F. J., Andaloro, J. T., Lang, E. B., & Watson, L. J. (2021). Evaluation of an unmanned aerial vehicle as a new method of pesticide application for almond crop protection. Pest Management Science, 77(1), 527-537.https://doi.org/10.1002/ps.6052
  • Machera, K., Goumenou, M., Kapetanakis, E., Kalamarakis, A., & Glass, R. (2001). Determination of potential dermal and inhalation exposure of agricultural workers s, following spray applications of the fungicide penconazole in vineyards and greenhouses. Fresenius Environmental Bulletin, 10(5), 464-469.
  • Machera, K., Goumenou, M., Kapetanakis, E., Kalamarakis, A., & Glass, C. R. (2003). Determination of potential dermal and inhalation agricultural workers exposure to malathion in greenhouses with the whole body dosimetry method. Annals of Occupational Hygiene, 47(1), 61-70. https://doi.org/10.1093/annhyg/mef097
  • Marquez, M. C., Arrebola, F. J., González, F. E., Cano, M. C., & Vidal, J. M. (2001). Gas chromatographic–tandem mass spectrometric analytical method for the study of inhalation, potential dermal and actual exposure of agricultural workers to the pesticide malathion. Journal of Chromatography A, 939(1-2), 79-89. https://doi.org/10.1016/S0021-9673(01)01347-4
  • Moon, J. K., Park, S., Kim, E., Lee, H., & Kim, J. H. (2013). Risk assessment of the exposure of insecticide agricultural workers s to fenvalerate during treatment in apple orchards. Journal of agricultural and food chemistry, 61(2), 307-311. https://doi.org/10.1021/jf3043083
  • Nordgren, T. M., & Charavaryamath, C. (2018). Agriculture occupational exposures and factors affecting health effects. Current allergy and asthma reports, 18, 1-8.https://doi.org/10.1007/s11882-018-0820-8
  • Nuyttens, D., Braekman, P., Windey, S., & Sonck, B. (2009). Potential dermal pesticide exposure affected by greenhouse spray application technique. Pest Management Science: formerly Pesticide Science, 65(7), 781-790. https://doi.org/10.1002/ps.1755
  • Ren, J. X., Li, Z. K., Tao, C. J., Zhang, L. Y., Zhao, H. F., Wu, C. C., & She, D. M. (2019). Exposure assessment of agricultural workers s to clothianidin when using knapsack electric sprayers in greenhouses. International Journal of Environmental Science and Technology, 16, 1471-1478.https://doi.org/10.1007/s13762-018-1758-z
  • Samiee, F., Samadi, M. T., Bahrami, A., Poorolajal, J., Ghafouri-Khosrowshahi, A., & Leili, M. (2023). Risk assessment of imidacloprid and dichlorvos associated with dermal and inhalation exposure in cucumber greenhouse applicators: A cross-sectional study in Hamadan, Iran. International Journal of Environmental Analytical Chemistry, 103(3), 575-590. https://doi.org/10.1080/03067319.2020.1862811
  • Shaw, A., Sanvido, O., Wagate, G., & Röver, M. (2023). Pesticide operator safety: A global framework to support operator safety at the “local” level. CABI Reviews, (2023). https://doi.org/10.1079/cabireviews.2023.0025
  • Stamper, J. H., Nigg, H. N., Mahon, W. D., Nielsen, A. P., & Royer, M. D. (1989). Pesticide exposure to greenhouse handgunners. Archives of Environmental Contamination and Toxicology, 18, 515-529. https://doi.org/10.1007/BF01055018
  • Şimşek, M. (2015). Türkiye'de badem yetiştiriciliğinin durumu ve yapılan seleksiyon çalışmaları konusunda bir araştırma. Dicle Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 4(2), 95-100.
  • Thouvenin, I., Bouneb, F., & Mercier, T. (2016). Agricultural workers dermal exposure and individual protection provided by personal protective equipment during application using a backpack sprayer in vineyards. Journal für Verbraucherschutz und Lebensmittelsicherheit, 11, 325-336.https://doi.org/10.1007/s00003-016-1047-z
  • Tsakirakis, A. N., Kasiotis, K. M., Charistou, A. N., Arapaki, N., Tsatsakis, A., Tsakalof, A., & Machera, K. (2014). Dermal & inhalation exposure of agricultural workers s during fungicide application in vineyards. Evaluation of coverall performance. Science of the Total Environment, 470, 282-289. https://doi.org/10.1016/j.scitotenv.2013.09.021
  • Tudi, M., Li, H., Li, H., Wang, L., Lyu, J., Yang, L., Tong, S., Yu, Q. J., Ruan, H. D., Atabila, A., Puhung, D. T., Sadler, R., & Connell, D. (2022). Exposure routes and health risks associated with pesticide application. Toxics, 10(6), 335.https://doi.org/10.3390/toxics10060335
  • U.S. EPA. (2017). Office of prevention, pesticides, and toxic substances. Pesticides ındustry sales and usage 2008-2012 estimates. Washington, DC 20460 (Access date: 10.08.2024).
  • Van Hemmen, J. J., & Brouwer, D. H. (1995). Assessment of dermal exposure to chemicals. Science of the total environment, 168(2), 131-141.https://doi.org/10.1016/0048-9697(95)04617-A
  • Zhu, H., Salyani, M., Fox, R. D. (2011). A portable scanning system for evaluation of spray deposit distribution. Computers and Electronics in Agriculture, 76(1), 38-43. https://doi.org/10.1016/j.compag.2011.01.003
There are 37 citations in total.

Details

Primary Language English
Subjects Agricultural Machines
Journal Section Agriculture / Zirai Bilimler
Authors

Ali Bolat 0000-0002-1019-0069

Hasret Güneş 0000-0003-3155-2695

Publication Date December 31, 2024
Submission Date August 19, 2024
Acceptance Date October 22, 2024
Published in Issue Year 2024 Volume: 29 Issue: 3

Cite

APA Bolat, A., & Güneş, H. (2024). Determination of Pesticide Exposures of Some Nozzle Types in Almond Trees Sprayed with Knapsack Sprayer. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(3), 1012-1022. https://doi.org/10.53433/yyufbed.1532365