Mel-Spektrogram Temsiline Dayalı Hibrit Derin Öğrenme Yaklaşımı ile Drone Sınıflandırması
Year 2025,
Volume: 30 Issue: 2, 608 - 620, 31.08.2025
Nida Kumbasar
,
Rabiye Kılıç
,
Emin Argun Oral
,
Yücel Özbek
Abstract
Teknolojik gelişmelerle birlikte son yıllarda hem sivil hem de askeri sektörde dron kullanımı giderek yaygınlaşmaktadır. Güvenlik tehdidi oluşturan durumlarda uzaktan algılama sinyalleriyle bir dronun varlığını, türünü veya uçuş modunu tespit edip tanımlayabilen teknolojilere ihtiyaç duyulmaktadır. Bu çalışma, Mel-spektrogram gösterimleri kullanılarak farklı uçuş modları altında çeşitli dronlardan gelen radyo frekans (RF) sinyallerinin sınıflandırılmasına dayanmaktadır. Çalışma kapsamında, VGG19 derin öğrenme modeli hem bir sınıflandırıcı hem de SVM sınıflandırıcısı için bir özellik çıkarıcı olarak kullanılmıştır. Öte yandan çalışma, RF sinyallerinin düşük ve yüksek frekans bantlarındaki performansını ayrı ayrı ve birleştirilmiş versiyonlarda karşılaştırmaktadır. Deneysel çalışmalarda elde edilen sonuçlarda, VGG19+SVM hibrit modeli, birleştirilmiş düşük ve yüksek (L+H) frekansların Mel-spektrogramı üzerinde en yüksek performansı göstermiştir. dron varlığının tespit edildiği 2-Sınıf problemde (dron var - dron yok) doğruluk performansları %100, dron tiplerinin sınıflandırıldığı 4-Sınıf problemde (Bebop-AR-Phantom-dron yok) %90.78 ve dron modlarının elde edildiği 10-Sınıf problemde ise %86.6 olarak gerçekleşmiştir.
References
-
Alam, S. S., Chakma, A., Rahman, M. H., Bin Mofidul, R., Alam, M. M., Utama, I. B. K. Y., & Jang, Y. M. (2023). RF-enabled deep-learning-assisted drone detection and identification: An end-to-end approach. Sensors, 23(9), 4202. https://doi.org/10.3390/s23094202
-
Al-Emadi, S., Al-Ali, A., & Al-Ali, A. (2021). Audio-based drone detection and identification using deep learning techniques with dataset enhancement through generative adversarial networks. Sensors, 21(15), 4953. https://doi.org/10.3390/s21154953
-
Al-Emadi, S., & Al-Senaid, F. (2020). Drone detection approach based on radio-frequency using convolutional neural network. 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), 29–34. https://doi.org/10.1109/iciot48696.2020.9089489
-
Allahham, M. S., Al-Sa’d, M. F., Al-Ali, A., Mohamed, A., Khattab, T., & Erbad, A. (2019). DroneRF dataset: A dataset of drones for RF-based detection, classification and identification. Data in Brief, 26, 104313. https://doi.org/10.1016/j.dib.2019.104313
-
Al-Sa’d, M. F., Al-Ali, A., Mohamed, A., Khattab, T., & Erbad, A. (2019). RF-based drone detection and identification using deep learning approaches: An initiative towards a large open source drone database. Future Generation Computer Systems, 100, 86–97. https://doi.org/10.1016/j.future.2019.05.007
-
Anwar, M. Z., Kaleem, Z., & Jamalipour, A. (2019). Machine learning inspired sound-based amateur drone detection for public safety applications. IEEE Transactions on Vehicular Technology, 68(3), 2526–2534. https://doi.org/10.1109/tvt.2019.2893615
-
Aydin, B., & Singha, S. (2023). Drone detection using YOLOv5. Engineering, 4(1), 416–433. https://doi.org/10.3390/eng4010025
-
Basak, S., Rajendran, S., Pollin, S., & Scheers, B. (2021). Drone classification from RF fingerprints using deep residual nets. 2021 International Conference on COMmunication Systems & NETworkS (COMSNETS), 548–555. https://doi.org/10.1109/comsnets51098.2021.9352891
-
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297. https://doi.org/10.1007/BF00994018
-
Ezuma, M., Erden, F., Anjinappa, C. K., Ozdemir, O., & Guvenc, I. (2019). Detection and classification of UAVs using RF fingerprints in the presence of Wi-Fi and Bluetooth interference. IEEE Open Journal of the Communications Society, 1, 60–76. https://doi.org/10.1109/ojcoms.2019.2955889
-
Kılıç, R., Kumbasar, N., Oral, E. A., & Ozbek, I. Y. (2022). Drone classification using RF signal based spectral features. Engineering Science and Technology, an International Journal, 28, 101028. https://doi.org/10.1016/j.jestch.2021.06.008
-
Kumbasar, N., Kılıç, R., Oral, E. A., & Ozbek, I. Y. (2022). Comparison of spectrogram, persistence spectrum and percentile spectrum based image representation performances in drone detection and classification using novel HMFFNet: Hybrid model with feature fusion network. Expert Systems with Applications, 206, 117654. https://doi.org/10.1016/j.eswa.2022.117654
-
Mandal, S., & Satija, U. (2023). Time–frequency multiscale convolutional neural network for RF-based drone detection and identification. IEEE Sensors Letters, 7(7), 1–4. https://doi.org/10.1109/lsens.2023.3289145
-
Medaiyese, O. O., Ezuma, M., Lauf, A. P., & Guvenc, I. (2022). Wavelet transform analytics for RF-based UAV detection and identification system using machine learning. Pervasive and Mobile Computing, 82, 101569. https://doi.org/10.1016/j.pmcj.2022.101569
-
Medaiyese, O. O., Syed, A., & Lauf, A. P. (2021). Machine learning framework for RF-based drone detection and identification system. 2021 2nd International Conference On Smart Cities, Automation & Intelligent Computing Systems (ICON-SONICS), 58–64. https://doi.org/10.1109/icon-sonics53103.2021.9617168
-
Mohammed, K. K., Abd El-Latif, E. I., El-Sayad, N. E., Darwish, A., & Hassanien, A. E. (2023). Radio frequency fingerprint-based drone identification and classification using Mel spectrograms and pre-trained YAMNet neural. Internet of Things, 23, 100879. https://doi.org/10.1016/j.iot.2023.100879
-
Narayanan, R. M., Tsang, B., & Bharadwaj, R. (2023). Classification and discrimination of birds and small drones using radar micro-doppler spectrogram images. Signals, 4(2), 337–358. https://doi.org/10.3390/signals4020018
-
Seidaliyeva, U., Ilipbayeva, L., Taissariyeva, K., Smailov, N., & Matson, E. T. (2023). Advances and challenges in drone detection and classification techniques: A state-of-the-art review. Sensors, 24(1), 125. https://doi.org/10.3390/s24010125
-
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556
-
Singha, S., & Aydin, B. (2021). Automated drone detection using YOLOv4. Drones, 5(3), 95. https://doi.org/10.3390/drones5030095
-
Taha, B., & Shoufan, A. (2019). Machine learning-based drone detection and classification: State-of-the-art in research. IEEE Access, 7, 138669–138682. https://doi.org/10.1109/access.2019.2942944
-
Utebayeva, D., Ilipbayeva, L., & Matson, E. T. (2023). Practical study of recurrent neural networks for efficient real-time drone sound detection: A review. Drones, 7(1), 26. https://doi.org/10.3390/drones7010026
-
Yan, J., Hu, H., Gong, J., Kong, D., & Li, D. (2023a). Exploring radar micro-doppler signatures for recognition of drone types. Drones, 7(4), 280. https://doi.org/10.3390/drones7040280
-
Yan, X., Han, B., Su, Z., & Hao, J. (2023b). SignalFormer: Hybrid transformer for automatic drone ıdentification based on drone RF signals. Sensors, 23(22), 9098. https://doi.org/10.3390/s23229098
-
Yousaf, J., Zia, H., Alhalabi, M., Yaghi, M., Basmaji, T., Shehhi, E. A., Gad, A., Alkhedher, M., & Ghazal, M. (2022). Drone and controller detection and localization: Trends and challenges. Applied Sciences, 12(24), 12612. https://doi.org/10.3390/app122412612
-
Zhang, H., Li, T., Li, Y., Li, J., Dobre, O. A., & Wen, Z. (2023). RF-based drone classification under complex electromagnetic environments using deep learning. IEEE Sensors Journal, 23(6), 6099–6108. https://doi.org/10.1109/jsen.2023.3242985
-
Zhao, J., Zhang, J., Li, D., & Wang, D. (2022). Vision-based anti-UAV detection and tracking. IEEE Transactions on Intelligent Transportation Systems, 23(12), 25323–25334. https://doi.org/10.1109/tits.2022.3177627
Drone Classification with a Hybrid Deep Learning Approach Based on Mel-Spectrogram Representation
Year 2025,
Volume: 30 Issue: 2, 608 - 620, 31.08.2025
Nida Kumbasar
,
Rabiye Kılıç
,
Emin Argun Oral
,
Yücel Özbek
Abstract
With technological advancements, the use of drones has become increasingly widespread in both civilian and military sectors in recent years. There is a need for technologies that can detect and identify the presence, type, or flight mode of a drone with remote sensing signals in situations that pose a security threat. This study is based on the classification of radio frequency (RF) signals from various drones under different flight modes using Mel-spectrogram representations. Within the scope of the study, the VGG19 deep learning model is used as both a classifier and a feature extractor for the SVM classifier. On the other hand, the study compares the performance of RF signals in low and high frequency bands separately and in concatenated versions. In the results obtained in the experimental studies, the VGG19+SVM hybrid model showed the highest performance over the Mel-spectrogram of the concatenated low and high (L+H) frequencies. The accuracy performances were 100% in the 2-Class problem where drone presence was detected (drone -no drone), 90.78% in the 4-Class problem where drone types were classification (Bebop-AR-Phantom-no drone), and 86.6% in the 10-Class problem where drone modes were obtained.
References
-
Alam, S. S., Chakma, A., Rahman, M. H., Bin Mofidul, R., Alam, M. M., Utama, I. B. K. Y., & Jang, Y. M. (2023). RF-enabled deep-learning-assisted drone detection and identification: An end-to-end approach. Sensors, 23(9), 4202. https://doi.org/10.3390/s23094202
-
Al-Emadi, S., Al-Ali, A., & Al-Ali, A. (2021). Audio-based drone detection and identification using deep learning techniques with dataset enhancement through generative adversarial networks. Sensors, 21(15), 4953. https://doi.org/10.3390/s21154953
-
Al-Emadi, S., & Al-Senaid, F. (2020). Drone detection approach based on radio-frequency using convolutional neural network. 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), 29–34. https://doi.org/10.1109/iciot48696.2020.9089489
-
Allahham, M. S., Al-Sa’d, M. F., Al-Ali, A., Mohamed, A., Khattab, T., & Erbad, A. (2019). DroneRF dataset: A dataset of drones for RF-based detection, classification and identification. Data in Brief, 26, 104313. https://doi.org/10.1016/j.dib.2019.104313
-
Al-Sa’d, M. F., Al-Ali, A., Mohamed, A., Khattab, T., & Erbad, A. (2019). RF-based drone detection and identification using deep learning approaches: An initiative towards a large open source drone database. Future Generation Computer Systems, 100, 86–97. https://doi.org/10.1016/j.future.2019.05.007
-
Anwar, M. Z., Kaleem, Z., & Jamalipour, A. (2019). Machine learning inspired sound-based amateur drone detection for public safety applications. IEEE Transactions on Vehicular Technology, 68(3), 2526–2534. https://doi.org/10.1109/tvt.2019.2893615
-
Aydin, B., & Singha, S. (2023). Drone detection using YOLOv5. Engineering, 4(1), 416–433. https://doi.org/10.3390/eng4010025
-
Basak, S., Rajendran, S., Pollin, S., & Scheers, B. (2021). Drone classification from RF fingerprints using deep residual nets. 2021 International Conference on COMmunication Systems & NETworkS (COMSNETS), 548–555. https://doi.org/10.1109/comsnets51098.2021.9352891
-
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297. https://doi.org/10.1007/BF00994018
-
Ezuma, M., Erden, F., Anjinappa, C. K., Ozdemir, O., & Guvenc, I. (2019). Detection and classification of UAVs using RF fingerprints in the presence of Wi-Fi and Bluetooth interference. IEEE Open Journal of the Communications Society, 1, 60–76. https://doi.org/10.1109/ojcoms.2019.2955889
-
Kılıç, R., Kumbasar, N., Oral, E. A., & Ozbek, I. Y. (2022). Drone classification using RF signal based spectral features. Engineering Science and Technology, an International Journal, 28, 101028. https://doi.org/10.1016/j.jestch.2021.06.008
-
Kumbasar, N., Kılıç, R., Oral, E. A., & Ozbek, I. Y. (2022). Comparison of spectrogram, persistence spectrum and percentile spectrum based image representation performances in drone detection and classification using novel HMFFNet: Hybrid model with feature fusion network. Expert Systems with Applications, 206, 117654. https://doi.org/10.1016/j.eswa.2022.117654
-
Mandal, S., & Satija, U. (2023). Time–frequency multiscale convolutional neural network for RF-based drone detection and identification. IEEE Sensors Letters, 7(7), 1–4. https://doi.org/10.1109/lsens.2023.3289145
-
Medaiyese, O. O., Ezuma, M., Lauf, A. P., & Guvenc, I. (2022). Wavelet transform analytics for RF-based UAV detection and identification system using machine learning. Pervasive and Mobile Computing, 82, 101569. https://doi.org/10.1016/j.pmcj.2022.101569
-
Medaiyese, O. O., Syed, A., & Lauf, A. P. (2021). Machine learning framework for RF-based drone detection and identification system. 2021 2nd International Conference On Smart Cities, Automation & Intelligent Computing Systems (ICON-SONICS), 58–64. https://doi.org/10.1109/icon-sonics53103.2021.9617168
-
Mohammed, K. K., Abd El-Latif, E. I., El-Sayad, N. E., Darwish, A., & Hassanien, A. E. (2023). Radio frequency fingerprint-based drone identification and classification using Mel spectrograms and pre-trained YAMNet neural. Internet of Things, 23, 100879. https://doi.org/10.1016/j.iot.2023.100879
-
Narayanan, R. M., Tsang, B., & Bharadwaj, R. (2023). Classification and discrimination of birds and small drones using radar micro-doppler spectrogram images. Signals, 4(2), 337–358. https://doi.org/10.3390/signals4020018
-
Seidaliyeva, U., Ilipbayeva, L., Taissariyeva, K., Smailov, N., & Matson, E. T. (2023). Advances and challenges in drone detection and classification techniques: A state-of-the-art review. Sensors, 24(1), 125. https://doi.org/10.3390/s24010125
-
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556
-
Singha, S., & Aydin, B. (2021). Automated drone detection using YOLOv4. Drones, 5(3), 95. https://doi.org/10.3390/drones5030095
-
Taha, B., & Shoufan, A. (2019). Machine learning-based drone detection and classification: State-of-the-art in research. IEEE Access, 7, 138669–138682. https://doi.org/10.1109/access.2019.2942944
-
Utebayeva, D., Ilipbayeva, L., & Matson, E. T. (2023). Practical study of recurrent neural networks for efficient real-time drone sound detection: A review. Drones, 7(1), 26. https://doi.org/10.3390/drones7010026
-
Yan, J., Hu, H., Gong, J., Kong, D., & Li, D. (2023a). Exploring radar micro-doppler signatures for recognition of drone types. Drones, 7(4), 280. https://doi.org/10.3390/drones7040280
-
Yan, X., Han, B., Su, Z., & Hao, J. (2023b). SignalFormer: Hybrid transformer for automatic drone ıdentification based on drone RF signals. Sensors, 23(22), 9098. https://doi.org/10.3390/s23229098
-
Yousaf, J., Zia, H., Alhalabi, M., Yaghi, M., Basmaji, T., Shehhi, E. A., Gad, A., Alkhedher, M., & Ghazal, M. (2022). Drone and controller detection and localization: Trends and challenges. Applied Sciences, 12(24), 12612. https://doi.org/10.3390/app122412612
-
Zhang, H., Li, T., Li, Y., Li, J., Dobre, O. A., & Wen, Z. (2023). RF-based drone classification under complex electromagnetic environments using deep learning. IEEE Sensors Journal, 23(6), 6099–6108. https://doi.org/10.1109/jsen.2023.3242985
-
Zhao, J., Zhang, J., Li, D., & Wang, D. (2022). Vision-based anti-UAV detection and tracking. IEEE Transactions on Intelligent Transportation Systems, 23(12), 25323–25334. https://doi.org/10.1109/tits.2022.3177627