Research Article
BibTex RIS Cite

Canik Tuzlası’ndaki (Erciş-Van) Kriptik Siliyat (Ciliophora) Biyoçeşitliliği

Year 2025, Volume: 30 Issue: 2, 412 - 420, 31.08.2025
https://doi.org/10.53433/yyufbed.1649822

Abstract

Bu çalışmada, aşırı tuzlu ekstrem bir ekosistem olan Canik Tuzlası’ndaki (Erciş-Van) kriptik (örnekleme sırasında aktif olmayan) siliyat çeşitliliği belirlendi. Örnekler tuz tesisinde bulunan 56 buharlaştırma havuzundan steril koşullar altında kompozit olarak alındı. Alınan su örneklerinin başlangıç tuzluluk oranları ‰170-340 arasında ölçüldü. Bu tuzluluklara sahip örnekler üzerinde yapılan incelemelerde hiçbir aktif siliyat türü gözlenmedi. Ancak hazırlanan seyreltme kültürlerinde tuz yoğunluğunun ‰5-85 aralığında seyreltilmesi ve besin ilavesi ile zenginleştirilmiş alt kültürlerde siliyat türleri gözlendi ve Canik Tuzlası’ndaki siliyat türlerinin tümünün kriptik (gizli) olarak tohum bankasında saklı olduğunu ve uygun büyüme koşullarını bekledikleri anlaşıldı. Seyreltme kültürlerinde üreyen siliyat türleri hem canlı hem de çeşitli gümüş boyama teknikleri uygulanarak ve siliyatolojide kullanılan temel eserlerden yararlanılarak türlerin teşhisleri gerçekleştirildi. Çalışmada 8 siliyat türü (Euplotes moebiusi, Urosoma sp., Oxytricha oxymarina, Oxytricha sp., Bryophyllum sp., Edaphospathula sp., Pseudocohnilembus pusillus, P. persalinus) teşhis edildi. Yeterli sayıda birey elde edilemediği için üç hypotrich türünün teşhisi yapılamadı. Tür çeşitliliği açısından Canik Tuzlası’nın oldukça fakir olduğu bulunmuştur. Bu durumun olası nedenleri tartışılmıştır.

Supporting Institution

Van Yüzüncü Yıl Üniversitesi, Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

2009 FBE-YL-027

Thanks

Bu çalışmayı 2009 FBE-YL-027 numaralı proje ile destekleyen Van Yüzüncü Yıl Üniversitesi, Bilimsel Araştırma Projeleri Koordinasyon Birimi’ne teşekkür ederiz.

References

  • Ali, I., Prasongsuk, S., Akbar, A., Aslam Buzdar, M., Lotrakul, P., Punnapayak, H., & Rakshit, S. K. (2016). Hypersaline habitats and halophilic microorganisms. Maejo International Journal of Science and Technology, 10(3), 330-345.
  • Amann, R., Lemmer, H., & Wagner, M. (1998). Monitoring the community structure of wastewater treatment plants: a comparison of old and new techniques. FEMS Microbiology Ecology, 25(3), 205-215. https://doi.org/10.1111/j.1574-6941.1998.tb00473.x
  • Cho, B. C., Park, J. S., Xu, K., & Choi, J. K. (2008). Morphology and molecular phylogeny of Trimyema koreanum n. sp., a ciliate from the hypersaline water of a solar saltern. Journal of Eucaryotic Microbiology, 55(5), 417-426. https://doi.org/10.1111/j.1550-7408.2008.00340.x
  • Davis, S. J. (2000). Structure, function, and management of the biological system for seosonal solar saltworks. Global Nest: The International Journal, 2(3), 217-226.
  • Edgcomb, V. P., & Bernhard, J. M. (2013). Heterotrophic protists in hypersaline microbial mats and deep hypersaline basin water columns. Life (Basel), 3(2), 346-362. https://doi.org/10.3390/life3020346
  • Elloumi, J., Carrias, J. F., Ayadi, H., Sime-Ngando, T., Boukhris, M., & Bouaïn, A. (2006). Composition and distribution of planktonic ciliates from ponds of different salinity in the solar saltwork of Sfax, Tunisia. Estuarine Coastal and Shelf Science, 67(1-2), 21-29. https://doi.org/10.1016/j.ecss.2005.10.011
  • Elloumi, J., Guermazi, W., Ayadi, H., Bouain, A., & Aleya, L. (2009a). Abundance and biomass of prokaryotic and eukaryotic microorganisms coupled with environmental factors in an arid multi-pond solar saltern (Sfax, Tunisia). Journal of the Marine Biological Association of the United Kingdom, 89(2), 243-253. https://doi.org/10.1017/S0025315408002269
  • Elloumi, J., Carrias, J. F., Ayadi, H., Sime-Ngando, T., & Bouaïn, A. (2009b). Communities structure of the planktonic halophiles in the solar saltern of Sfax, Tunisia. Estuarine, Coastal and Shelf Science, 81(1), 19-26. https://doi.org/10.1016/j.ecss.2008.09.019
  • Esteban, G. F., & Finlay, B. J. (2003). Cryptic freshwater ciliates in a hypersaline lagoon. Protist, 154(3-4), 411-418. https://doi.org/10.1078/143446103322454149
  • Evans, F. R., & Thompson Jr, J. C. (1964). Pseudocohnilembidae n. fam., a hymenostome ciliate family containing one genus, Pseudocohnilembus n. g., with three new species*. Journal of Protozoology, 11(3), 344-352. https://doi.org/10.1111/j.1550-7408.1964.tb01763.x
  • Fenchel, T., Esteban, G. F., & Finlay, B. J. (1997). Local versus global diversity of microorganisms: Cryptic diversity of ciliated protozoa. Oikos, 80(2), 220-225. https://doi.org/10.2307/3546589
  • Foissner, W., Berger, H., Blatterer, H., & Kohmann, F. (1991). Taxonomische und ökologische revision der ciliaten des saprobiensystems. Informationsberichte des Bayer. Landesamtes für Wasserwirtschaft, 1-471.
  • Foissner, W. (2007). Dispersal and biogeography of protists: recent advances. Japanese Journal of Protozoology, 40(1), 1-16.
  • Foissner, W. (2014). An update of basic light and scanning electron microscopic methods for taxonomic studies of ciliated protozoa. International Journal of Systematic and Evolutionary Microbiology, 64(Pt 1), 271-292. https://doi.org/10.1099/ijs.0.057893-0
  • Galotti, A., Finlay, B. J., Jiménez-Gómez, F., Guerrero, F., & Esteban, G. F. (2014). Most ciliated protozoa in extreme environments are cryptic in the ‘seed bank’. Aquatic Microbial Ecology, 72(3), 187-193. https://doi.org/10.3354/ame01699
  • Golubkov, S. M., Shadrin, N. V., Golubkov, M. S., Balushkina, E. V., & Litvinchuk, L. F. (2018). Food chains and their dynamics in ecosystems of shallow lakes with different water salinities. Russian Journal of Ecology, 49(5), 442-448. https://doi.org/10.1134/S1067413618050053
  • Harding, T., & Simpson, A. G. B. (2018). Recent advances in halophilic protozoa research. Journal of Eukaryotic Microbiology, 65(4), 556-570. https://doi.org/10.1111/jeu.12495
  • Hu, X. (2014). Ciliates in extreme environments. Eukaryotic Microbiology, 61, 410-418. https://doi.org/10.1111/jeu.12120
  • Kahl, A. (1932). Urtiere Oder Protozoa I: Wimpertiere Order Ciliata (Infusoria). 3. Spirotricha. Tierwelt Dtl, 25, 399-650.
  • Kazmi, S. S. U. H., Uroosa, & Xu, H. (2022). A new approach to evaluating water quality status using protozoan periphytons in marine ecosystems: functional units. Ecohydrology & Hydrobiology, 22(3), 496-504. https://doi.org/10.1016/j.ecohyd.2022.05.001
  • Kerkar, S. (2004). Ecology of hypersaline microorganisms. In N. Ramaiah (Ed.), Marine Microbiology: Facets and Opportunities (pp. 37-47). National Institute of Oceanography.
  • Kwon, C. B., & Shin, M. K. (2008). Two newly recorded ciliates, Oxytricha longigranulosa and O. marina (Ciliophora: Spirotrichea: Sporadotrichida) from Korea. Animal Systematics, Evolution and Diversity, 24(1), 81-88. https://doi.org/10.5635/KJSZ.2008.24.1.081
  • Lei, Y., Xu, K., Choi, J. K., Hong, H. P., & Wickham, S. A. (2009). Community structure and seasonal dynamics of planktonic ciliates along salinity gradients. European Journal of Protistology, 45(4), 305-319. https://doi.org/10.1016/j.ejop.2009.05.00
  • Lynn, D. H., & Small, E. B. (2000). Phylum Ciliophora Doflein, 1901. In J. J. Lee, G. F. Leedale & P. Bradbury (Eds.), The Illustrated Guide to the Protozoa (pp. 371-656). Allen Press Inc.
  • Lynn, D. H. (2008). The Ciliated Protozoa: Characterization, Classification, and Guide to the Literature. Springer, Dordrecht.
  • Madoni, P., & Zangrossi, S. (2005). Ciliated protozoa and saprobical evaluation of water quality in the Taro River (northern Italy). Italian Journal of Zoology, 72(1), 21-25. https://doi.org/10.1080/11250000509356648
  • Moscatello, S., & Belmonte, G. (2009). Egg banks in hypersaline lakes of the South-East Europe. Aquatic Biosystems, 5, 3. https://doi.org/10.1186/1746-1448-5-3
  • Nche-Fambo, F. A., Tirok, K., & Scharler, U. M. (2016). Hypersaline conditions cause distinct ciliate community structure in a South African estuarine lake system. Journal of Plankton Research, 38(4), 878-887. https://doi.org/10.1093/plankt/fbw035
  • Olendzenski, L. C. (1999). Growth, fine structure and cyst formation of a microbial mat ciliate: Pseudocohnilembus pusillus (Ciliophora, Scuticociliatida). Journal of Eukaryotic Microbiology, 46(2), 132-141. https://doi.org/10.1111/j.1550-7408.1999.tb04596.x
  • Park, J. S., & Simpson, A. G. (2015). Diversity of heterotrophic protists from extremely hypersaline habitats. Protist, 166(4), 422-437. https://doi.org/10.1016/j.protis.2015.06.001
  • Post, F. J., Borowitzka, L. J., Borowitzka, M. A., Mackay, B., & Moulton, T. (1983). The protozoa of a Western Australian hypersaline lagoon. Hydrobiologia, 105(1), 95-113. https://doi.org/10.1007/BF00025180
  • Sherr, E. B., & Sherr, B. F. (2002). Significance of predation by protists in aquatic microbial food webs. Antonie Van Leeuwenhoek, 81(1-4), 293-308. https://doi.org/10.1023/A:1020591307260
  • Whang, I., Kang, H. S., & Lee, J. (2013). Identification of scuticociliates (Pseudocohnilembus persalinus, P. longisetus, Uronema marinum and Miamiensis avidus) based on the cox1 sequence. Parasitology International, 62(1), 7-13. https://doi.org/10.1016/j.parint.2012.08.002
  • Xu, W., Ma, J., Li, Y., Bourland, W. A., Petroni, G., Luo, X., & Song, W. (2022). Phylogeny of a new ciliate family Clampidae fam. nov. (Protista: Ciliophora), with notes on morphology and morphogenesis. Zoological Journal of the Linnean Society, 196(1), 88-104. https://doi.org/10.1093/zoolinnean/zlab102

Cryptic Ciliate (Ciliophora) Biodiversity in Canik Tuzlası (Erciş-Van)

Year 2025, Volume: 30 Issue: 2, 412 - 420, 31.08.2025
https://doi.org/10.53433/yyufbed.1649822

Abstract

In this study, the cryptic (inactive at the time of sampling) ciliate diversity in Canik solar saltern (Erciş-Van), an extremely saline ecosystem, was determined. Samples were taken as composites from 56 evaporation ponds in the saltern under sterile conditions. The initial salinities of the water samples were measured between 170-340 ‰. No active ciliate species were observed in the samples at these salinities. However, ciliate species were observed in subcultures enriched by dilution of the salt concentration in the range of 5-85 ‰ and addition of nutrients, and it was understood that all of the ciliate species in Canik Tuzlası were cryptically hidden in the seed bank and were waiting for suitable growth conditions. The ciliate species grown in dilution cultures were identified both in vivo and by applying various silver staining techniques and using the basic literature used in ciliatology. In present work eight ciliate species (Euplotes moebiusi, Urosoma sp., Oxytricha oxymarina, Oxytricha sp., Bryophyllum sp., Edaphospathula sp., Pseudocohnilembus pusillus, P. persalinus) were identified. Three hypotrich species could not be identified due to insufficient number of individuals. Canik Tuzlası was found to be rather poor in terms of species diversity. Possible reasons for this situation are discussed.

Project Number

2009 FBE-YL-027

References

  • Ali, I., Prasongsuk, S., Akbar, A., Aslam Buzdar, M., Lotrakul, P., Punnapayak, H., & Rakshit, S. K. (2016). Hypersaline habitats and halophilic microorganisms. Maejo International Journal of Science and Technology, 10(3), 330-345.
  • Amann, R., Lemmer, H., & Wagner, M. (1998). Monitoring the community structure of wastewater treatment plants: a comparison of old and new techniques. FEMS Microbiology Ecology, 25(3), 205-215. https://doi.org/10.1111/j.1574-6941.1998.tb00473.x
  • Cho, B. C., Park, J. S., Xu, K., & Choi, J. K. (2008). Morphology and molecular phylogeny of Trimyema koreanum n. sp., a ciliate from the hypersaline water of a solar saltern. Journal of Eucaryotic Microbiology, 55(5), 417-426. https://doi.org/10.1111/j.1550-7408.2008.00340.x
  • Davis, S. J. (2000). Structure, function, and management of the biological system for seosonal solar saltworks. Global Nest: The International Journal, 2(3), 217-226.
  • Edgcomb, V. P., & Bernhard, J. M. (2013). Heterotrophic protists in hypersaline microbial mats and deep hypersaline basin water columns. Life (Basel), 3(2), 346-362. https://doi.org/10.3390/life3020346
  • Elloumi, J., Carrias, J. F., Ayadi, H., Sime-Ngando, T., Boukhris, M., & Bouaïn, A. (2006). Composition and distribution of planktonic ciliates from ponds of different salinity in the solar saltwork of Sfax, Tunisia. Estuarine Coastal and Shelf Science, 67(1-2), 21-29. https://doi.org/10.1016/j.ecss.2005.10.011
  • Elloumi, J., Guermazi, W., Ayadi, H., Bouain, A., & Aleya, L. (2009a). Abundance and biomass of prokaryotic and eukaryotic microorganisms coupled with environmental factors in an arid multi-pond solar saltern (Sfax, Tunisia). Journal of the Marine Biological Association of the United Kingdom, 89(2), 243-253. https://doi.org/10.1017/S0025315408002269
  • Elloumi, J., Carrias, J. F., Ayadi, H., Sime-Ngando, T., & Bouaïn, A. (2009b). Communities structure of the planktonic halophiles in the solar saltern of Sfax, Tunisia. Estuarine, Coastal and Shelf Science, 81(1), 19-26. https://doi.org/10.1016/j.ecss.2008.09.019
  • Esteban, G. F., & Finlay, B. J. (2003). Cryptic freshwater ciliates in a hypersaline lagoon. Protist, 154(3-4), 411-418. https://doi.org/10.1078/143446103322454149
  • Evans, F. R., & Thompson Jr, J. C. (1964). Pseudocohnilembidae n. fam., a hymenostome ciliate family containing one genus, Pseudocohnilembus n. g., with three new species*. Journal of Protozoology, 11(3), 344-352. https://doi.org/10.1111/j.1550-7408.1964.tb01763.x
  • Fenchel, T., Esteban, G. F., & Finlay, B. J. (1997). Local versus global diversity of microorganisms: Cryptic diversity of ciliated protozoa. Oikos, 80(2), 220-225. https://doi.org/10.2307/3546589
  • Foissner, W., Berger, H., Blatterer, H., & Kohmann, F. (1991). Taxonomische und ökologische revision der ciliaten des saprobiensystems. Informationsberichte des Bayer. Landesamtes für Wasserwirtschaft, 1-471.
  • Foissner, W. (2007). Dispersal and biogeography of protists: recent advances. Japanese Journal of Protozoology, 40(1), 1-16.
  • Foissner, W. (2014). An update of basic light and scanning electron microscopic methods for taxonomic studies of ciliated protozoa. International Journal of Systematic and Evolutionary Microbiology, 64(Pt 1), 271-292. https://doi.org/10.1099/ijs.0.057893-0
  • Galotti, A., Finlay, B. J., Jiménez-Gómez, F., Guerrero, F., & Esteban, G. F. (2014). Most ciliated protozoa in extreme environments are cryptic in the ‘seed bank’. Aquatic Microbial Ecology, 72(3), 187-193. https://doi.org/10.3354/ame01699
  • Golubkov, S. M., Shadrin, N. V., Golubkov, M. S., Balushkina, E. V., & Litvinchuk, L. F. (2018). Food chains and their dynamics in ecosystems of shallow lakes with different water salinities. Russian Journal of Ecology, 49(5), 442-448. https://doi.org/10.1134/S1067413618050053
  • Harding, T., & Simpson, A. G. B. (2018). Recent advances in halophilic protozoa research. Journal of Eukaryotic Microbiology, 65(4), 556-570. https://doi.org/10.1111/jeu.12495
  • Hu, X. (2014). Ciliates in extreme environments. Eukaryotic Microbiology, 61, 410-418. https://doi.org/10.1111/jeu.12120
  • Kahl, A. (1932). Urtiere Oder Protozoa I: Wimpertiere Order Ciliata (Infusoria). 3. Spirotricha. Tierwelt Dtl, 25, 399-650.
  • Kazmi, S. S. U. H., Uroosa, & Xu, H. (2022). A new approach to evaluating water quality status using protozoan periphytons in marine ecosystems: functional units. Ecohydrology & Hydrobiology, 22(3), 496-504. https://doi.org/10.1016/j.ecohyd.2022.05.001
  • Kerkar, S. (2004). Ecology of hypersaline microorganisms. In N. Ramaiah (Ed.), Marine Microbiology: Facets and Opportunities (pp. 37-47). National Institute of Oceanography.
  • Kwon, C. B., & Shin, M. K. (2008). Two newly recorded ciliates, Oxytricha longigranulosa and O. marina (Ciliophora: Spirotrichea: Sporadotrichida) from Korea. Animal Systematics, Evolution and Diversity, 24(1), 81-88. https://doi.org/10.5635/KJSZ.2008.24.1.081
  • Lei, Y., Xu, K., Choi, J. K., Hong, H. P., & Wickham, S. A. (2009). Community structure and seasonal dynamics of planktonic ciliates along salinity gradients. European Journal of Protistology, 45(4), 305-319. https://doi.org/10.1016/j.ejop.2009.05.00
  • Lynn, D. H., & Small, E. B. (2000). Phylum Ciliophora Doflein, 1901. In J. J. Lee, G. F. Leedale & P. Bradbury (Eds.), The Illustrated Guide to the Protozoa (pp. 371-656). Allen Press Inc.
  • Lynn, D. H. (2008). The Ciliated Protozoa: Characterization, Classification, and Guide to the Literature. Springer, Dordrecht.
  • Madoni, P., & Zangrossi, S. (2005). Ciliated protozoa and saprobical evaluation of water quality in the Taro River (northern Italy). Italian Journal of Zoology, 72(1), 21-25. https://doi.org/10.1080/11250000509356648
  • Moscatello, S., & Belmonte, G. (2009). Egg banks in hypersaline lakes of the South-East Europe. Aquatic Biosystems, 5, 3. https://doi.org/10.1186/1746-1448-5-3
  • Nche-Fambo, F. A., Tirok, K., & Scharler, U. M. (2016). Hypersaline conditions cause distinct ciliate community structure in a South African estuarine lake system. Journal of Plankton Research, 38(4), 878-887. https://doi.org/10.1093/plankt/fbw035
  • Olendzenski, L. C. (1999). Growth, fine structure and cyst formation of a microbial mat ciliate: Pseudocohnilembus pusillus (Ciliophora, Scuticociliatida). Journal of Eukaryotic Microbiology, 46(2), 132-141. https://doi.org/10.1111/j.1550-7408.1999.tb04596.x
  • Park, J. S., & Simpson, A. G. (2015). Diversity of heterotrophic protists from extremely hypersaline habitats. Protist, 166(4), 422-437. https://doi.org/10.1016/j.protis.2015.06.001
  • Post, F. J., Borowitzka, L. J., Borowitzka, M. A., Mackay, B., & Moulton, T. (1983). The protozoa of a Western Australian hypersaline lagoon. Hydrobiologia, 105(1), 95-113. https://doi.org/10.1007/BF00025180
  • Sherr, E. B., & Sherr, B. F. (2002). Significance of predation by protists in aquatic microbial food webs. Antonie Van Leeuwenhoek, 81(1-4), 293-308. https://doi.org/10.1023/A:1020591307260
  • Whang, I., Kang, H. S., & Lee, J. (2013). Identification of scuticociliates (Pseudocohnilembus persalinus, P. longisetus, Uronema marinum and Miamiensis avidus) based on the cox1 sequence. Parasitology International, 62(1), 7-13. https://doi.org/10.1016/j.parint.2012.08.002
  • Xu, W., Ma, J., Li, Y., Bourland, W. A., Petroni, G., Luo, X., & Song, W. (2022). Phylogeny of a new ciliate family Clampidae fam. nov. (Protista: Ciliophora), with notes on morphology and morphogenesis. Zoological Journal of the Linnean Society, 196(1), 88-104. https://doi.org/10.1093/zoolinnean/zlab102
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Hydrobiology
Journal Section Natural Sciences and Mathematics / Fen Bilimleri ve Matematik
Authors

Naciye Gülkız Şenler 0000-0002-5035-0880

İsmail Yıldız 0000-0001-9986-0358

Project Number 2009 FBE-YL-027
Publication Date August 31, 2025
Submission Date March 3, 2025
Acceptance Date April 14, 2025
Published in Issue Year 2025 Volume: 30 Issue: 2

Cite

APA Şenler, N. G., & Yıldız, İ. (2025). Canik Tuzlası’ndaki (Erciş-Van) Kriptik Siliyat (Ciliophora) Biyoçeşitliliği. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 30(2), 412-420. https://doi.org/10.53433/yyufbed.1649822