Research Article
BibTex RIS Cite

Fe3Al2B2, Ru3Al2B2 ve Os3Al2B2 Üçlü Borürlerin Kuramsal İncelenmesi: Yapısal, Mekanik ve Fonon Özellikleri

Year 2025, Volume: 30 Issue: 2, 499 - 511, 31.08.2025
https://doi.org/10.53433/yyufbed.1667463

Abstract

Bu çalışmada Fe3Al2B2, Ru3Al2B2 ve Os3Al2B2 bileşiklerinin yapısal, mekanik, elektronik, titreşimsel ve termal özellikleri yoğunluk fonksiyonel teorisine (DFT) dayalı hesaplamalar kullanılarak araştırılmıştır. Fe3Al2B2'nin hesaplanan optimize örgü parametreleri deneysel verilerle gösterdiği iyi derecede uyumluluk kullanılan yaklaşımın etkinliğini ortaya koymaktadır. Belirlenen oluşum enerjilerinin negatif olması tüm bileşiklerin termodinamik kararlılığını gösterirken, Fe3Al2B2 en yüksek yapısal kararlılığa sahiptir. Mekanik analizler Os3Al2B2'nin en yüksek bulk modülüne, Fe3Al2B2'nin ise en yüksek kayma modülüne sahip olduğunu ortaya koymaktadır. Mekanik anizotropi hesaplamaları Os3Al2B2'nin en güçlü anizotropik davranışı sergilediğini doğrulamıştır. Elektronik band yapılarının analizi sonucu tüm bileşiklerin metalik doğaya sahip olduğunu görülmüştür. Fonon dağınımlarından Fe3Al2B2 ve Ru3Al2B2'nin dinamik kararlılıklar doğrulanmış olup, Os3Al2B2'de görülen negatif fonon modları bileşiğin potansiyel kararsızlığa işaret etmektedir. Bu bulgular, Fe3Al2B2'nin mekanik ve termal olarak en kararlı bileşik olduğunu ve bu nedenle yüksek mukavemetli uygulamalar için uygun olduğunu gösterirken, Os3Al2B2'nin yüksek anizotropisi onu yönelime bağlı mekanik özellikler gerektiren uygulamalar için ideal hale getirmektedir.

References

  • Ade, M., & Hillebrecht, H. (2015). Ternary borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: The first members of the series (CrB2)nCrAl with n = 1, 2, 3 and a unifying concept for ternary borides as MAB-phases. Inorganic Chemistry, 54(13), 6122–6135. https://doi.org/10.1021/acs.inorgchem.5b00049
  • Ali, M. A., Hadi, M. A., Hossain, M. M., Naqib, S. H., & Islam, A. K. M. A. (2017). Theoretical investigation of structural, elastic, and electronic properties of ternary boride MoAlB. Physica Status Solidi B, 254(7), 1700010. https://doi.org/10.1002/pssb.201700010
  • Ali, M. M., Hadi, M. A., Rahman, M. L., Haque, F. H., Haider, A. F. M. Y., & Aftabuzzaman, M. (2020). DFT investigations into the physical properties of a MAB phase Cr4AlB4. Journal of Alloys and Compounds, 821, 153547. https://doi.org/10.1016/j.jallcom.2019.153547
  • Anderson, O. L. (1963). A simplified method for calculating the Debye temperature from elastic constants. Journal of Physics and Chemistry of Solids, 24(7), 909–917. https://doi.org/10.1016/0022-3697(63)90067-2
  • Blum, Y. D., Marschall, J., Hui, D., & Young, S. (2008). Thick protective UHTC coatings for SiC-based structures: Process establishment. Journal of the American Ceramic Society, 91(5), 1453–1460. https://doi.org/10.1111/j.1551-2916.2008.02360.x
  • Cheng, Y., Lv, Z. L., Chen, X. R., & Cai, L. C. (2014). Structural, electronic and elastic properties of AlFe2B2: First-principles study. Computational Materials Science, 92, 253–257. https://doi.org/10.1016/j.commatsci.2014.05.048
  • Corral, E. L., & Loehman, R. E. (2008). Ultra-high temperature ceramic coatings for oxidation protection of carbon-carbon composites. Journal of the American Ceramic Society, 91(5), 1495–1502. https://doi.org/10.1111/j.1551-2916.2008.02331.x
  • Eremets, M. I., Struzhkin, V. V., Mao, H. K., & Hemley, R. J. (2001). Superconductivity in boron. Science, 293(5528), 272–274. https://doi.org/10.1126/science.1062286
  • Eroğlu, E., Toffoli, H., Mutlu, R. N., Kandasamy, J., Karaca, M., & Gökalp, I. (2023). Exploring the interaction of water with boron surfaces using density functional theory. Journal of Boron, 8(1), 25–31. https://doi.org/10.30728/boron.1283831
  • Fahrenholtz, W. G., Hilmas, G. E., Talmy, I. G., & Zaykoski, J. A. (2007). Refractory diborides of zirconium and hafnium. Journal of the American Ceramic Society, 90(5), 1347–1364. https://doi.org/10.1111/j.1551-2916.2007.01583.x
  • Feng, S., Yang, Y., Chen, P., Tang, C., & Cheng, X. (2018). A first-principles study of hypothetical Ti4AlB3 and V4AlB3 phases. Solid State Communications, 281, 17–21. https://doi.org/10.1016/j.ssc.2018.06.009
  • Gaillac, R., Cudazzo, P., & Rignanese, G. M. (2016). ELATE: A software to visualize and analyze the elastic tensors. Journal of Physics: Condensed Matter, 28(27), 275201. https://doi.org/10.1088/0953-8984/28/27/275201
  • Herbst, J. F., Fuerst, C. D., & Mishira, R. K. (1991). Coercivity enhancement of melt-spun Nd–Fe–B ribbons using low-level Cu additions. Journal of Applied Physics, 69(8), 5823–5825. https://doi.org/10.1063/1.347861
  • Hill, R. (1952). The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A, 65(5), 349–354. https://doi.org/10.1088/0370-1298/65/5/307
  • Hirt, S., Hilfinger, F., & Hillebrecht, H. (2018). Synthesis and crystal structures of the new ternary borides Fe3Al2B2 and Ru9Al3B8 and the confirmation of Ru4Al3B2 and Ru9Al5B8−x (x≈2). Zeitschrift für Kristallographie - Crystalline Materials, 233(5), 295–307. https://doi.org/10.1515/zkri-2017-2095
  • Huang, Q., Lin, Q., Xu, Y., & Cao, Y. (2025). Predicting potential hard materials in Nb–B ternary boride: First-principles calculations. International Journal of Refractory Metals and Hard Materials, 126, 106927. https://doi.org/10.1016/j.ijrmhm.2024.106927
  • Johnston, I., Keeler, G., Rollins, R., & Spicklemine, S. (1996). The consortium for upper-level physics software: Solid State Physics Simulations. New York: John Wiley & Sons.
  • Kota, S., Wang, W., Lu, J., Natu, V., Opagiste, C., Ying, G., Hultman, L., May, S. J., & Barsoum, M. W. (2018). Magnetic properties of Cr2AlB2, Cr3AlB4, and CrB powders. Journal of Alloys and Compounds, 767, 474–482. https://doi.org/10.1016/j.jallcom.2018.07.031
  • Kresse, G., & Furthmüller, J. (1996a). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15–50. https://doi.org/10.1016/0927-0256(96)00008-0
  • Kresse, G., & Furthmüller, J. (1996b). Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169–11186. https://doi.org/10.1103/PhysRevB.54.11169
  • Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector-augmented-wave method. Physical Review B, 59(3), 1758–1775. https://doi.org/10.1103/PhysRevB.59.1758
  • Le Page, Y., & Saxe, P. (2002). Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Physical Review B, 65(10), 104104. https://doi.org/10.1103/PhysRevB.65.104104
  • Licht, S., Yu, X. W., & Qu, D. Y. (2007). A novel alkaline redox couple: Chemistry of the Fe6+/B2- super-iron boride battery. Chemical Communications, 2007(26), 2753–2755. http://dx.doi.org/10.1039/b701629h
  • Lu, J., Kota, S., Barsoum, M. W., & Hultman, L. (2017). Atomic structure and lattice defects in nanolaminated ternary transition metal borides. Materials Research Letters, 5(4), 235–241. https://doi.org/10.1080/21663831.2016.1245682
  • Martini, C., Palombarini, G., Poli, G., & Prandstraller, D. (2004). Sliding and abrasive wear behaviour of boride coatings. Wear, 256(6), 608–613. https://doi.org/10.1016/j.wear.2003.10.003
  • Miao, N., Sa, B., Zhou, J., & Sun, Z. (2011). Theoretical investigation on the transition-metal borides with Ta3B4-type structure: A class of hard and refractory materials. Computational Materials Science, 50(4), 1559-1566. https://doi.org/10.1016/j.commatsci.2010.12.015
  • Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. https://doi.org/10.1103/PhysRevB.13.5390
  • Mouhat, F., & Coudert, F. X. (2014). Necessary and sufficient elastic stability conditions in various crystal systems. Physical Review B, 90(22), 224104. https://doi.org/10.1103/PhysRevB.90.224104
  • Opeka, M. M., Talmy, I. G., Wuchina, E. J., Zaykoski, J. A., & Causey, S. J. (1999). Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. Journal of the European Ceramic Society, 19(13–14), 2405–2414. https://doi.org/10.1016/S0955-2219(99)00129-6
  • Ozisik, H., Colakoglu, K., Ozisik, H. B., & Deligoz, E. (2010). Structural, elastic, and lattice dynamical properties of Germanium diiodide (GeI2). Computational Materials Science, 50(2), 349–355. http://dx.doi.org/10.1016/j.commatsci.2010.08.026
  • Ozisik, H., Colakoglu, K., Deligoz, E., & Ateser, E. (2013). First-principles calculations of vibrational and thermodynamical properties of rare-earth diborides. Computational Materials Science, 68, 307–313. http://dx.doi.org/10.1016/j.commatsci.2012.11.003
  • Ozisik, H., Deligoz, E., Colakoglu, K., & Ciftci, Y. O. (2011). Structural, elastic, and lattice dynamical properties of YB2 compound. Computational Materials Science, 50(3), 1057–1063. http://dx.doi.org/10.1016/j.commatsci.2010.10.046
  • Ozisik, H., Deligoz, E., Surucu, G., & Ozisik, H. B. (2016). Anisotropic elastic and vibrational properties of Ru2B3 and Os2B3: A first-principles investigation. Materials Research Express, 3(7), 076501. http://dx.doi.org/10.1088/2053-1591/3/7/076501
  • Panda, K. B., & Chandran, K. S. R. (2006). First-principles determination of elastic constants and chemical bonding of titanium boride (TiB). Acta Materialia, 54(6), 1641–1657. https://doi.org/10.1016/j.actamat.2005.12.003
  • Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865
  • Pugh, S. F. (1954). Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philosophical Magazine, 45(367), 823–843. https://doi.org/10.1080/14786440808520496
  • Ranganathan, S. I., & Starzewski, M. O. (2008). Elastic properties of nanoscale materials. Physical Review Letters, 101(5), 055504. https://doi.org/10.1103/PhysRevLett.101.055504
  • Reuss, A. (1929). Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 9(1), 49–58. https://doi.org/10.1002/zamm.19290090104
  • Schreiber, E., Anderson, O. L., Soga, N., & Bell, J. F. (1975). Elastic constants and their measurement. New York: McGraw-Hill.
  • Takagi, K. (2006). Development and application of high-strength ternary boride-based cermets. Journal of Solid-State Chemistry, 179(9), 2809–2818. https://doi.org/10.1016/j.jssc.2006.01.023
  • Togo, A. (2023). First-principles phonon calculations with Phonopy and Phono3py. Journal of the Physical Society of Japan, 92(1), 012001. https://doi.org/10.7566/JPSJ.92.012001
  • Togo, A., Chaput, L., Tadano, T., & Tanaka, I. (2023). Implementation strategies in phonopy and phono3py. Journal of Physics: Condensed Matter, 35(35), 353001. https://iopscience.iop.org/article/10.1088/1361-648X/acd831/meta
  • Voigt, W. (1966). Lehrbuch der Kristallphysik. Wiesbaden: Vieweg+Teubner Verlag.
  • Wei, J., Zhang, L., & Liu, Y. (2021). First-principles calculations of mechanical and thermal properties of Cr–Al–B ternary borides. Solid State Communications, 326, 114182. https://doi.org/10.1016/j.ssc.2020.114182
  • Yu, X. W., & Licht, S. (2008). A novel high-capacity, environmentally benign energy storage system: Super-iron boride battery. Journal of Power Sources, 179(1), 407–411. https://doi.org/10.1016/j.jpowsour.2007.12.060
  • Zapata-Solvas, E., Jayaseelan, D. D., Brown, P. M., & Lee, W. E. (2013). Thermal properties of La2O3-doped ZrB2- and HfB2-based ultra-high temperature ceramics. Journal of the European Ceramic Society, 33(15–16), 3467–3472. https://doi.org/10.1016/j.jeurceramsoc.2013.06.009
  • Zhang, H., Dai, F., Xiang, H., Wang, X., Zhang, Z., & Zhou, Y. (2019a). Phase pure and well-crystalline Cr2AlB2: A key precursor for two-dimensional CrB. Journal of Materials Science & Technology, 35(8), 1593–1600. https://doi.org/10.1016/j.jmst.2019.03.031
  • Zhang, H., Dai, F., Xiang, H., Zhang, Z., & Zhou, Y. (2019b). Crystal structure of Cr4AlB4: A new MAB phase compound discovered in the Cr-Al-B system. Journal of Materials Science & Technology, 35(4), 530–534. https://doi.org/10.1016/j.jmst.2018.10.006
  • Zhang, H., Xiang, H., Dai, F., Zhang, Z., & Zhou, Y. (2018). First demonstration of possible two-dimensional MBene CrB derived from MAB phase Cr2AlB2. Journal of Materials Science & Technology, 34(11), 2022–2026. https://doi.org/10.1016/j.jmst.2018.02.024

Computational Investigation of Ternary Borides Fe3Al2B2, Ru3Al2B2, and Os3Al2B2: Structural, Mechanical, and Phonon Properties

Year 2025, Volume: 30 Issue: 2, 499 - 511, 31.08.2025
https://doi.org/10.53433/yyufbed.1667463

Abstract

An investigation has been conducted into the structural, mechanical, electronic, vibrational and thermal properties of Fe3Al2B2, Ru3Al2B2, and Os3Al2B2 with the utilization of first-principles density functional theory (DFT) calculations. The optimized lattice parameters of Fe3Al2B2 demonstrate a high degree of congruence with experimental data, thereby validating the efficacy of the utilized approach. The negative formation energies indicate the thermodynamic stability of all compounds while Fe3Al2B2 has the highest structural stability. Mechanical analysis reveals that Os3Al2B2 has the highest bulk modulus, while Fe3Al2B2 possesses the highest shear modulus. Anisotropy mechanical calculations have confirmed that Os3Al2B2 exhibits the strongest anisotropic behavior. Electronic band structure analysis showed that all compounds have metallic nature. Phonon dispersion calculations have been used to confirm the dynamical stability of Fe3Al2B2 and Ru3Al2B2, while Os3Al2B2 has been shown to possess negative phonon modes, thus indicating potential instability. These findings indicate that Fe3Al2B2 is the most mechanically and thermally stable compound and thus suitable for high strength applications, while the significant anisotropy of Os3Al2B2 makes it ideal for applications requiring directional mechanical properties.

References

  • Ade, M., & Hillebrecht, H. (2015). Ternary borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: The first members of the series (CrB2)nCrAl with n = 1, 2, 3 and a unifying concept for ternary borides as MAB-phases. Inorganic Chemistry, 54(13), 6122–6135. https://doi.org/10.1021/acs.inorgchem.5b00049
  • Ali, M. A., Hadi, M. A., Hossain, M. M., Naqib, S. H., & Islam, A. K. M. A. (2017). Theoretical investigation of structural, elastic, and electronic properties of ternary boride MoAlB. Physica Status Solidi B, 254(7), 1700010. https://doi.org/10.1002/pssb.201700010
  • Ali, M. M., Hadi, M. A., Rahman, M. L., Haque, F. H., Haider, A. F. M. Y., & Aftabuzzaman, M. (2020). DFT investigations into the physical properties of a MAB phase Cr4AlB4. Journal of Alloys and Compounds, 821, 153547. https://doi.org/10.1016/j.jallcom.2019.153547
  • Anderson, O. L. (1963). A simplified method for calculating the Debye temperature from elastic constants. Journal of Physics and Chemistry of Solids, 24(7), 909–917. https://doi.org/10.1016/0022-3697(63)90067-2
  • Blum, Y. D., Marschall, J., Hui, D., & Young, S. (2008). Thick protective UHTC coatings for SiC-based structures: Process establishment. Journal of the American Ceramic Society, 91(5), 1453–1460. https://doi.org/10.1111/j.1551-2916.2008.02360.x
  • Cheng, Y., Lv, Z. L., Chen, X. R., & Cai, L. C. (2014). Structural, electronic and elastic properties of AlFe2B2: First-principles study. Computational Materials Science, 92, 253–257. https://doi.org/10.1016/j.commatsci.2014.05.048
  • Corral, E. L., & Loehman, R. E. (2008). Ultra-high temperature ceramic coatings for oxidation protection of carbon-carbon composites. Journal of the American Ceramic Society, 91(5), 1495–1502. https://doi.org/10.1111/j.1551-2916.2008.02331.x
  • Eremets, M. I., Struzhkin, V. V., Mao, H. K., & Hemley, R. J. (2001). Superconductivity in boron. Science, 293(5528), 272–274. https://doi.org/10.1126/science.1062286
  • Eroğlu, E., Toffoli, H., Mutlu, R. N., Kandasamy, J., Karaca, M., & Gökalp, I. (2023). Exploring the interaction of water with boron surfaces using density functional theory. Journal of Boron, 8(1), 25–31. https://doi.org/10.30728/boron.1283831
  • Fahrenholtz, W. G., Hilmas, G. E., Talmy, I. G., & Zaykoski, J. A. (2007). Refractory diborides of zirconium and hafnium. Journal of the American Ceramic Society, 90(5), 1347–1364. https://doi.org/10.1111/j.1551-2916.2007.01583.x
  • Feng, S., Yang, Y., Chen, P., Tang, C., & Cheng, X. (2018). A first-principles study of hypothetical Ti4AlB3 and V4AlB3 phases. Solid State Communications, 281, 17–21. https://doi.org/10.1016/j.ssc.2018.06.009
  • Gaillac, R., Cudazzo, P., & Rignanese, G. M. (2016). ELATE: A software to visualize and analyze the elastic tensors. Journal of Physics: Condensed Matter, 28(27), 275201. https://doi.org/10.1088/0953-8984/28/27/275201
  • Herbst, J. F., Fuerst, C. D., & Mishira, R. K. (1991). Coercivity enhancement of melt-spun Nd–Fe–B ribbons using low-level Cu additions. Journal of Applied Physics, 69(8), 5823–5825. https://doi.org/10.1063/1.347861
  • Hill, R. (1952). The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A, 65(5), 349–354. https://doi.org/10.1088/0370-1298/65/5/307
  • Hirt, S., Hilfinger, F., & Hillebrecht, H. (2018). Synthesis and crystal structures of the new ternary borides Fe3Al2B2 and Ru9Al3B8 and the confirmation of Ru4Al3B2 and Ru9Al5B8−x (x≈2). Zeitschrift für Kristallographie - Crystalline Materials, 233(5), 295–307. https://doi.org/10.1515/zkri-2017-2095
  • Huang, Q., Lin, Q., Xu, Y., & Cao, Y. (2025). Predicting potential hard materials in Nb–B ternary boride: First-principles calculations. International Journal of Refractory Metals and Hard Materials, 126, 106927. https://doi.org/10.1016/j.ijrmhm.2024.106927
  • Johnston, I., Keeler, G., Rollins, R., & Spicklemine, S. (1996). The consortium for upper-level physics software: Solid State Physics Simulations. New York: John Wiley & Sons.
  • Kota, S., Wang, W., Lu, J., Natu, V., Opagiste, C., Ying, G., Hultman, L., May, S. J., & Barsoum, M. W. (2018). Magnetic properties of Cr2AlB2, Cr3AlB4, and CrB powders. Journal of Alloys and Compounds, 767, 474–482. https://doi.org/10.1016/j.jallcom.2018.07.031
  • Kresse, G., & Furthmüller, J. (1996a). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15–50. https://doi.org/10.1016/0927-0256(96)00008-0
  • Kresse, G., & Furthmüller, J. (1996b). Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169–11186. https://doi.org/10.1103/PhysRevB.54.11169
  • Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector-augmented-wave method. Physical Review B, 59(3), 1758–1775. https://doi.org/10.1103/PhysRevB.59.1758
  • Le Page, Y., & Saxe, P. (2002). Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Physical Review B, 65(10), 104104. https://doi.org/10.1103/PhysRevB.65.104104
  • Licht, S., Yu, X. W., & Qu, D. Y. (2007). A novel alkaline redox couple: Chemistry of the Fe6+/B2- super-iron boride battery. Chemical Communications, 2007(26), 2753–2755. http://dx.doi.org/10.1039/b701629h
  • Lu, J., Kota, S., Barsoum, M. W., & Hultman, L. (2017). Atomic structure and lattice defects in nanolaminated ternary transition metal borides. Materials Research Letters, 5(4), 235–241. https://doi.org/10.1080/21663831.2016.1245682
  • Martini, C., Palombarini, G., Poli, G., & Prandstraller, D. (2004). Sliding and abrasive wear behaviour of boride coatings. Wear, 256(6), 608–613. https://doi.org/10.1016/j.wear.2003.10.003
  • Miao, N., Sa, B., Zhou, J., & Sun, Z. (2011). Theoretical investigation on the transition-metal borides with Ta3B4-type structure: A class of hard and refractory materials. Computational Materials Science, 50(4), 1559-1566. https://doi.org/10.1016/j.commatsci.2010.12.015
  • Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. https://doi.org/10.1103/PhysRevB.13.5390
  • Mouhat, F., & Coudert, F. X. (2014). Necessary and sufficient elastic stability conditions in various crystal systems. Physical Review B, 90(22), 224104. https://doi.org/10.1103/PhysRevB.90.224104
  • Opeka, M. M., Talmy, I. G., Wuchina, E. J., Zaykoski, J. A., & Causey, S. J. (1999). Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. Journal of the European Ceramic Society, 19(13–14), 2405–2414. https://doi.org/10.1016/S0955-2219(99)00129-6
  • Ozisik, H., Colakoglu, K., Ozisik, H. B., & Deligoz, E. (2010). Structural, elastic, and lattice dynamical properties of Germanium diiodide (GeI2). Computational Materials Science, 50(2), 349–355. http://dx.doi.org/10.1016/j.commatsci.2010.08.026
  • Ozisik, H., Colakoglu, K., Deligoz, E., & Ateser, E. (2013). First-principles calculations of vibrational and thermodynamical properties of rare-earth diborides. Computational Materials Science, 68, 307–313. http://dx.doi.org/10.1016/j.commatsci.2012.11.003
  • Ozisik, H., Deligoz, E., Colakoglu, K., & Ciftci, Y. O. (2011). Structural, elastic, and lattice dynamical properties of YB2 compound. Computational Materials Science, 50(3), 1057–1063. http://dx.doi.org/10.1016/j.commatsci.2010.10.046
  • Ozisik, H., Deligoz, E., Surucu, G., & Ozisik, H. B. (2016). Anisotropic elastic and vibrational properties of Ru2B3 and Os2B3: A first-principles investigation. Materials Research Express, 3(7), 076501. http://dx.doi.org/10.1088/2053-1591/3/7/076501
  • Panda, K. B., & Chandran, K. S. R. (2006). First-principles determination of elastic constants and chemical bonding of titanium boride (TiB). Acta Materialia, 54(6), 1641–1657. https://doi.org/10.1016/j.actamat.2005.12.003
  • Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865
  • Pugh, S. F. (1954). Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philosophical Magazine, 45(367), 823–843. https://doi.org/10.1080/14786440808520496
  • Ranganathan, S. I., & Starzewski, M. O. (2008). Elastic properties of nanoscale materials. Physical Review Letters, 101(5), 055504. https://doi.org/10.1103/PhysRevLett.101.055504
  • Reuss, A. (1929). Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 9(1), 49–58. https://doi.org/10.1002/zamm.19290090104
  • Schreiber, E., Anderson, O. L., Soga, N., & Bell, J. F. (1975). Elastic constants and their measurement. New York: McGraw-Hill.
  • Takagi, K. (2006). Development and application of high-strength ternary boride-based cermets. Journal of Solid-State Chemistry, 179(9), 2809–2818. https://doi.org/10.1016/j.jssc.2006.01.023
  • Togo, A. (2023). First-principles phonon calculations with Phonopy and Phono3py. Journal of the Physical Society of Japan, 92(1), 012001. https://doi.org/10.7566/JPSJ.92.012001
  • Togo, A., Chaput, L., Tadano, T., & Tanaka, I. (2023). Implementation strategies in phonopy and phono3py. Journal of Physics: Condensed Matter, 35(35), 353001. https://iopscience.iop.org/article/10.1088/1361-648X/acd831/meta
  • Voigt, W. (1966). Lehrbuch der Kristallphysik. Wiesbaden: Vieweg+Teubner Verlag.
  • Wei, J., Zhang, L., & Liu, Y. (2021). First-principles calculations of mechanical and thermal properties of Cr–Al–B ternary borides. Solid State Communications, 326, 114182. https://doi.org/10.1016/j.ssc.2020.114182
  • Yu, X. W., & Licht, S. (2008). A novel high-capacity, environmentally benign energy storage system: Super-iron boride battery. Journal of Power Sources, 179(1), 407–411. https://doi.org/10.1016/j.jpowsour.2007.12.060
  • Zapata-Solvas, E., Jayaseelan, D. D., Brown, P. M., & Lee, W. E. (2013). Thermal properties of La2O3-doped ZrB2- and HfB2-based ultra-high temperature ceramics. Journal of the European Ceramic Society, 33(15–16), 3467–3472. https://doi.org/10.1016/j.jeurceramsoc.2013.06.009
  • Zhang, H., Dai, F., Xiang, H., Wang, X., Zhang, Z., & Zhou, Y. (2019a). Phase pure and well-crystalline Cr2AlB2: A key precursor for two-dimensional CrB. Journal of Materials Science & Technology, 35(8), 1593–1600. https://doi.org/10.1016/j.jmst.2019.03.031
  • Zhang, H., Dai, F., Xiang, H., Zhang, Z., & Zhou, Y. (2019b). Crystal structure of Cr4AlB4: A new MAB phase compound discovered in the Cr-Al-B system. Journal of Materials Science & Technology, 35(4), 530–534. https://doi.org/10.1016/j.jmst.2018.10.006
  • Zhang, H., Xiang, H., Dai, F., Zhang, Z., & Zhou, Y. (2018). First demonstration of possible two-dimensional MBene CrB derived from MAB phase Cr2AlB2. Journal of Materials Science & Technology, 34(11), 2022–2026. https://doi.org/10.1016/j.jmst.2018.02.024
There are 49 citations in total.

Details

Primary Language English
Subjects Structural Properties of Condensed Matter, Condensed Matter Physics (Other)
Journal Section Natural Sciences and Mathematics / Fen Bilimleri ve Matematik
Authors

Sibel Özdoğru Şenel 0000-0002-3272-5052

Engin Ateşer 0000-0001-7047-3864

Hacı Özışık 0000-0002-4011-1720

Engin Deligoz 0000-0001-6289-9320

Publication Date August 31, 2025
Submission Date March 28, 2025
Acceptance Date April 28, 2025
Published in Issue Year 2025 Volume: 30 Issue: 2

Cite

APA Özdoğru Şenel, S., Ateşer, E., Özışık, H., Deligoz, E. (2025). Computational Investigation of Ternary Borides Fe3Al2B2, Ru3Al2B2, and Os3Al2B2: Structural, Mechanical, and Phonon Properties. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 30(2), 499-511. https://doi.org/10.53433/yyufbed.1667463