Research Article
BibTex RIS Cite

Sorgum Unu, Pirinç Kepeği ve Kinoa ile Hazırlanan Glutensiz Bisküvilerde Fenolik ve Antioksidan Bileşiklerin Biyoerişilebilirliği

Year 2025, Volume: 30 Issue: 2, 737 - 751, 31.08.2025
https://doi.org/10.53433/yyufbed.1693011

Abstract

Bu çalışmanın temel amacı, pirinç kepeği (RB) ve kinoa (Q) ile zenginleştirilmiş aromasız bisküvilerdeki biyolojik olarak aktif bileşenlerin biyoerişilebilirliğini belirlemektir. Veri seti; toplam fenolik madde içeriği (TPC), antioksidan aktivite (DPPH ve ABTS radikal süpürme kapasitesi) ve duyusal değerlendirme skorlarını içermektedir. %15 RB içeren bisküviler, sindirim öncesinde en yüksek toplam fenolik madde içeriği (0.634 mg GAE g-1) ve antioksidan aktiviteye (%88.13 DPPH inhibisyonu) sahip olmuştur. Simüle edilmiş gastrointestinal sindirim sonrası, bu bisküviler antioksidan aktivitede dikkat çekici bir artış göstermiştir; DPPH radikal süpürme kapasitesinde 4.3 kat, ABTS radikal inhibisyonunda ise 2.53 kat artış kaydedilmiştir. Ayrıca, %15 kinoa ilavesi toplam fenolik madde biyoerişilebilirliğinde 1.58 kat artış sağlamıştır. Bisküvi sertliği 35.89-62.92 N arasında değişmiştir. RB ve Q ilavesi arttıkça TBA değerlerinde kademeli bir artış gözlemlenmiş, özellikle, RB15 örneğinin, RB5 ve RB10’a kıyasla daha yüksek bir TBA değerine sahip olduğu belirlenmiştir. Duyusal değerlendirme sonuçlarına göre, %5 kinoa içeren bisküviler genel beğeni açısından en yüksek puanı alarak en çok tercih edilen ürün olmuştur. Yüksek düzeyde zenginleştirilen örnekler (15% RB veya Q), daha yüksek antioksidan kapasite ve biyoerişilebilirlik göstermesine rağmen, duyusal değerlendirmede daha düşük puan almıştır. Bu durum, besinsel iyileştirme ile tüketici kabulü arasında bir denge gerekliliğini ortaya koymaktadır. Bu çalışma, RB ve Q’nun glutensiz bisküvilere eklenmesinin yalnızca besin değerini ve antioksidan özellikleri artırmakla kalmayıp aynı zamanda duyusal açıdan da kabul edilebilirliğini geliştirdiğini ortaya koymuştur.

References

  • Alav, A., Kutlu, N., Kına, E., & Meral, R. (2024). A novel green tea extract-loaded nanofiber coating for kiwi fruit: Improved microbial stability and nutritional quality. Food Bioscience, 62, 105043. https://doi.org/10.1016/j.fbio.2024.105043
  • AACC. (2000). Approved methods of the American Association of Cereal Chemists (10th edn). Method 08-01-16. American Association of Cereal Chemists.
  • Antognoni, F., Potente, G., Biondi, S., Mandrioli, R., Marincich, L., & Ruiz, K. B. (2021). Free and conjugated phenolic profiles and antioxidant activity in quinoa seeds and their relationship with genotype and environment. Plants. https://doi.org/10.3390/plants10061046
  • Barak, S., Mudgil, D., & Khatkar, B. S. (2014). Effect of flour particle size and damaged starch on the quality of cookies. Journal of Food Science and Technology, 51(7), 1342-1348. https://doi.org/10.1007/s13197-012-0627-x
  • Chen, Y., Ma, Y., Dong, L., Jia, X., Liu, L., Huang, F., Chi, J., Xiao, J., Zhang, M., & Zhang, R. (2019). Extrusion and fungal fermentation change the profile and antioxidant activity of free and bound phenolics in rice bran together with the phenolic bioaccessibility. LWT, 115, 108461. https://doi.org/10.1016/j.lwt.2019.108461
  • Ciacci, C., Maiuri, L., Caporaso, N., Bucci, C., Del Giudice, L., Rita Massardo, D., Pontieri, P., Di Fonzo, N., Bean, S. R., Ioerger, B., & Londei, M. (2007). Celiac disease: In vitro and in vivo safety and palatability of wheat-free sorghum food products. Clinical Nutrition, 26(6), 799-805. https://doi.org/10.1016/j.clnu.2007.05.006
  • Di Cairano, M., Galgano, F., Tolve, R., Caruso, M. C., & Condelli, N. (2018). Focus on gluten free biscuits: Ingredients and issues. Trends in Food Science and Technology, 81, 203-212. https://doi.org/10.1016/j.tifs.2018.09.006
  • Dhingra, S., & Jood, S. (2002). Organoleptic and nutritional evaluation of wheat breads supplemented with soybean and barley flour. Food Chemistry, 77(4), 479-488. https://doi.org/10.1016/S0308-8146(01)00387-9
  • Elias, R. J., Kellerby, S. S., & Decker, E. A. (2008). Antioxidant activity of proteins and peptides. Critical Reviews in Food Science and Nutrition, 48(5), 430-441. https://doi.org/10.1080/10408390701425615
  • Ertürk, B., & Meral, R. (2019). The impact of stabilization on functional, molecular and thermal properties of rice bran. Journal of Cereal Science, 88, 71-78. https://doi.org/10.1016/j.jcs.2019.05.011
  • Gobbetti, M., Pontonio, E., Filannino, P., Rizzello, C. G., De Angelis, M., & Di Cagno, R. (2018). How to improve the gluten-free diet: The state of the art from a food science perspective. Food Research International, 110, 22-32. https://doi.org/10.1016/j.foodres.2017.04.010
  • Green, P. H., & Cellier, C. (2007). Celiac disease. New England Journal of Medicine, 357(17), 1731-1743. https://doi.org/10.1056/nejmra071600
  • Gul, K., Yousuf, B., Singh, A. K., Singh, P., & Wani, A. A. (2015). Rice bran: Nutritional values and its emerging potential for development of functional food-A review. Bioactive Carbohydrates and Dietary Fibre, 6(1), 24-30. https://doi.org/10.1016/j.bcdf.2015.06.002
  • Hamdani, A. M., Wani, I. A., & Bhat, N. A. (2021). Pasting, rheology, antioxidant and texture profile of gluten free cookies with added seed gum hydrocolloids. Food Science and Technology International, 27(7), 649-659. https://doi.org/10.1177/1082013220980594
  • Jan, K. N., Panesar, P. S., & Singh, S. (2018a). Optimization of antioxidant activity, textural and sensory characteristics of gluten-free cookies made from whole indian quinoa flour. LWT, 93, 573-582. https://doi.org/10.1016/j.lwt.2018.04.013
  • Jan, K. N., Panesar, P. S., & Singh, S. (2018b). Textural, in vitro antioxidant activity and sensory characteristics of cookies made from blends of wheat-quinoa grown in India. Journal of Food Processing and Preservation, 42(3), e13542. https://doi.org/10.1111/jfpp.13542
  • Jeyakumari, A., Janarthanan, G., & Chouksey, M. K. (2016). Effect of fish oil encapsulates incorporation on the physico-chemical and sensory properties of cookies. Journal of Food Science and Technology, 53(1), 495-505. https://doi.org/10.1007/s13197-015-1981-2
  • Kina, E. (2025). TLEABLCNN: Brain and alzheimer’s disease detection using attention based explainable deep learning and SMOTE using imbalanced brain MRI. IEEE Access, 13, 27670–27683. https://doi.org/10.1109/ACCESS.2025.3539550
  • Kına, E., & Biçek, E. (2023). Metaverse–yeni Dünyaya ilk adım. Iksad Yayınevi.
  • Kına, E., & Biçek, E. (2024). Machine learning approach for emotion identification and classification in bitcoin sentiment analysis. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(3), 913–926. https://doi.org/10.53433/yyufbed.1532649
  • Lachowicz, S., Świeca, M., & Pejcz, E. (2020). Improvement of health‐promoting functionality of rye bread by fortification with free and microencapsulated powders from amelanchier alnifolia nutt. Antioxidants, 9(7), 1-24. https://doi.org/10.3390/antiox9070614
  • Lachowicz, S., Świeca, M., & Pejcz, E. (2021). Biological activity, phytochemical parameters, and potential bioaccessibility of wheat bread enriched with powder and microcapsules made from Saskatoon berry. Food Chemistry, 338, 128026. https://doi.org/10.1016/j.foodchem.2020.128026
  • Lam Hon Wah, L., Reyes Flores, S., Mosibo, O. K., Fatoki, T. H., Aluko, R. E., & Udenigwe, C. C. (2024). Peptide–Polyphenol Interactions: The Antagonistic Effect of Pea Pentapeptide (VNRFR) on the Antioxidant Properties of Quercetin and Rutin in Caenorhabditis elegans. ACS Food Science & Technology, 4(9), 2080-2089. https://doi.org/10.1021/acsfoodscitech.4c00172
  • Lebwohl, B., Sanders, D. S., & Green, P. H. (2018). Coeliac disease. The Lancet, 391(10115), 70-81. https://doi.org/10.1016/s0140-6736(17)31796-8
  • Man, S., Păucean, A., & Muste, S. (2014). Preparation and quality evaluation of gluten-free biscuits. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Science and Technology, 71(2), 74-78. https://doi.org/10.15835/buasvmcn-fst:10080
  • Meral, R., Kına, E., & Ceylan, Z. (2024). Low-calorie cookies enhanced with fish oil-based nano-ingredients for health-conscious consumers. ACS Omega, 9(37), 39159-39169. https://doi.org/10.1021/acsomega.4c06050
  • Meral, R., Eki̇n, M. M., Ceylan, Z., Alav, A., & Kına, E. (2025). A novel solution to enhance the oxidative and physical properties of cookies using maltodextrin-based nano-sized oils as a fat substitute. ACS Omega, 10(22), 23111-23120. https://doi.org/10.1021/acsomega.5c01200
  • Molinari, R., Costantini, L., Timperio, A. M., Lelli, V., Bonafaccia, F., Bonafaccia, G., & Merendino, N. (2018). Tartary buckwheat malt as ingredient of gluten-free cookies. Journal of Cereal Science, 80, 37-43. https://doi.org/10.1016/j.jcs.2017.11.011
  • Moongngarm, A., & Saetung, N. (2010). Comparison of chemical compositions and bioactive compounds of germinated rough rice and brown rice. Food Chemistry, 122(3), 782-788. https://doi.org/10.1016/j.foodchem.2010.03.053
  • Neji, C., Semwal, J., Máthé, E., & Sipos, P. (2023). Dough rheological properties and macronutrient bioavailability of cereal products fortified through legume proteins. Processes, 11(2), 417. https://doi.org/10.3390/pr11020417
  • Paesani, C., Bravo-Núñez, Á., & Gómez, M. (2020). Effect of extrusion of whole-grain maize flour on the characteristics of gluten-free cookies. LWT, 132, 109931. https://doi.org/10.1016/j.lwt.2020.109931
  • Rai, S., Kaur, A., & Singh, B. (2014). Quality characteristics of gluten free cookies prepared from different flour combinations. Journal of Food Science and Technology, 51(4), 785–789. https://doi.org/10.1007/s13197-011-0547-1
  • Sarabhai, S., Sudha, M. L., & Prabhasankar, P. (2017). Rheological characterization and biscuit making potential of gluten free flours. Journal of Food Measurement and Characterization, 11(3), 1449-1461. https://doi.org/10.1007/s11694-017-9524-3
  • Sharma, S., Saxena, D. C., & Riar, C. S. (2016). Nutritional, sensory and in-vitro antioxidant characteristics of gluten free cookies prepared from flour blends of minor millets. Journal of Cereal Science, 72, 153-161. https://doi.org/10.1016/j.jcs.2016.10.012
  • Simons, C. W., & Hall, C. (2018). Consumer acceptability of gluten-free cookies containing raw cooked and germinated pinto bean flours. Food Science and Nutrition, 6(1), 77-84. https://doi.org/10.1002/fsn3.531
  • Sudha, M. L., Baskaran, V., & Leelavathi, K. (2007). Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food Chemistry, 104(2), 686-692. https://doi.org/10.1016/j.foodchem.2006.12.016
  • Świeca, M., Gawlik-Dziki, U., Dziki, D., & Baraniak, B. (2017). Wheat bread enriched with green coffee – In vitro bioaccessibility and bioavailability of phenolics and antioxidant activity. Food Chemistry, 221, 1451-1457. https://doi.org/10.1016/j.foodchem.2016.11.006
  • Tarladgis, B. G., Watts, B. M., Younathan, M. T., & Dugan Jr, L. (1960). A distillation method for the quantitative determination of malonaldehyde in rancid foods. Journal of the American Oil Chemists Society, 37(1), 44-48.
  • Teshome, E., Tola, Y. B., & Mohammed, A. (2017). Optimization of baking temperature, time and thickness for production of gluten-free biscuits from Keyetena Teff (Eragrostis tef) variety. Journal of Food Processing & Technology, 8(6), 675. https://doi.org/10.4172/2157-7110.1000675
  • Theethira, T. G., & Dennis, M. (2015). Celiac disease and the gluten-free diet: Consequences and recommendations for improvement. Digestive Diseases, 33(2), 175-182. https://doi.org/10.1159/000369504
  • Vega‐Gálvez, A., Miranda, M., Vergara, J., Uribe, E., Puente, L., & Martínez, E. A. (2010). Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. Journal of the Science of Food and Agriculture, 90(15), 2541-2547. https://doi.org/10.1002/jsfa.4158
  • Zhang, M. W., Zhang, R. F., Zhang, F. X., & Liu, R. H. (2010). Phenolic profiles and antioxidant activity of black rice bran of different commercially available varieties. Journal of Agricultural and Food Chemistry, 58(13), 7580-7587. https://doi.org/10.1021/jf1007665

Bioaccessibility of Phenolic and Antioxidant Substances in Gluten-Free Cookies Prepared with Sorghum Flour, Rice Bran, and Quinoa

Year 2025, Volume: 30 Issue: 2, 737 - 751, 31.08.2025
https://doi.org/10.53433/yyufbed.1693011

Abstract

The main objective of this study was to determine the bioaccessibility of bioactive components in gluten-free cookies fortified with rice bran (RB) and quinoa (Q). The data set includes measurements of total phenolic content (TPC), antioxidant activity (DPPH and ABTS radical scavenging), and sensory evaluation scores. Cookies containing 15% RB exhibited the highest total phenolic content (0.634 mg GAE g-1) and antioxidant activity (88.13% DPPH inhibition) before digestion. After simulated gastrointestinal digestion, these cookies showed a remarkable increase in antioxidant activity, with a 4.3-fold improvement in DPPH radical scavenging and a 2.53-fold increase in ABTS radical inhibition. Additionally, the addition of 15% quinoa resulted in a 1.58-fold increase in total phenolic content bioaccessibility. In this study, cookie hardness ranged from 35.89 to 62.92 N and increased significantly with the incorporation of RB and Q.
A progressive rise in TBA values was noted with increasing levels of RB and Q substitution. Notably, RB15 showed a significantly higher TBA value compared to RB5 and RB10, with a similar pattern also observed in the quinoa group. Sensory evaluation highlighted that cookies with 5% quinoa were the most preferred, receiving the highest scores in overall acceptability. While higher enrichment levels (15% RB or Q) led to superior antioxidant potential and bioaccessibility, these formulations were less favored in sensory evaluation, suggesting a trade-off between nutritional enhancement and consumer acceptance. This study demonstrates that incorporating RB and Q into gluten-free cookies not only enhances their nutritional value and antioxidant properties but also improves their sensory appeal.

Supporting Institution

The Administration of Scientific Research Projects of Van YüzüncüYıl University” under the Project: FYL-2019-8767

References

  • Alav, A., Kutlu, N., Kına, E., & Meral, R. (2024). A novel green tea extract-loaded nanofiber coating for kiwi fruit: Improved microbial stability and nutritional quality. Food Bioscience, 62, 105043. https://doi.org/10.1016/j.fbio.2024.105043
  • AACC. (2000). Approved methods of the American Association of Cereal Chemists (10th edn). Method 08-01-16. American Association of Cereal Chemists.
  • Antognoni, F., Potente, G., Biondi, S., Mandrioli, R., Marincich, L., & Ruiz, K. B. (2021). Free and conjugated phenolic profiles and antioxidant activity in quinoa seeds and their relationship with genotype and environment. Plants. https://doi.org/10.3390/plants10061046
  • Barak, S., Mudgil, D., & Khatkar, B. S. (2014). Effect of flour particle size and damaged starch on the quality of cookies. Journal of Food Science and Technology, 51(7), 1342-1348. https://doi.org/10.1007/s13197-012-0627-x
  • Chen, Y., Ma, Y., Dong, L., Jia, X., Liu, L., Huang, F., Chi, J., Xiao, J., Zhang, M., & Zhang, R. (2019). Extrusion and fungal fermentation change the profile and antioxidant activity of free and bound phenolics in rice bran together with the phenolic bioaccessibility. LWT, 115, 108461. https://doi.org/10.1016/j.lwt.2019.108461
  • Ciacci, C., Maiuri, L., Caporaso, N., Bucci, C., Del Giudice, L., Rita Massardo, D., Pontieri, P., Di Fonzo, N., Bean, S. R., Ioerger, B., & Londei, M. (2007). Celiac disease: In vitro and in vivo safety and palatability of wheat-free sorghum food products. Clinical Nutrition, 26(6), 799-805. https://doi.org/10.1016/j.clnu.2007.05.006
  • Di Cairano, M., Galgano, F., Tolve, R., Caruso, M. C., & Condelli, N. (2018). Focus on gluten free biscuits: Ingredients and issues. Trends in Food Science and Technology, 81, 203-212. https://doi.org/10.1016/j.tifs.2018.09.006
  • Dhingra, S., & Jood, S. (2002). Organoleptic and nutritional evaluation of wheat breads supplemented with soybean and barley flour. Food Chemistry, 77(4), 479-488. https://doi.org/10.1016/S0308-8146(01)00387-9
  • Elias, R. J., Kellerby, S. S., & Decker, E. A. (2008). Antioxidant activity of proteins and peptides. Critical Reviews in Food Science and Nutrition, 48(5), 430-441. https://doi.org/10.1080/10408390701425615
  • Ertürk, B., & Meral, R. (2019). The impact of stabilization on functional, molecular and thermal properties of rice bran. Journal of Cereal Science, 88, 71-78. https://doi.org/10.1016/j.jcs.2019.05.011
  • Gobbetti, M., Pontonio, E., Filannino, P., Rizzello, C. G., De Angelis, M., & Di Cagno, R. (2018). How to improve the gluten-free diet: The state of the art from a food science perspective. Food Research International, 110, 22-32. https://doi.org/10.1016/j.foodres.2017.04.010
  • Green, P. H., & Cellier, C. (2007). Celiac disease. New England Journal of Medicine, 357(17), 1731-1743. https://doi.org/10.1056/nejmra071600
  • Gul, K., Yousuf, B., Singh, A. K., Singh, P., & Wani, A. A. (2015). Rice bran: Nutritional values and its emerging potential for development of functional food-A review. Bioactive Carbohydrates and Dietary Fibre, 6(1), 24-30. https://doi.org/10.1016/j.bcdf.2015.06.002
  • Hamdani, A. M., Wani, I. A., & Bhat, N. A. (2021). Pasting, rheology, antioxidant and texture profile of gluten free cookies with added seed gum hydrocolloids. Food Science and Technology International, 27(7), 649-659. https://doi.org/10.1177/1082013220980594
  • Jan, K. N., Panesar, P. S., & Singh, S. (2018a). Optimization of antioxidant activity, textural and sensory characteristics of gluten-free cookies made from whole indian quinoa flour. LWT, 93, 573-582. https://doi.org/10.1016/j.lwt.2018.04.013
  • Jan, K. N., Panesar, P. S., & Singh, S. (2018b). Textural, in vitro antioxidant activity and sensory characteristics of cookies made from blends of wheat-quinoa grown in India. Journal of Food Processing and Preservation, 42(3), e13542. https://doi.org/10.1111/jfpp.13542
  • Jeyakumari, A., Janarthanan, G., & Chouksey, M. K. (2016). Effect of fish oil encapsulates incorporation on the physico-chemical and sensory properties of cookies. Journal of Food Science and Technology, 53(1), 495-505. https://doi.org/10.1007/s13197-015-1981-2
  • Kina, E. (2025). TLEABLCNN: Brain and alzheimer’s disease detection using attention based explainable deep learning and SMOTE using imbalanced brain MRI. IEEE Access, 13, 27670–27683. https://doi.org/10.1109/ACCESS.2025.3539550
  • Kına, E., & Biçek, E. (2023). Metaverse–yeni Dünyaya ilk adım. Iksad Yayınevi.
  • Kına, E., & Biçek, E. (2024). Machine learning approach for emotion identification and classification in bitcoin sentiment analysis. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(3), 913–926. https://doi.org/10.53433/yyufbed.1532649
  • Lachowicz, S., Świeca, M., & Pejcz, E. (2020). Improvement of health‐promoting functionality of rye bread by fortification with free and microencapsulated powders from amelanchier alnifolia nutt. Antioxidants, 9(7), 1-24. https://doi.org/10.3390/antiox9070614
  • Lachowicz, S., Świeca, M., & Pejcz, E. (2021). Biological activity, phytochemical parameters, and potential bioaccessibility of wheat bread enriched with powder and microcapsules made from Saskatoon berry. Food Chemistry, 338, 128026. https://doi.org/10.1016/j.foodchem.2020.128026
  • Lam Hon Wah, L., Reyes Flores, S., Mosibo, O. K., Fatoki, T. H., Aluko, R. E., & Udenigwe, C. C. (2024). Peptide–Polyphenol Interactions: The Antagonistic Effect of Pea Pentapeptide (VNRFR) on the Antioxidant Properties of Quercetin and Rutin in Caenorhabditis elegans. ACS Food Science & Technology, 4(9), 2080-2089. https://doi.org/10.1021/acsfoodscitech.4c00172
  • Lebwohl, B., Sanders, D. S., & Green, P. H. (2018). Coeliac disease. The Lancet, 391(10115), 70-81. https://doi.org/10.1016/s0140-6736(17)31796-8
  • Man, S., Păucean, A., & Muste, S. (2014). Preparation and quality evaluation of gluten-free biscuits. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Science and Technology, 71(2), 74-78. https://doi.org/10.15835/buasvmcn-fst:10080
  • Meral, R., Kına, E., & Ceylan, Z. (2024). Low-calorie cookies enhanced with fish oil-based nano-ingredients for health-conscious consumers. ACS Omega, 9(37), 39159-39169. https://doi.org/10.1021/acsomega.4c06050
  • Meral, R., Eki̇n, M. M., Ceylan, Z., Alav, A., & Kına, E. (2025). A novel solution to enhance the oxidative and physical properties of cookies using maltodextrin-based nano-sized oils as a fat substitute. ACS Omega, 10(22), 23111-23120. https://doi.org/10.1021/acsomega.5c01200
  • Molinari, R., Costantini, L., Timperio, A. M., Lelli, V., Bonafaccia, F., Bonafaccia, G., & Merendino, N. (2018). Tartary buckwheat malt as ingredient of gluten-free cookies. Journal of Cereal Science, 80, 37-43. https://doi.org/10.1016/j.jcs.2017.11.011
  • Moongngarm, A., & Saetung, N. (2010). Comparison of chemical compositions and bioactive compounds of germinated rough rice and brown rice. Food Chemistry, 122(3), 782-788. https://doi.org/10.1016/j.foodchem.2010.03.053
  • Neji, C., Semwal, J., Máthé, E., & Sipos, P. (2023). Dough rheological properties and macronutrient bioavailability of cereal products fortified through legume proteins. Processes, 11(2), 417. https://doi.org/10.3390/pr11020417
  • Paesani, C., Bravo-Núñez, Á., & Gómez, M. (2020). Effect of extrusion of whole-grain maize flour on the characteristics of gluten-free cookies. LWT, 132, 109931. https://doi.org/10.1016/j.lwt.2020.109931
  • Rai, S., Kaur, A., & Singh, B. (2014). Quality characteristics of gluten free cookies prepared from different flour combinations. Journal of Food Science and Technology, 51(4), 785–789. https://doi.org/10.1007/s13197-011-0547-1
  • Sarabhai, S., Sudha, M. L., & Prabhasankar, P. (2017). Rheological characterization and biscuit making potential of gluten free flours. Journal of Food Measurement and Characterization, 11(3), 1449-1461. https://doi.org/10.1007/s11694-017-9524-3
  • Sharma, S., Saxena, D. C., & Riar, C. S. (2016). Nutritional, sensory and in-vitro antioxidant characteristics of gluten free cookies prepared from flour blends of minor millets. Journal of Cereal Science, 72, 153-161. https://doi.org/10.1016/j.jcs.2016.10.012
  • Simons, C. W., & Hall, C. (2018). Consumer acceptability of gluten-free cookies containing raw cooked and germinated pinto bean flours. Food Science and Nutrition, 6(1), 77-84. https://doi.org/10.1002/fsn3.531
  • Sudha, M. L., Baskaran, V., & Leelavathi, K. (2007). Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food Chemistry, 104(2), 686-692. https://doi.org/10.1016/j.foodchem.2006.12.016
  • Świeca, M., Gawlik-Dziki, U., Dziki, D., & Baraniak, B. (2017). Wheat bread enriched with green coffee – In vitro bioaccessibility and bioavailability of phenolics and antioxidant activity. Food Chemistry, 221, 1451-1457. https://doi.org/10.1016/j.foodchem.2016.11.006
  • Tarladgis, B. G., Watts, B. M., Younathan, M. T., & Dugan Jr, L. (1960). A distillation method for the quantitative determination of malonaldehyde in rancid foods. Journal of the American Oil Chemists Society, 37(1), 44-48.
  • Teshome, E., Tola, Y. B., & Mohammed, A. (2017). Optimization of baking temperature, time and thickness for production of gluten-free biscuits from Keyetena Teff (Eragrostis tef) variety. Journal of Food Processing & Technology, 8(6), 675. https://doi.org/10.4172/2157-7110.1000675
  • Theethira, T. G., & Dennis, M. (2015). Celiac disease and the gluten-free diet: Consequences and recommendations for improvement. Digestive Diseases, 33(2), 175-182. https://doi.org/10.1159/000369504
  • Vega‐Gálvez, A., Miranda, M., Vergara, J., Uribe, E., Puente, L., & Martínez, E. A. (2010). Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. Journal of the Science of Food and Agriculture, 90(15), 2541-2547. https://doi.org/10.1002/jsfa.4158
  • Zhang, M. W., Zhang, R. F., Zhang, F. X., & Liu, R. H. (2010). Phenolic profiles and antioxidant activity of black rice bran of different commercially available varieties. Journal of Agricultural and Food Chemistry, 58(13), 7580-7587. https://doi.org/10.1021/jf1007665
There are 42 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Engineering and Architecture / Mühendislik ve Mimarlık
Authors

Raciye Meral 0000-0001-9893-7325

Nazan Kutlu 0000-0002-2225-6600

Aslıhan Alav 0000-0002-0268-0666

Publication Date August 31, 2025
Submission Date May 6, 2025
Acceptance Date July 8, 2025
Published in Issue Year 2025 Volume: 30 Issue: 2

Cite

APA Meral, R., Kutlu, N., & Alav, A. (2025). Bioaccessibility of Phenolic and Antioxidant Substances in Gluten-Free Cookies Prepared with Sorghum Flour, Rice Bran, and Quinoa. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 30(2), 737-751. https://doi.org/10.53433/yyufbed.1693011