Research Article
BibTex RIS Cite

Sosyal Medyada Dezenformasyonla Mücadelede Yapay Zekâ: Olanaklar ve Sınırlılıklar

Year 2025, Issue: 67, 49 - 61, 18.03.2025
https://doi.org/10.53568/yyusbed.1583326

Abstract

Bu çalışma, sosyal medyada yalan haberlerin önlenmesinde yapay zekâ destekli sistemlerin rolünü, sunduğu olanakları ve sınırlılıklarını kapsamlı bir şekilde incelemektedir. Dijitalleşme ve sosyal medya platformlarının yaygınlaşması, bilgiye erişimi kolaylaştırırken aynı zamanda yanıltıcı ve manipülatif içeriklerin geniş kitlelere hızla ulaşmasına da zemin hazırlamaktadır. Yapay zekâ tabanlı makine öğrenimi (ML) ve doğal dil işleme (NLP) teknikleri, dezenformatif içeriklerin tespiti ve yayılmasının engellenmesi için güçlü araçlar sunmaktadır. Ancak, bu sistemlerin uygulanmasında etik, tarafsızlık, şeffaflık eksiklikleri ve yanlış pozitifler gibi önemli sınırlılıklar da öne çıkmaktadır. Çalışmamız, yapay zekâ tabanlı dezenformasyon tespit sistemlerinin sunduğu olanakları ve karşılaştığı etik, sosyal ve teknik zorlukları ele almakta; toplumsal güvenin sağlanması ve bilgi ekosisteminin sürdürülebilirliği için daha şeffaf ve hesap verebilir yapılar geliştirilmesi gerektiğini vurgulamaktadır. Çalışmanın bulguları, yapay zekânın toplumsal bilgi güvenliği ve doğru bilgiye erişim sağlama açısından önemini ortaya koymakta ve bu teknolojilerin daha sorumlu ve etik bir şekilde geliştirilmesine yönelik öneriler sunmaktadır.

References

  • Akyüz, S. S. (2021). Koronavirüs komplo teorileri: dezenformasyon ve politik kimliklerin komplocu düșünüșe etkisi. İletişim ve Medya Alanında Uluslararası Araştırmalar II, 57, 86.
  • Allcott, H., & Gentzkow, M. (2017). Social Media and Fake News in the 2016 Election. Journal of Economic Perspectives, 31(2), 211-236. https://doi.org/10.1257/jep.31.2.211
  • Awais, I., Rahim, N. A., Alhossary, A. Z., & Rahman, Z. A. (2022). Israeli Arabic-speaking Facebook pages and its effects on the elements of Palestinian national identity. International Journal of Humanities Studies, 6(4), 11337. https://doi.org/10.53730/ijhs.v6ns4.11337
  • Bektaş, A. (2002). Siyasal Propaganda: Tarihsel Evrimi ve Demokratik Toplumdaki Uygulamaları, Bağlam Yayınları, İstanbul.
  • Brennen, J. S., Simon, F., Howard, P. N., & Nielsen, R. K. (2020). Types, sources, and claims of COVID-19 misinformation. Reuters Institute for the Study of Journalism. https://reutersinstitute.politics.ox.ac.uk
  • Chen, S., Xiao, L., & Kumar, A. (2022). Spread of misinformation on social media: What contributes to it and how to combat it. Computers in Human Behavior, 107, 643. https://doi.org/10.1016/j.chb.2022.107643
  • Choraś, M., Demestichas, K., Giełczyk, A., Herrero, Á., Ksieniewicz, P., Remoundou, K., Urda, D., & Woźniak, M. (2020). Advanced Machine Learning Techniques for Fake News (Online Disinformation) Detection: A Systematic Mapping Study. Applied Soft Computing, 107, 643. https://doi.org/10.1016/j.asoc.2020.107050
  • Çimen, Ü., & Yüksel, H. (2018). Medya sektörü bağlamında iş zekâsı kavramı ve önemi. Tarih Okulu Dergisi (TOD), 11(37), 55-69. https://doi.org/10.14225/Joh1357
  • Conroy, N., Rubin, V. L., & Chen, Y. (2015). Automatic deception detection: Methods for finding fake news. Proceedings of the Association for Information Science and Technology, 52(1), 1-4. https://doi.org/10.1002/pra2.2015.145052010082
  • Correa Moreno, M. C., & González Castro, G. L. (2023). Unveiling public information in the metaverse and AI era: Challenges and opportunities. Media Research Journal, 35, 187-203. https://doi.org/10.56294/mr202335 Çömlekçi, M. F. (2019). Sosyal Medyada Dezenformasyon ve Haber Doğrulama Platformlarının Pratikleri. Gümüşhane Üniversitesi İletişim Fakültesi Elektronik Dergisi, 7, 1549-1563.
  • Delgado, A., Glisson, W., Shashidhar, N., McDonald, J., Grispos, G., & Benton, R. (2021). Deception Detection Using Machine Learning. Proceedings of the Hawaii International Conference on System Sciences. https://doi.org/10.24251/HICSS.2021.857
  • Eroğlu, E. (2023). Seçim Dönemlerinde Sosyal Medya Dezenformasyonu: 2023 Genel Seçimleri Üzerine Bir İçerik Analizi. Elektronik Cumhuriyet İletişim Dergisi, 5(2), 142-151.
  • Erkan, G., & Ayhan, A. (2018). Siyasal iletişimde dezenformasyon ve sosyal medya: Bir doğrulama platformu olarak teyit. org. Akdeniz Üniversitesi İletişim Fakültesi Dergisi, (29. Özel Sayısı), 202-223.
  • Ertürk, H. A. (2022). YENİ MEDYA EKSENİNDE İDEOLOJİYİ ANLAMAK: FİLTRE BALONLARI VE YANKI ODALARI. Niğde Ömer Halisdemir Üniversitesi İletişim Fakültesi Akademik Dergisi, 1(2), 137-159.
  • Galitsky, B. A. (2015). Detecting Rumor and Disinformation by Web Mining. DBLP.
  • Gupta, N. (2023). Artificial Intelligence Ethics and Fairness: A study to address bias and fairness issues in AI systems, and the ethical implications of AI applications. Research Review International Journal of Multidisciplinary. https://doi.org/10.31305/rrijm2023.v03.n02.004
  • Hameleers, M. (2023). This is clearly fake! Mis- and disinformation beliefs and the (accurate) recognition of pseudo-information—Evidence from the United States and the Netherlands. American Behavioral Scientist, 77(5), 583-598. https://doi.org/10.1177/00027642231174334
  • Haresamudram, K., Larsson, S., & Heintz, F. (2023). Three levels of AI transparency. IEEE Computer, 56(3), 46-53. https://doi.org/10.1109/MC.2022.3213181
  • Iddianto, R. Azi. (2022). SOCIAL EFFECT OF SOCIAL MEDIA REVEALED IN THE SOCIAL DILEMMA DOCUMENTARY MOVIE: POST-TRUTH PERSPECTIVE. Seshiski Journal, 2(1), 3. https://doi.org/10.53922/seshiski.v2i1.3
  • Litvinova, O., Seredin, P., Litvinova, T., & Lyell, J. (2017). Deception detection in Russian texts. Proceedings of the Conference on Empirical Methods in Natural Language Processing. https://doi.org/10.18653/V1/E17-4005
  • Mandravickaite, J., Songailaitė, M., Kankevičiūtė, E., Volčok, A., & Krilavičius, T. (2023). Disinformation Analysis and Tracking Dashboard. Proceedings of the IEEE International Conference on Cyber Warfare and Security. https://doi.org/10.1109/ICMCIS59922.2023.10253590
  • Merter, A. K., & Özer, G. (2023). Denetimde yapay zeka: S. Z. İmamoğlu, S. Erat, & H. İnce (Editör.), Yönetim Biliminde Yapay Zekâ (Sayfa. 257-274). Nobel Bilimsel Eserler.
  • Pariser, E. (2011). The filter bubble: What the internet is hiding from you. Penguin Press.
  • Rasyid, H., Sibaroni, Y., & Ihsan, A. F. (2023). Classification of Disinformation Tweet on the 2024 Presidential Election in Indonesia Using Optimal Transformer Based Model. Proceedings of the IEEE International Conference on Cyber Defense and Secure Communications. https://doi.org/10.1109/ICoDSA58501.2023.1027710
  • Rathore, H. (2021). Detecting fake Covid-19 news. International Journal for Research in Applied Science & Engineering Technology. https://doi.org/10.22214/ijraset.2021.35271
  • Reddy, B. S., & Kumar, A. S. (2023). Multimodal approaches based on fake news detection. IEEE. https://doi.org/10.1109/ICAIS56108.2023.10073839
  • Sharevski, F., Devine, A., Pieroni, E., & Jachim, P. (2022). Folk models of misinformation on social media. arXiv. https://doi.org/10.48550/arXiv.2207.12589
  • Shu, K., Sliva, A., Wang, S., Tang, J., & Liu, H. (2017). Fake News Detection on Social Media: A Data Mining Perspective. ACM SIGKDD Explorations Newsletter, 19(1), 22-36. https://doi.org/10.1145/3137597.3137600
  • Siapera, E. (2014). Tweeting #Palestine: Twitter and the mediation of Palestine. Journal of Communication, 136, 787-791. https://doi.org/10.1177/1367877913503865
  • Stahl, B. (2021). Ethical issues of AI. In Ethics of Artificial Intelligence (pp. 77-95). Springer. https://doi.org/10.1007/978-3-030-69978-9_4
  • Sultana, R., & Nishino, T. (2022). Fake News Detection Using Transformer and Ensemble Learning Models. Proceedings of the IEEE Winter Conference on Applications of Computer Vision. https://doi.org/10.1109/IIAI-AAI-Winter58034.2022.00044
  • Sunstein, C. R. (2001). Republic.com. Princeton University Press, Princeton, NJ.
  • Tandoc, E. C., Lim, Z. W., & Ling, R. (2018). Defining “fake news”: A typology of scholarly definitions. Digital Journalism, 6(2), 137-153. https://doi.org/10.1080/21670811.2017.1360143 Teyit.org. (2023). Sahte Haber Karnesi: 2023 Cumhurbaşkanı ve Milletvekili Seçimleri.
  • Tiwari, D., & Thorat, S. (2021). An Analysis on False Positives in Fake News Detection Algorithms: Improving Content Classification with Contextual Approaches. International Journal of Computer Science and Information Technologies, 7(6). https://doi.org/10.32628/cseit217670
  • Tsikerdekis, M., & Zeadally, S. (2023). Misinformation Detection Using Deep Learning. IEEE Computer. https://doi.org/10.1109/MITP.2023.3314752
  • Varošanec, I. (2022). Transparency Obligations in AI: A European Perspective on AI Regulation. International Journal of Law and Information Technology, 30(2), 92-110. https://doi.org/10.1080/13600869.2022.2060471
  • Volkova, S., & Jang, J. (2018). Misleading and Falsification Strategies in Social Media: Evaluating False Positives in Detection Models. Proceedings of the 27th International Conference on World Wide Web Companion. https://doi.org/10.1145/3184558.3188728
  • Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. Science, 359(6380), 1146-1151. https://doi.org/10.1126/science.aap9559
  • Ward, K., & Goodwin, J. (2022). Identifying disinformation using rhetorical devices in natural language models. arXiv. https://doi.org/10.2172/1891194
  • Wardle, C., & Derakhshan, H. (2017). Information Disorder: Toward an Interdisciplinary Framework for Research and Policymaking. Council of Europe.
  • Wei, M., & Zhou, Z. (2022). AI Ethics Issues in Real World: Evidence from AI Incident Database. arXiv. https://doi.org/10.48550/arXiv.2206.07635

Artificial Intelligence in Combating Disinformation on Social Media: Possibilities and Limitations

Year 2025, Issue: 67, 49 - 61, 18.03.2025
https://doi.org/10.53568/yyusbed.1583326

Abstract

This study comprehensively examines the role, opportunities and limitations of artificial intelligence-supported systems in preventing fake news in social media. While digitalization and the proliferation of social media platforms facilitate access to information, they also pave the way for misleading and manipulative content to reach large audiences rapidly. Artificial intelligence-based machine learning (ML) and natural language processing (NLP) techniques offer powerful tools for detecting and preventing the spread of disinformative content. However, there are significant limitations in the application of these systems, such as ethics, impartiality, lack of transparency and false positives. Our study explores the opportunities offered by AI-based disinformation detection systems and the ethical, social and technical challenges they face, emphasizing the need to develop more transparent and accountable structures to ensure public trust and sustainability of the information ecosystem. The findings of the study reveal the importance of artificial intelligence for societal information security and access to accurate information, and provide recommendations for more responsible and ethical development of these technologies.

References

  • Akyüz, S. S. (2021). Koronavirüs komplo teorileri: dezenformasyon ve politik kimliklerin komplocu düșünüșe etkisi. İletişim ve Medya Alanında Uluslararası Araştırmalar II, 57, 86.
  • Allcott, H., & Gentzkow, M. (2017). Social Media and Fake News in the 2016 Election. Journal of Economic Perspectives, 31(2), 211-236. https://doi.org/10.1257/jep.31.2.211
  • Awais, I., Rahim, N. A., Alhossary, A. Z., & Rahman, Z. A. (2022). Israeli Arabic-speaking Facebook pages and its effects on the elements of Palestinian national identity. International Journal of Humanities Studies, 6(4), 11337. https://doi.org/10.53730/ijhs.v6ns4.11337
  • Bektaş, A. (2002). Siyasal Propaganda: Tarihsel Evrimi ve Demokratik Toplumdaki Uygulamaları, Bağlam Yayınları, İstanbul.
  • Brennen, J. S., Simon, F., Howard, P. N., & Nielsen, R. K. (2020). Types, sources, and claims of COVID-19 misinformation. Reuters Institute for the Study of Journalism. https://reutersinstitute.politics.ox.ac.uk
  • Chen, S., Xiao, L., & Kumar, A. (2022). Spread of misinformation on social media: What contributes to it and how to combat it. Computers in Human Behavior, 107, 643. https://doi.org/10.1016/j.chb.2022.107643
  • Choraś, M., Demestichas, K., Giełczyk, A., Herrero, Á., Ksieniewicz, P., Remoundou, K., Urda, D., & Woźniak, M. (2020). Advanced Machine Learning Techniques for Fake News (Online Disinformation) Detection: A Systematic Mapping Study. Applied Soft Computing, 107, 643. https://doi.org/10.1016/j.asoc.2020.107050
  • Çimen, Ü., & Yüksel, H. (2018). Medya sektörü bağlamında iş zekâsı kavramı ve önemi. Tarih Okulu Dergisi (TOD), 11(37), 55-69. https://doi.org/10.14225/Joh1357
  • Conroy, N., Rubin, V. L., & Chen, Y. (2015). Automatic deception detection: Methods for finding fake news. Proceedings of the Association for Information Science and Technology, 52(1), 1-4. https://doi.org/10.1002/pra2.2015.145052010082
  • Correa Moreno, M. C., & González Castro, G. L. (2023). Unveiling public information in the metaverse and AI era: Challenges and opportunities. Media Research Journal, 35, 187-203. https://doi.org/10.56294/mr202335 Çömlekçi, M. F. (2019). Sosyal Medyada Dezenformasyon ve Haber Doğrulama Platformlarının Pratikleri. Gümüşhane Üniversitesi İletişim Fakültesi Elektronik Dergisi, 7, 1549-1563.
  • Delgado, A., Glisson, W., Shashidhar, N., McDonald, J., Grispos, G., & Benton, R. (2021). Deception Detection Using Machine Learning. Proceedings of the Hawaii International Conference on System Sciences. https://doi.org/10.24251/HICSS.2021.857
  • Eroğlu, E. (2023). Seçim Dönemlerinde Sosyal Medya Dezenformasyonu: 2023 Genel Seçimleri Üzerine Bir İçerik Analizi. Elektronik Cumhuriyet İletişim Dergisi, 5(2), 142-151.
  • Erkan, G., & Ayhan, A. (2018). Siyasal iletişimde dezenformasyon ve sosyal medya: Bir doğrulama platformu olarak teyit. org. Akdeniz Üniversitesi İletişim Fakültesi Dergisi, (29. Özel Sayısı), 202-223.
  • Ertürk, H. A. (2022). YENİ MEDYA EKSENİNDE İDEOLOJİYİ ANLAMAK: FİLTRE BALONLARI VE YANKI ODALARI. Niğde Ömer Halisdemir Üniversitesi İletişim Fakültesi Akademik Dergisi, 1(2), 137-159.
  • Galitsky, B. A. (2015). Detecting Rumor and Disinformation by Web Mining. DBLP.
  • Gupta, N. (2023). Artificial Intelligence Ethics and Fairness: A study to address bias and fairness issues in AI systems, and the ethical implications of AI applications. Research Review International Journal of Multidisciplinary. https://doi.org/10.31305/rrijm2023.v03.n02.004
  • Hameleers, M. (2023). This is clearly fake! Mis- and disinformation beliefs and the (accurate) recognition of pseudo-information—Evidence from the United States and the Netherlands. American Behavioral Scientist, 77(5), 583-598. https://doi.org/10.1177/00027642231174334
  • Haresamudram, K., Larsson, S., & Heintz, F. (2023). Three levels of AI transparency. IEEE Computer, 56(3), 46-53. https://doi.org/10.1109/MC.2022.3213181
  • Iddianto, R. Azi. (2022). SOCIAL EFFECT OF SOCIAL MEDIA REVEALED IN THE SOCIAL DILEMMA DOCUMENTARY MOVIE: POST-TRUTH PERSPECTIVE. Seshiski Journal, 2(1), 3. https://doi.org/10.53922/seshiski.v2i1.3
  • Litvinova, O., Seredin, P., Litvinova, T., & Lyell, J. (2017). Deception detection in Russian texts. Proceedings of the Conference on Empirical Methods in Natural Language Processing. https://doi.org/10.18653/V1/E17-4005
  • Mandravickaite, J., Songailaitė, M., Kankevičiūtė, E., Volčok, A., & Krilavičius, T. (2023). Disinformation Analysis and Tracking Dashboard. Proceedings of the IEEE International Conference on Cyber Warfare and Security. https://doi.org/10.1109/ICMCIS59922.2023.10253590
  • Merter, A. K., & Özer, G. (2023). Denetimde yapay zeka: S. Z. İmamoğlu, S. Erat, & H. İnce (Editör.), Yönetim Biliminde Yapay Zekâ (Sayfa. 257-274). Nobel Bilimsel Eserler.
  • Pariser, E. (2011). The filter bubble: What the internet is hiding from you. Penguin Press.
  • Rasyid, H., Sibaroni, Y., & Ihsan, A. F. (2023). Classification of Disinformation Tweet on the 2024 Presidential Election in Indonesia Using Optimal Transformer Based Model. Proceedings of the IEEE International Conference on Cyber Defense and Secure Communications. https://doi.org/10.1109/ICoDSA58501.2023.1027710
  • Rathore, H. (2021). Detecting fake Covid-19 news. International Journal for Research in Applied Science & Engineering Technology. https://doi.org/10.22214/ijraset.2021.35271
  • Reddy, B. S., & Kumar, A. S. (2023). Multimodal approaches based on fake news detection. IEEE. https://doi.org/10.1109/ICAIS56108.2023.10073839
  • Sharevski, F., Devine, A., Pieroni, E., & Jachim, P. (2022). Folk models of misinformation on social media. arXiv. https://doi.org/10.48550/arXiv.2207.12589
  • Shu, K., Sliva, A., Wang, S., Tang, J., & Liu, H. (2017). Fake News Detection on Social Media: A Data Mining Perspective. ACM SIGKDD Explorations Newsletter, 19(1), 22-36. https://doi.org/10.1145/3137597.3137600
  • Siapera, E. (2014). Tweeting #Palestine: Twitter and the mediation of Palestine. Journal of Communication, 136, 787-791. https://doi.org/10.1177/1367877913503865
  • Stahl, B. (2021). Ethical issues of AI. In Ethics of Artificial Intelligence (pp. 77-95). Springer. https://doi.org/10.1007/978-3-030-69978-9_4
  • Sultana, R., & Nishino, T. (2022). Fake News Detection Using Transformer and Ensemble Learning Models. Proceedings of the IEEE Winter Conference on Applications of Computer Vision. https://doi.org/10.1109/IIAI-AAI-Winter58034.2022.00044
  • Sunstein, C. R. (2001). Republic.com. Princeton University Press, Princeton, NJ.
  • Tandoc, E. C., Lim, Z. W., & Ling, R. (2018). Defining “fake news”: A typology of scholarly definitions. Digital Journalism, 6(2), 137-153. https://doi.org/10.1080/21670811.2017.1360143 Teyit.org. (2023). Sahte Haber Karnesi: 2023 Cumhurbaşkanı ve Milletvekili Seçimleri.
  • Tiwari, D., & Thorat, S. (2021). An Analysis on False Positives in Fake News Detection Algorithms: Improving Content Classification with Contextual Approaches. International Journal of Computer Science and Information Technologies, 7(6). https://doi.org/10.32628/cseit217670
  • Tsikerdekis, M., & Zeadally, S. (2023). Misinformation Detection Using Deep Learning. IEEE Computer. https://doi.org/10.1109/MITP.2023.3314752
  • Varošanec, I. (2022). Transparency Obligations in AI: A European Perspective on AI Regulation. International Journal of Law and Information Technology, 30(2), 92-110. https://doi.org/10.1080/13600869.2022.2060471
  • Volkova, S., & Jang, J. (2018). Misleading and Falsification Strategies in Social Media: Evaluating False Positives in Detection Models. Proceedings of the 27th International Conference on World Wide Web Companion. https://doi.org/10.1145/3184558.3188728
  • Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. Science, 359(6380), 1146-1151. https://doi.org/10.1126/science.aap9559
  • Ward, K., & Goodwin, J. (2022). Identifying disinformation using rhetorical devices in natural language models. arXiv. https://doi.org/10.2172/1891194
  • Wardle, C., & Derakhshan, H. (2017). Information Disorder: Toward an Interdisciplinary Framework for Research and Policymaking. Council of Europe.
  • Wei, M., & Zhou, Z. (2022). AI Ethics Issues in Real World: Evidence from AI Incident Database. arXiv. https://doi.org/10.48550/arXiv.2206.07635
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Media Studies, New Media
Journal Section Issue
Authors

Ergin Sarı 0000-0002-7956-1390

Publication Date March 18, 2025
Submission Date November 11, 2024
Acceptance Date December 29, 2024
Published in Issue Year 2025 Issue: 67

Cite

APA Sarı, E. (2025). Sosyal Medyada Dezenformasyonla Mücadelede Yapay Zekâ: Olanaklar ve Sınırlılıklar. Yüzüncü Yıl Üniversitesi Sosyal Bilimler Enstitüsü Dergisi(67), 49-61. https://doi.org/10.53568/yyusbed.1583326

Journal of Yüzüncü Yıl University Graduate School of Social Sciences is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).