Research Article
BibTex RIS Cite

Bioactive Properties of Halymenia durvillei Bory 1828 for Pharmaceutical Application: Antioxidant, Antidiabetic, Antiwrinkling and Skin-Whitening Activities

Year 2022, , 57 - 68, 31.03.2022
https://doi.org/10.29133/yyutbd.1016050

Abstract

Seaweeds are known sources of bioactive compounds that provide diverse health benefits. However, knowledge on the potential pharmaceutical application of some economically important seaweeds such as Halymenia durvillei is still limited. In this study, the bioactive properties of H. durvillei were studied. The results showed that the macroalga contains a total phenolic content (TPC) of 6.77 ± 0.03 mg GAE/g. Antioxidant activity of H. durvillei exhibited potent ABTS+ radical scavenging activity and high copper reduction capacity with IC50 value of 106 μg GAE/mL and 20.44 μg GAE/mL, respectively. In vitro assessment of tyrosinase and elastase inhibition properties of H. durvillei extract showed that the alga has potent inhibitory activity with IC50 of 40 μg GAE/mL and IC50 of 696 μg GAE/mL, respectively more effective than kojic acid and tocopherol. In addition, evaluation of -amylase inhibition properties showed that H. durvillei extract has potent inhibitory activity with IC50 value of 56 μg GAE/mL more effective than acarbose (standard anti-diabetic drug) with IC50 of 101 μg/mL. The current investigation shows the potential of H. durvillei for the pharmaceutical application, which can be utilized for the synthesis of novel drugs.

Supporting Institution

National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippine Los Baños

Project Number

BIOTECH-UPLB Core Project: 16395

Thanks

The author acknowledges PNCM and Food Laboratory of BIOTECH-UPLB for the support given during the conduct of the study. The author is also thankful to Mrs. Arsenia B. Sapin for her technical assistance in the conduct of the assays needed in the study.

References

  • Alpinar, K., Özyurek, M., Kolak, U., Guclu, K., Aras, Ç., Altun, M., Celik, S.E., Berker, K.I., Bektasoglu, B., & Ampal, R. (2009). Antioxidant capacities of some food plants wildly grown in Ayvalik of Turkey. Food Science and Technology Research, 15 (1), 59 – 64.
  • Arguelles, E.D.L.R. (2021a). Biochemical composition and bioactive properties of Chlorella minutissima (Chm1) as a potential source of chemical compounds for nutritional feed supplement and disease control in aquaculture. Current Applied Science and Technology, 21(1), 65-77.
  • Arguelles, E.D.L.R. (2021b). Evaluation of antioxidant capacity, tyrosinase inhibition, and antibacterial activities of brown seaweed, Sargassum ilicifolium (Turner) C. Agardh 1820 for cosmeceutical application. Journal Fisheries and Environment, 45(1), 64-77.
  • Arguelles, E.D.L.R., & Sapin, A.B. (2021). Chemical Composition and Bioactive Properties of Sargassum aquifolium (Turner) C. Agardh and Its Potential for Pharmaceutical Application. Philippine Journal of Science, 151 (S1), 9-24.
  • Arguelles E.D.L.R. (2020). Evaluation of nutritional composition and in vitro antioxidant and antibacterial activities of Codium intricatum Okamura from Ilocos Norte (Philippines). Jordan Journal of Biological Sciences, 13(3),375-382.
  • Arguelles, E.D.L.R., & Sapin, A.B. (2020a). In vitro antioxidant, alpha-glucosidase inhibition and antibacterial properties of Turbinaria decurrens Bory (Sargassaceae, Ochrophyta). Asia-Pacific Journal of Science and Technology, 25(3), https://so01.tci thaijo.org/index.php/APST/article/view/240714/165247.
  • Arguelles, E.D.L.R., & Sapin, A.B. (2020b). Bioactive properties of Sargassum siliquosum J. Agardh (Fucales, Phaeophyta) and its potential as source of skin-lightening active ingredient for cosmetic application. Journal of Applied Pharmaceutical Sciences, 10(7), 51-58.
  • Arguelles, E.D.L.R., & Sapin, A.B. (2020c). Bioprospecting of Turbinaria ornata (Fucales, Phaeophyceae) for cosmetic application: antioxidant, tyrosinase inhibition and antibacterial activities. Journal of the International Society of Southeast Asian Agricultural Sciences, 26(2), 30-41.
  • Arguelles, E.D.L.R., Monsalud, R.G., & Sapin, A.B. (2019). Chemical composition and In vitro antioxidant and antibacterial activities of Sargassum vulgare C. Agardh from Lobo, Batangas, Philippines. Journal of the International Society of Southeast Asian Agricultural Sciences, 25(1), 112-122.
  • Belda, M., Sanchez, D., Bover, E., Prieto, B., Padrón, C., Cejalvo, D., & Lloris, J.M. (2016). Extraction of polyphenols in Himanthalia elongata and determination by high performance liquid chromatography with diode array detector prior to its potential use against oxidative stress. Journal of Chromatography B, 1033, 334–341.
  • Boonchum, W., Peerapornpisal, Y., Kanjanapothi, D., Pekkoh, J., Pumas, C., Jamjai, U., Amornlerdpison, D., Noiraksar, T., & Vacharapiyasophon, P. (2011). Antioxidant activity of some seaweed from the Gulf of Thailand. International Journal of Agriculture and Biology,13, 95–99.
  • Chakraborty, K., Praveen, N.K., Vijayan, K.K., & Rao, G.S. (2013). Evaluation of phenolic contents and antioxidant activities of brown seaweeds belonging to Turbinaria spp. (Phaeophyta, Sargassaceae) collected from Gulf of Mannar. Asian Pacific Journal of Tropical Biomedicine, 3, 8–16.
  • Dolorosa, M.T., Nurjana, N., Purwaningsih, S., Anwar, E., & Hidayat, T. (2019). Tyrosinase inhibitory activity of Sargassum plagyophyllum and Eucheuma cottonii methanol extracts. In IOP Conf Series: Earth and Environmental Science, (pp. 2-8) doi:10.1088/1755-1315/278/1/012020
  • Fellah, F., Louaileche, H., Dehbi-Zebboudj, A., & Touati, N. (2017). Seasonal variations in the phenolic compound content and antioxidant activities of three selected species of seaweeds from Tiskerth islet, Bejaia, Algeria. Journal of Materials and Environmental Science, 8, 4451–4456.
  • Fu, C.W.F., Ho, C.W., Yong, W.T.L., Abas, F., & Tan, C.P. (2015). Effects of phenolic antioxidants extraction from four selected seaweeds obtained from Sabah. PeerJ PrePrints, 3, e1249v1.
  • Gao, L., Wang, S., Oomah, B.D., Mazza, G. (2002). Wheat quality: Antioxidant activity of wheat millstreams. In: Ng, P., Wrigley, C.W. (Eds.). Wheat Quality Elucidation. (p. 219-233). St. Paul, Minnesota. AACC International.
  • Guiry, M.D., Guiry, G.M. (2021). AlgaeBase. National University of Ireland, Galway. http://www.algaebase.org. Retrieved on 28.10.2021.
  • Hapsari, R., Elya, B., & Amin, J. (2012). Formulation and evaluation of antioxidant and tyrosinase inhibitory effect from gel containing the 70% ethanolic Pleurotus ostreatus extract. International Journal of Medicinal Aromatic Plants, 2(1), 135-140.
  • Jesumani, V., Du, H., Aslam, M., Pei, P., & Huang, N. (2019). Potential use of seaweed bioactive compounds in skincare—A Review. Marine Drugs, 17(12), 688. https://doi.org/10.3390/md17120688
  • Kim, E., Cui, J., Kang, I., Zhang, G., & Lee, Y. (2021). Potential antidiabetic effects of seaweed extracts by upregulating glucose utilization and alleviating inflammation in C2C12 myotubes. International Journal of Environmental Research and Public Health, 18, 1367. https://doi.org/10.3390/ ijerph18031367. Lordan, S., Smyth, T.J., Soler-Vila, A., Stanton, C., Ross, R.P. (2013). The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts. Food Chemistry, 141(3),2170-2176
  • Magdugo, R.P., Terme, N., Lang, M., Pliego-Cortés, H., Marty, C., Hurtado, A.Q., Bedoux, G., Bourgougnon, N. (2020). An analysis of the nutritional and health values of Caulerpa racemosa (Forsskål) and Ulva lactuca (Linnaeus) – two Chlorophyta collected from the Philippines. Molecules, 25(12), 2901. https:// doi.org/10.3390/molecules2512290,
  • Mekinić, I.G., Skroza, D., Šimat, V., Hamed, I., Čagali, M., & Perković, Z.P. (2019). Phenolic Content of Brown Algae (Pheophyceae) Species: Extraction, Identification, and Quantification. Biomolecules, 244. doi:10.3390/biom9060244.
  • Moon, J.Y., Yim, E.Y., Song, G, Lee, N.H., & Yun, C.G. (2010). Screening of elastase and tyrosinase inhibitory activity from Jeju Island plants. EurAsian Journal Bioscience, 4,41-53.
  • Nair, S.S., Kavrekar, V., & Mishra A. (2013). In vitro studies on alpha amylase and alpha glucosidase inhibitory activities of selected plant extracts. European Journal of Experimental Biology, 3(1), 128-132.
  • Nuñez Selles, A., Castro, H.T.V., Aguero, J.A., Gonzalez, J.G., Naddeo, F., De Simone, F., & Pastrelli, L. (2002). Isolation and quantitative analysis of phenolic antioxidants, free sugars and polyols from mango (Mangifera indica L.) stem bark aqueous decoction used in Cuba as a nutritional supplement. Journal of Agricultural and Food Chemistry, 50,762-766.
  • O’Sullivan, A.M., O’Callaghan, Y.C., O’Grady, M.N., Queguineur, B., Hanniffy, D., Troy, D.J., Kerry, J.P., & O’Brien, N.M. (2011). In vitro and cellular antioxidant activities of seaweed extracts prepared from five brown seaweeds harvested in spring from the west coast of Ireland. Food Chemistry, 126, 1064–1070.
  • Phoboo, S. (2015). In vitro assays of anti-diabetic and anti-hypertensive potential of some traditional edible plants of Qatar. Journal of Medicinally Active Plants, 4, 22-29.
  • Poulose, N., Sajaya, A., Ravindran, A., Chandran, A., Priyadharshini, G.P., Selvin, J., & Kiran, G.S. (2021). Anti-diabetic potential of a stigmasterol from the seaweed Gelidium spinosum and its application in the formulation of nanoemulsion conjugate for the development of functional biscuits. Frontiers in Nutrition. 8, 694362. doi: 10.3389/fnut.2021.694362.
  • Re, R., Pellegrine, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26,1231-1237.
  • Sari, D.M., Anwar, E., Nurjanah, N., Arifianti, A.E. (2019). Antioxidant and tyrosinase inhibitor activities of ethanol extracts of brown seaweed (Turbinaria conoides) as lightening ingredient. Pharmacognosy Journal, 11(2),379–82.
  • Sobuj, M.K.A., Islam, M.A., Islam, M.S., Islam, M.S., Islam, M.S., Mahmud, Y., Rafiquzzaman, S.F. (2021). Effect of solvents on bioactive compounds and antioxidant activity of Padina tetrastromatica and Gracilaria tenuistipitata seaweeds collected from Bangladesh. Scientific Reports, 11, 19082, https://doi.org/10.1038/s41598-021-98461-3.
  • Susano, P., Silva, J., Alves, C., Martins, A., Gaspar, H., Pinteus, S., Mouga, T., Goettert, M.I., Petrovski, Ž., Branco, L.B., & Pedrosa, R. (2021). Unravelling the dermatological potential of the brown seaweed Carpomitra costata”, Marine Drugs, 19, 135. https://doi.org/10.3390/md19030135.
  • Trono, G.C. Jr. (1997). Field Guide and Atlas of the Seaweed Resources of the Philippines (p.978). Manila: Bookmark Inc.
  • Trono, G.C., Largo, D.B. (2019). The seaweed resources of the Philippines. Botanica Marina, 62, 483–498.
  • Yoshie-Stark, Y., Hsieh, Y.P., & Suzuki, T. (2003). Distribution of flavonoids and related compounds from seaweeds in Japan. Journal of Tokyo University of Fisheries, 89,1-6.

Farmasötik Uygulama İçin Halymenia durvillei Bory 1828'in Biyoaktif Özellikleri: Antioksidan, Antidiyabetik, Kırışıklık Önleyici ve Cilt Beyazlatıcı Aktiviteler

Year 2022, , 57 - 68, 31.03.2022
https://doi.org/10.29133/yyutbd.1016050

Abstract

Deniz yosunları, çeşitli sağlık yararları sağlayan biyoaktif bileşiklerin bilinen kaynaklarıdır. Bununla birlikte, Halymenia durvillei gibi ekonomik açıdan önemli bazı deniz yosunlarının potansiyel farmasötik uygulamalarına ilişkin bilgiler hala sınırlıdır. Bu çalışmada H. durvillei'nin biyoaktif özellikleri incelenmiştir. Sonuçlar, makroalganın 6.77 ± 0.03 mg GAE/g toplam fenolik içerik (TPC) içerdiğini gösterdi. H. durvillei'nin antioksidan aktivitesi, sırasıyla 106 μg GAE/mL ve 20.44 μg GAE/mL IC50 değeri ile güçlü ABTS+ radikal süpürme aktivitesi ve yüksek bakır indirgeme kapasitesi sergiledi. H. durvillei ekstraktının tirozinaz ve elastaz inhibisyon özelliklerinin in vitro değerlendirmesi, alg'in IC50'si 40 μg GAE/mL ve IC50'si 696 μg GAE/mL 'lik güçlü inhibitör aktiviteye sahip olduğunu ve kojik asit ve tokoferolden daha etkili olduğunu gösterdi. Ek olarak, -amilaz inhibisyon özelliklerinin değerlendirilmesi, H. durvillei ekstraktının IC50 değeri 56 μg GAE/mL olan güçlü inhibitör aktiviteye sahip olduğunu ve IC50 değeri 101 μg/mL olan akarbozdan (standart anti-diyabetik ilaç) daha etkili olduğunu göstermiştir. Mevcut araştırma, yeni ilaçların sentezi için kullanılabilen farmasötik uygulama için H. durvillei'nin potansiyelini göstermektedir.

Project Number

BIOTECH-UPLB Core Project: 16395

References

  • Alpinar, K., Özyurek, M., Kolak, U., Guclu, K., Aras, Ç., Altun, M., Celik, S.E., Berker, K.I., Bektasoglu, B., & Ampal, R. (2009). Antioxidant capacities of some food plants wildly grown in Ayvalik of Turkey. Food Science and Technology Research, 15 (1), 59 – 64.
  • Arguelles, E.D.L.R. (2021a). Biochemical composition and bioactive properties of Chlorella minutissima (Chm1) as a potential source of chemical compounds for nutritional feed supplement and disease control in aquaculture. Current Applied Science and Technology, 21(1), 65-77.
  • Arguelles, E.D.L.R. (2021b). Evaluation of antioxidant capacity, tyrosinase inhibition, and antibacterial activities of brown seaweed, Sargassum ilicifolium (Turner) C. Agardh 1820 for cosmeceutical application. Journal Fisheries and Environment, 45(1), 64-77.
  • Arguelles, E.D.L.R., & Sapin, A.B. (2021). Chemical Composition and Bioactive Properties of Sargassum aquifolium (Turner) C. Agardh and Its Potential for Pharmaceutical Application. Philippine Journal of Science, 151 (S1), 9-24.
  • Arguelles E.D.L.R. (2020). Evaluation of nutritional composition and in vitro antioxidant and antibacterial activities of Codium intricatum Okamura from Ilocos Norte (Philippines). Jordan Journal of Biological Sciences, 13(3),375-382.
  • Arguelles, E.D.L.R., & Sapin, A.B. (2020a). In vitro antioxidant, alpha-glucosidase inhibition and antibacterial properties of Turbinaria decurrens Bory (Sargassaceae, Ochrophyta). Asia-Pacific Journal of Science and Technology, 25(3), https://so01.tci thaijo.org/index.php/APST/article/view/240714/165247.
  • Arguelles, E.D.L.R., & Sapin, A.B. (2020b). Bioactive properties of Sargassum siliquosum J. Agardh (Fucales, Phaeophyta) and its potential as source of skin-lightening active ingredient for cosmetic application. Journal of Applied Pharmaceutical Sciences, 10(7), 51-58.
  • Arguelles, E.D.L.R., & Sapin, A.B. (2020c). Bioprospecting of Turbinaria ornata (Fucales, Phaeophyceae) for cosmetic application: antioxidant, tyrosinase inhibition and antibacterial activities. Journal of the International Society of Southeast Asian Agricultural Sciences, 26(2), 30-41.
  • Arguelles, E.D.L.R., Monsalud, R.G., & Sapin, A.B. (2019). Chemical composition and In vitro antioxidant and antibacterial activities of Sargassum vulgare C. Agardh from Lobo, Batangas, Philippines. Journal of the International Society of Southeast Asian Agricultural Sciences, 25(1), 112-122.
  • Belda, M., Sanchez, D., Bover, E., Prieto, B., Padrón, C., Cejalvo, D., & Lloris, J.M. (2016). Extraction of polyphenols in Himanthalia elongata and determination by high performance liquid chromatography with diode array detector prior to its potential use against oxidative stress. Journal of Chromatography B, 1033, 334–341.
  • Boonchum, W., Peerapornpisal, Y., Kanjanapothi, D., Pekkoh, J., Pumas, C., Jamjai, U., Amornlerdpison, D., Noiraksar, T., & Vacharapiyasophon, P. (2011). Antioxidant activity of some seaweed from the Gulf of Thailand. International Journal of Agriculture and Biology,13, 95–99.
  • Chakraborty, K., Praveen, N.K., Vijayan, K.K., & Rao, G.S. (2013). Evaluation of phenolic contents and antioxidant activities of brown seaweeds belonging to Turbinaria spp. (Phaeophyta, Sargassaceae) collected from Gulf of Mannar. Asian Pacific Journal of Tropical Biomedicine, 3, 8–16.
  • Dolorosa, M.T., Nurjana, N., Purwaningsih, S., Anwar, E., & Hidayat, T. (2019). Tyrosinase inhibitory activity of Sargassum plagyophyllum and Eucheuma cottonii methanol extracts. In IOP Conf Series: Earth and Environmental Science, (pp. 2-8) doi:10.1088/1755-1315/278/1/012020
  • Fellah, F., Louaileche, H., Dehbi-Zebboudj, A., & Touati, N. (2017). Seasonal variations in the phenolic compound content and antioxidant activities of three selected species of seaweeds from Tiskerth islet, Bejaia, Algeria. Journal of Materials and Environmental Science, 8, 4451–4456.
  • Fu, C.W.F., Ho, C.W., Yong, W.T.L., Abas, F., & Tan, C.P. (2015). Effects of phenolic antioxidants extraction from four selected seaweeds obtained from Sabah. PeerJ PrePrints, 3, e1249v1.
  • Gao, L., Wang, S., Oomah, B.D., Mazza, G. (2002). Wheat quality: Antioxidant activity of wheat millstreams. In: Ng, P., Wrigley, C.W. (Eds.). Wheat Quality Elucidation. (p. 219-233). St. Paul, Minnesota. AACC International.
  • Guiry, M.D., Guiry, G.M. (2021). AlgaeBase. National University of Ireland, Galway. http://www.algaebase.org. Retrieved on 28.10.2021.
  • Hapsari, R., Elya, B., & Amin, J. (2012). Formulation and evaluation of antioxidant and tyrosinase inhibitory effect from gel containing the 70% ethanolic Pleurotus ostreatus extract. International Journal of Medicinal Aromatic Plants, 2(1), 135-140.
  • Jesumani, V., Du, H., Aslam, M., Pei, P., & Huang, N. (2019). Potential use of seaweed bioactive compounds in skincare—A Review. Marine Drugs, 17(12), 688. https://doi.org/10.3390/md17120688
  • Kim, E., Cui, J., Kang, I., Zhang, G., & Lee, Y. (2021). Potential antidiabetic effects of seaweed extracts by upregulating glucose utilization and alleviating inflammation in C2C12 myotubes. International Journal of Environmental Research and Public Health, 18, 1367. https://doi.org/10.3390/ ijerph18031367. Lordan, S., Smyth, T.J., Soler-Vila, A., Stanton, C., Ross, R.P. (2013). The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts. Food Chemistry, 141(3),2170-2176
  • Magdugo, R.P., Terme, N., Lang, M., Pliego-Cortés, H., Marty, C., Hurtado, A.Q., Bedoux, G., Bourgougnon, N. (2020). An analysis of the nutritional and health values of Caulerpa racemosa (Forsskål) and Ulva lactuca (Linnaeus) – two Chlorophyta collected from the Philippines. Molecules, 25(12), 2901. https:// doi.org/10.3390/molecules2512290,
  • Mekinić, I.G., Skroza, D., Šimat, V., Hamed, I., Čagali, M., & Perković, Z.P. (2019). Phenolic Content of Brown Algae (Pheophyceae) Species: Extraction, Identification, and Quantification. Biomolecules, 244. doi:10.3390/biom9060244.
  • Moon, J.Y., Yim, E.Y., Song, G, Lee, N.H., & Yun, C.G. (2010). Screening of elastase and tyrosinase inhibitory activity from Jeju Island plants. EurAsian Journal Bioscience, 4,41-53.
  • Nair, S.S., Kavrekar, V., & Mishra A. (2013). In vitro studies on alpha amylase and alpha glucosidase inhibitory activities of selected plant extracts. European Journal of Experimental Biology, 3(1), 128-132.
  • Nuñez Selles, A., Castro, H.T.V., Aguero, J.A., Gonzalez, J.G., Naddeo, F., De Simone, F., & Pastrelli, L. (2002). Isolation and quantitative analysis of phenolic antioxidants, free sugars and polyols from mango (Mangifera indica L.) stem bark aqueous decoction used in Cuba as a nutritional supplement. Journal of Agricultural and Food Chemistry, 50,762-766.
  • O’Sullivan, A.M., O’Callaghan, Y.C., O’Grady, M.N., Queguineur, B., Hanniffy, D., Troy, D.J., Kerry, J.P., & O’Brien, N.M. (2011). In vitro and cellular antioxidant activities of seaweed extracts prepared from five brown seaweeds harvested in spring from the west coast of Ireland. Food Chemistry, 126, 1064–1070.
  • Phoboo, S. (2015). In vitro assays of anti-diabetic and anti-hypertensive potential of some traditional edible plants of Qatar. Journal of Medicinally Active Plants, 4, 22-29.
  • Poulose, N., Sajaya, A., Ravindran, A., Chandran, A., Priyadharshini, G.P., Selvin, J., & Kiran, G.S. (2021). Anti-diabetic potential of a stigmasterol from the seaweed Gelidium spinosum and its application in the formulation of nanoemulsion conjugate for the development of functional biscuits. Frontiers in Nutrition. 8, 694362. doi: 10.3389/fnut.2021.694362.
  • Re, R., Pellegrine, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26,1231-1237.
  • Sari, D.M., Anwar, E., Nurjanah, N., Arifianti, A.E. (2019). Antioxidant and tyrosinase inhibitor activities of ethanol extracts of brown seaweed (Turbinaria conoides) as lightening ingredient. Pharmacognosy Journal, 11(2),379–82.
  • Sobuj, M.K.A., Islam, M.A., Islam, M.S., Islam, M.S., Islam, M.S., Mahmud, Y., Rafiquzzaman, S.F. (2021). Effect of solvents on bioactive compounds and antioxidant activity of Padina tetrastromatica and Gracilaria tenuistipitata seaweeds collected from Bangladesh. Scientific Reports, 11, 19082, https://doi.org/10.1038/s41598-021-98461-3.
  • Susano, P., Silva, J., Alves, C., Martins, A., Gaspar, H., Pinteus, S., Mouga, T., Goettert, M.I., Petrovski, Ž., Branco, L.B., & Pedrosa, R. (2021). Unravelling the dermatological potential of the brown seaweed Carpomitra costata”, Marine Drugs, 19, 135. https://doi.org/10.3390/md19030135.
  • Trono, G.C. Jr. (1997). Field Guide and Atlas of the Seaweed Resources of the Philippines (p.978). Manila: Bookmark Inc.
  • Trono, G.C., Largo, D.B. (2019). The seaweed resources of the Philippines. Botanica Marina, 62, 483–498.
  • Yoshie-Stark, Y., Hsieh, Y.P., & Suzuki, T. (2003). Distribution of flavonoids and related compounds from seaweeds in Japan. Journal of Tokyo University of Fisheries, 89,1-6.
There are 35 citations in total.

Details

Primary Language English
Subjects Hydrobiology
Journal Section Articles
Authors

Eldrin Arguelles 0000-0003-1856-670X

Project Number BIOTECH-UPLB Core Project: 16395
Publication Date March 31, 2022
Acceptance Date January 25, 2022
Published in Issue Year 2022

Cite

APA Arguelles, E. (2022). Bioactive Properties of Halymenia durvillei Bory 1828 for Pharmaceutical Application: Antioxidant, Antidiabetic, Antiwrinkling and Skin-Whitening Activities. Yuzuncu Yıl University Journal of Agricultural Sciences, 32(1), 57-68. https://doi.org/10.29133/yyutbd.1016050

Creative Commons License
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi CC BY 4.0 lisanslıdır.