Research Article
BibTex RIS Cite

Türkiye'deki Tarımsal Atıklar: Enerji Potansiyeli ve Mevcut Biyokütle Santrallerinin Değerlendirilmesi

Year 2022, , 119 - 131, 31.03.2022
https://doi.org/10.29133/yyutbd.1030233

Abstract

Biyokütle enerjisi; enerji güvenliğini, çeşitliliğini artırmak ve kırsal ekonomiyi geliştirmek için devamlı önem kazanmaktadır. Türkiye'deki mevcut biyokütle enerji tesislerinin daha fazla atık kullandığı bilinmesine rağmen, bu tesislerde tarımsal artıkların kullanımının teşvik edilmesi son derece önemlidir. Bu çalışmada tarımsal atıklar iki başlık altında incelenmiştir: birincil atıklar (BA), hasat sonrası tarlada kalan atıklardır (mısır sapı, buğday samanı, vb.), ikincil atıklar (İA) ise ürünlerin fabrikada işlenmesinden sonra kalan atıklardır (badem kabuğu, mısır koçanı, vb.). Tarımsal kalıntı miktarı hesaplanırken toprağın korunması, hayvanların beslenmesi, ısınma amaçlı gibi özel kullanımlar dikkate alınır. Türkiye'de 81 ilde en çok ekilen ürünler listelenmiş ve kalori değeri yüksek ürünlerin atıkları üzerinde yoğunlaşılmıştır. Bu tarım ürünlerine ait birincil ve ikincil atık miktarları iller bazında ayıklanmış ve haritalanmıştır. Daha sonra bu atıkların enerji potansiyeli hesaplanmıştır. Türkiye'de üretilen toplam BA ve İA miktarı yıllık 39 412 683 ton ve 6 803 787 tondur. Santralin toplam verimi %30 ve biyokütle santralinin kapasite faktörünün 0.65 olduğu varsayıldığında, toplam 81 ilde sadece BA'dan yılda 2 438,5 MW ve sadece İA'dan yılda 830 MW güç elde edilecektir. AHP yöntemine göre, nakliye öncesi ön işlem seçiminde maliyet en önemli kriterdir.

References

  • Acar, S., & Ayanoglu, A. (2012). Determination Of Higher Heating Values (HHVs) Of Biomass Fuels. Energy Education Science and Technology Part A: Energy Science and Research, 28(2), 749–758.
  • Akkuş, G. (2018). Bağ Budama Artıklarından Torrefaksiyon İle Katı Atık Üretimi.
  • Alatzas, S., Moustakas, K., Malamis, D., & Vakalis, S. (2019). Biomass Potential from Agricultural Waste for Energetic Utilization in Greece. Energies, 12(6)(1095), 1–20. https://doi.org/10.3390/en12061095
  • Aqsha, A., Tijani, M. M., & Mahinpey, N. (2014). Catalytic Pyrolysis Of Straw Biomasses (Wheat, Flax, Oat And Barley Straw) And The Comparison Of Their Product Yields. WIT Transactions on Ecology and the Environment, 190 VOLUME, 1007–1015. https://doi.org/10.2495/EQ140942
  • Atashbar, N. Z. (2017). Modeling and Optimization of Biomass Supply Chains for Several Bio-Refineries.
  • Avcıoğlu, A. O., Dayıoğlu, M. A., & Türker, U. (2019). Assessment of The Energy Potential of Agricultural Biomass Residues İn Turkey. Renewable Energy, 138, 610–619. https://doi.org/10.1016/j.renene.2019.01.053
  • Ba, B. H., Prins, C., & Prodhon, C. (2016). Models For Optimization and Performance Evaluation Of Biomass Supply Chains: An Operations Research Perspective. Renewable Energy, 87, 977–989. https://doi.org/10.1016/j.renene.2015.07.045
  • Bai, X., Wang, G., Gong, C., Yu, Y., Liu, W., & Wang, D. (2017). Co-Pelletizing Characteristics of Torrefied Wheat Straw With Peanut Shell. Bioresource Technology, 233, 373–381. https://doi.org/10.1016/j.biortech.2017.02.091
  • Bajwa, D. S., Peterson, T., Sharma, N., Shojaeiarani, J., & Bajwa, S. G. (2018). A Review of Densified Solid Biomass For Energy Production. Renewable and Sustainable Energy Reviews, 96(July), 296–305. https://doi.org/10.1016/j.rser.2018.07.040
  • Bilgiç, E. (2014). The Comparıson of Effects of Torrefaction and Carbonızation Treatments On Biomass (Issue June).
  • Biomass Supply Chains Harvesting & Collection, Pre-Treatment And Upgrading, Storage, Transportation & Handling. (2018). World Bioenergy Association.
  • Biswas, B., Pandey, N., Bisht, Y., Singh, R., Kumar, J., & Bhaskar, T. (2017). Pyrolysis Of Agricultural Biomass Residues: Comparative Study Of Corn Cob, Wheat Straw, Rice Straw And Rice Husk. Bioresource Technology, 237, 57–63. https://doi.org/10.1016/j.biortech.2017.02.046
  • Bledzki, A. K., Mamun, A. A., Erdmann, K., & Volk, J. (n.d.). Characterization of Grain By-Products and Properties of Its Biodegrade Composites. Naro.Tech Messe Und Kongresse Fü Nachwa Chsende Rohstoffe; Sept 6-9., 1–11.
  • Bledzki, A. K., Mamun, A. A., & Volk, J. (2010). Physical, Chemical and Surface Properties of Wheat Husk, Rye Husk and Soft Wood and Their Polypropylene Composites. Composites Part A: Applied Science and Manufacturing, 41(4), 480–488. https://doi.org/10.1016/j.compositesa.2009.12.004
  • Bojić, S., Datkov, D., Brcanov, D., Georgijević, M., & Martinov, M. (2013). Location Allocation of Solid Biomass Power Plants: Case Study of Vojvodina. Renewable and Sustainable Energy Reviews, 26, 769–775. https://doi.org/10.1016/j.rser.2013.06.039
  • Çakır, G. (2019). Tarımsal Ürünler Tedarik Zinciri Yönteimi: Çiçek Bamyası Uygulaması. cholar.google.es/scholar?hl=es&as_sdt=0%2C5&q=Funcionalidad+Familiar+en+Alumnos+de+1°+y+2°+grado+de+secundaria+de+la+institución+educativa+parroquial+“Pequeña+Belén”+en+la+comunidad+de+Peralvillo%2C+ubicada+en+el+distrito+de+Chancay+-+periodo+2018&btnG=
  • Cebi, S., Ilbahar, E., & Atasoy, A. (2016). A Fuzzy Information Axiom Based Method to Determine the Optimal Location for A Biomass Power Plant : A Case Study in Aegean Region of Turkey. Energy, 116, 894–907. https://doi.org/10.1016/j.energy.2016.10.024
  • Chang, P., & Lin, H. (2015). Manufacturing Plant Location Selection in Logistics Network Using Analytic Hierarchy Process. Journal of Industrial Engineering and Management, 8(5), 1547–1575.
  • Cobuloglu, H. I., & Büyüktahtakin, I. E. (2014). A Multi-Criteria Approach For Biomass Crop Selection Under Fuzzy Environment. IIE Annual Conference and Expo 2014, May 2014, 4003–4012.
  • Danish, M., Naqvi, M., Farooq, U., & Naqvi, S. (2015). Characterization Of South Asian Agricultural Residues For Potential Utilization İn Future ‘Energy Mix.’ Energy Procedia, 75, 2974–2980. https://doi.org/10.1016/j.egypro.2015.07.604
  • Delivand, M. K., Cammerino, A. R. B., Garofalo, P., & Monteleone, M. (2015). Optimal Locations of Bioenergy Facilities, Biomass Spatial Availability, Logistics Costs and GHG (Greenhouse Gas) Emissions: A Case Study on Electricity Productions in South Italy. Journal of Cleaner Production, 99, 129–139. https://doi.org/10.1016/j.jclepro.2015.03.018
  • Demirbaş, A. (2002). Fuel Characteristics Of Olive Husk And Walnut, Hazelnut, Sunflower, And Almond Shells. Energy Sources, 24(3), 215–221. https://doi.org/10.1080/009083102317243601
  • Demirbaş, A. (2003). Relationships Between Heating Value And Lignin, Fixed Carbon, And Volatile Material Contents Of Shells From Biomass Products. Energy Sources, 25(7), 629–635. https://doi.org/10.1080/00908310390212336
  • Demirbas, A. (2016). Calculation Of Higher Heating Values Of Biomass Fuels. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 38(18), 2693–2697. https://doi.org/10.1080/15567036.2015.1115924
  • Eker, M., Çoban, H. O., & Alkan, H. (2010). Hasat Artıkları Tedarik Zincirine Yönelik Sistem Tasarımı. III. Ulusal Karadeniz Ormancılık Kongresi 20-22 Mayıs 2010, 2, 524–534.
  • Estiati, I., Freire, F. B., Freire, J. T., Aguado, R., & Olazar, M. (2016). Fitting Performance Of Artificial Neural Networks And Empirical Correlations To Estimate Higher Heating Values Of Biomass. Fuel, 180, 377–383. https://doi.org/10.1016/j.fuel.2016.04.051
  • Fornés Comas, J., Socias i Company, R., & Alonso Segura, J. M. (2019). Shell Hardness in Almond: Cracking Load and Kernel Percentage. Scientia Horticulturae, 245(June 2018), 7–11. https://doi.org/10.1016/j.scienta.2018.09.075
  • From Phyllis, C. Wilén, A. Moilanen and E. Kurkula: Biomass feedstock analyses, VTT publications 282, Espoo 1996. (n.d.).
  • From Phyllis, Demirbas, A.: Fuel characteristics of olive husk and walnut, hazelnut, sunflower, and almond shells. Energy Sources 24 (2002) 215-221. (n.d.).
  • From Phyllis, H. Haykiri-Acma, S. Yaman, S. Kucukbayrak: Effect of biomass on temperatures of sintering and initial deformation of lignite ash. Fuel 89 (2010) 3063-3068. (n.d.).
  • From Phyllis, http://edv1.vt.tuwien.ac.at/AG_HOFBA/BIOBIB/Biobib.htm (1997). (n.d.).
  • From Phyllis, http://rredc.nrel.gov:80/biomass/doe/nrel/comp/alki/appendix.html (1998). Link obsolete. Instead, try http://www.nrel.gov/rredc/biomass_resource.html. (n.d.).
  • From Phyllis, M. Theis, B.-J. Skrifvars, M. Zevenhoven, M. Hupa, H. Tran: Fouling tendency of ash resulting from burning mixtures of biofuels. Part 2: Deposit chemistry. Fuel 85 (2006) 1992-2001. (n.d.).
  • From Phyllis, N. Magasiner and J. W. de Kock: Design criteria for fibrous fuel fired boilers. Energy World (8-9) pp. 4-12 (1987). (n.d.).
  • From Phyllis, S. Gaur and T.B. Reed; An Atlas of Thermal Data For Biomass and Other Fuels. NREL/TP-433-7965, June 1995. (n.d.).
  • From Phyllis, S. K. Sharma, K. L. Kalra and H. S. Grewal: Enzymatic saccharification of pretreated sunflower stalks. Biomass and bioenergy 23-3 (2002) 237-243. (n.d.).
  • From Phyllis, W. R. Livingston: Straw ash characteristics, Babcock Energy Limited, DE92 519748, 23 p. (1991). (n.d.).
  • From Phyllis, Y.J. Lu, L.J. Guo, C.M. Ji, X.M. Zhang, X.H. Hao, Q.H. Yan:Hydrogen production by biomass gasification in supercritical water: a parametric study. Int J Hydrogen Energy 31 (2006) 822-831. (n.d.).
  • García, R., Pizarro, C., Lavín, A. G., & Bueno, J. L. (2014). Spanish Biofuels Heating Value Estimation. Part I: Ultimate Analysis Data. Fuel, 117(PARTB), 1130–1138. https://doi.org/10.1016/j.fuel.2013.08.048
  • García-Cubero, M. T., González-Benito, G., Indacoechea, I., Coca, M., & Bolado, S. (2009). Effect Of Ozonolysis Pretreatment On Enzymatic Digestibility Of Wheat And Rye Straw. Bioresource Technology, 100(4), 1608–1613. https://doi.org/10.1016/j.biortech.2008.09.012
  • Gebreegziabher, T., Oyedun, A. O., Luk, H. T., Lam, T. Y. G., Zhang, Y., & Hui, C. W. (2014). Design and Optimization of Biomass Power Plant. Chemical Engineering Research and Design, 92(8), 1412–1427. https://doi.org/10.1016/j.cherd.2014.04.013
  • Ghaderi, H., Pishvaee, M. S., & Moini, A. (2016). Biomass Supply Chain Network Design : An Optimization-Oriented Review and Analysis. Industrial Crops & Products, 94, 972–1000. https://doi.org/10.1016/j.indcrop.2016.09.027
  • Gital Durmaz, Y., & Bilgen, B. (2020). Multi-Objective Optimization Of Sustainable Biomass Supply Chain Network Design. Applied Energy, 272, 1–13. https://doi.org/10.1016/j.apenergy.2020.115259
  • Havrysh, V., Kalinichenko, A., Brzozowska, A., & Stebila, J. (2021). Life Cycle Energy Consumption and Carbon Dioxide Emissions of Agricultural Residue Feedstock for Bioenergy. Applied Sciences, 11(5), 2009. https://doi.org/10.3390/app11052009
  • https://enerji.gov.tr/, Date Accessed: 18 October 2021. (n.d.).
  • Jeong, J. S., & Ramírez-Gómez, Á. (2017). A Multicriteria GIS-Based Assessment To Optimize Biomass Facility Sites With Parallel Environment - A Case Study İn Spain. Energies, 10(12). https://doi.org/10.3390/en10122095
  • Jiang, H., Ye, Y., Lu, P., Zhao, M., Xu, G., Chen, D., & Song, T. (2021). Effects Of Torrefaction Conditions On The Hygroscopicity Of Biochars. Journal of the Energy Institute, 96, 260–268. https://doi.org/10.1016/j.joei.2021.03.018
  • Jiang, Y., Havrysh, V., Klymchuk, O., Nitsenko, V., Balezentis, T., & Streimikiene, D. (2019). Utilization of Crop Residue For Power Generation: The Case of Ukraine. Sustainability, 11(24), 1–21. https://doi.org/10.3390/su11247004
  • Kapluhan, E. (2014). Enerji Coğrafyası Açısından Bir İnceleme: Biyokütle Enerjisinin Dünyadaki ve Türkiye’deki Kullanım Durumu. Marmara Coğrafya Dergisi, 30, 97–125. https://doi.org/10.14781/MCD.2014308146
  • Khdair, A., & Abu-Rumman, G. (2020). Sustainable Environmental Management and Valorization Options for Olive Mill Byproducts in the Middle East and North Africa (MENA) Region. Processes, 8(6), 1–22. https://doi.org/10.3390/PR8060671
  • Lo, S. L. Y., How, B. S., Leong, W. D., Teng, S. Y., Rhamdhani, M. A., & Sunarso, J. (2021). Techno-Economic Analysis For Biomass Supply Chain: A State-Of-The-Art Review. In Renewable and Sustainable Energy Reviews (Vol. 135, pp. 1–19). Elsevier Ltd. https://doi.org/10.1016/j.rser.2020.110164
  • Mani, T., Murugan, P., Abedi, J., & Mahinpey, N. (2010). Pyrolysis Of Wheat Straw İn A Thermogravimetric Analyzer: Effect Of Particle Size And Heating Rate On Devolatilization And Estimation Of Global Kinetics. Chemical Engineering Research and Design, 88(8), 952–958. https://doi.org/10.1016/j.cherd.2010.02.008
  • Moayedi, H., Aghel, B., Abdullahi, M. M., Nguyen, H., & Safuan A Rashid, A. (2019). Applications Of Rice Husk Ash As Green And Sustainable Biomass. Journal of Cleaner Production, 237, 117851. https://doi.org/10.1016/j.jclepro.2019.117851
  • Mohammed, I. Y., Abakr, Y. A., Musa, M., Yusup, S., Singh, A., & Kazi, F. K. (2016). Valorization Of Bambara Groundnut Shell Via İntermediate Pyrolysis: Products Distribution And Characterization. Journal of Cleaner Production, 139, 717–728. https://doi.org/10.1016/j.jclepro.2016.08.090
  • Montero, G., Coronado, M. A., Torres, R., Jaramillo, B. E., García, C., Stoytcheva, M., Vázquez, A. M., León, J. A., Lambert, A. A., & Valenzuela, E. (2016). Higher Heating Value Determination Of Wheat Straw From Baja California, Mexico. Energy, 109, 612–619. https://doi.org/10.1016/j.energy.2016.05.011
  • Morato, T., Vaezi, M., & Kumar, A. (2019). Assessment Of Energy Production Potential From Agricultural Residues in Bolivia. Renewable and Sustainable Energy Reviews, 102(October 2018), 14–23. https://doi.org/10.1016/j.rser.2018.11.032
  • Murele, O. C., Zulkafli, N. I., Kopanos, G., Hart, P., & Hanak, D. P. (2020). Integrating Biomass Into Energy Supply Chain Networks. Journal of Cleaner Production, 248. https://doi.org/10.1016/j.jclepro.2019.119246
  • Nhuchhen, D. R., & Abdul Salam, P. (2012). Estimation Of Higher Heating Value Of Biomass From Proximate Analysis: A New Approach. Fuel, 99, 55–63. https://doi.org/10.1016/j.fuel.2012.04.015
  • Nunes, L. J. R., Causer, T. P., & Ciolkosz, D. (2020). Biomass For Energy: A Review On Supply Chain Management Models. Renewable and Sustainable Energy Reviews, 120, 1–8. https://doi.org/10.1016/j.rser.2019.109658
  • Oladeji, J. (2010). Fuel Characterization of Briquettes Produced from Corncob and Rice Husk Resides. Pacific Journal of Science and Technology, 11(1), 101–106.
  • Parikh, J., Channiwala, S. A., & Ghosal, G. K. (2007). A Correlation For Calculating Elemental Composition From Proximate Analysis Of Biomass Materials. Fuel, 86(12–13), 1710–1719. https://doi.org/10.1016/j.fuel.2006.12.029
  • Pasaoglu, G., Garcia, N. P., & Zubi, G. (2018). A Multi-Criteria and Multi-Expert Decision Aid Approach to Evaluate the Future Turkish Power Plant Portfolio. Energy Policy, 119(January), 654–665. https://doi.org/10.1016/j.enpol.2018.04.044
  • Patomtummakan, J., & Nananukul, N. (2018). Biomass Power Plant Location And Distribution Planning System. GMSARN International Journal, 12(1), 11–18.
  • Patsios, S. I., Kontogiannopoulos, K. N., Mitrouli, S. T., Plakas, K. v., & Karabelas, A. J. (2016). Characterisation of Agricultural Waste Co- and By-Products. In AgroCycle.
  • Perea-Moreno, M. A., Manzano-Agugliaro, F., & Perea-Moreno, A. J. (2018). Sustainable Energy Based on Sunflower Seed Husk Boiler for Residential Buildings. Sustainability (Switzerland), 10(10). https://doi.org/10.3390/su10103407
  • Pinho, T. M., Coelho, J. P., Moreira, A. P., & Boaventura-Cunha, J. (2017). A Multilayer Model Predictive Control Applied to A Supply Chain Management Problem. Lecture Notes in Electrical Engineering, 402, 167–177. https://doi.org/10.1007/978-3-319-43671-5_15
  • POLAT, M. (2020). Türkiye’nin Tarımsal Atık Biyokütle Enerji Potansiyelindeki Değişim. Toprak Su Dergisi, 19–24. https://doi.org/10.21657/topraksu.692275
  • Poudel, J., & Oh, S. C. (2014). Effect Of Torrefaction On The Properties Of Corn Stalk To Enhance Solid Fuel Qualities. Energies, 7(9), 5586–5600. https://doi.org/10.3390/en7095586
  • Qian, H., Zhu, W., Fan, S., Liu, C., Lu, X., Wang, Z., Huang, D., & Chen, W. (2017). Prediction Models For Chemical Exergy Of Biomass On Dry Basis From Ultimate Analysis Using Available Electron Concepts. Energy, 131, 251–258. https://doi.org/10.1016/j.energy.2017.05.037
  • Rentizelas, A. A., Tolis, A. J., & Tatsiopoulos, I. P. (2009). Logistics Issues of Biomass : The Storage Problem and The Multi-Biomass Supply Chain. Renewable and Sustainable Energy Reviews, 13, 887–894. https://doi.org/10.1016/j.rser.2008.01.003
  • Ríos-Badrán, I. M., Luzardo-Ocampo, I., García-Trejo, J. F., Santos-Cruz, J., & Gutiérrez-Antonio, C. (2020). Production And Characterization Of Fuel Pellets From Rice Husk And Wheat Straw. Renewable Energy, 145, 500–507. https://doi.org/10.1016/j.renene.2019.06.048
  • Santos, J., Ouadi, M., Jahangiri, H., & Hornung, A. (2019). Integrated İntermediate Catalytic Pyrolysis Of Wheat Husk. Food and Bioproducts Processing, 114, 23–30. https://doi.org/10.1016/j.fbp.2018.11.001
  • Sharma, B., Ingalls, R. G., Jones, C. L., & Khanchi, A. (2013). Biomass Supply Chain Design and Analysis: Basis, Overview, Modeling, Challenges, and Future. Renewable and Sustainable Energy Reviews, 24, 608–627. https://doi.org/10.1016/j.rser.2013.03.049
  • Shen, J., Zhu, S., Liu, X., Zhang, H., & Tan, J. (2010). The Prediction Of Elemental Composition Of Biomass Based On Proximate Analysis. Energy Conversion and Management, 51(5), 983–987. https://doi.org/10.1016/j.enconman.2009.11.039
  • Soares, R., Marques, A., Amorim, P., & Rasinmäki, J. (2019). Multiple Vehicle Synchronisation In a Full Truck-Load Pickup And Delivery Problem: A case-Study In The Biomass Supply Chain. European Journal of Operational Research, 277(1), 174–194. https://doi.org/10.1016/j.ejor.2019.02.025
  • Solangi, Y. A., Tan, Q., Mirjat, N. H., Valasai, G. das, Khan, M. W. A., & Ikram, M. (2019). An İntegrated Delphi-AHP And Fuzzy TOPSIS Approach Toward Ranking And Selection Of Renewable Energy Resources İn Pakistan. Processes, 7(2), 1–31. https://doi.org/10.3390/pr7020118
  • Tang, C., Zhang, D., & Lu, X. (2015). Improving The Yield And Quality Of Tar During Co-Pyrolysis Of Coal And Cotton Stalk. BioResources, 10(4), 7667–7680. https://doi.org/10.15376/biores.10.4.7667-7680
  • Thanarak, P. (2012). Supply Chain Management of Agricultural Waste for Biomass Utilization and CO2 Emission Reduction in the Lower Northern Region of Thailand. 14, 843–848. https://doi.org/10.1016/j.egypro.2011.12.1021
  • Üçgül, İ., & Akgül, G. (2010). Biyokütle Teknolojisi. SDÜ Yekarum E-Dergi, 1(1), 3–11.
  • Uslu, A., Faaij, A. P. C., & Bergman, P. C. A. (2008). Pre-Treatment Technologies, and Their Effect On International Bioenergy Supply Chain Logistics. Techno-Economic Evaluation Of Torrefaction, Fast Pyrolysis and Pelletisation. Energy, 33(8), 1206–1223. https://doi.org/10.1016/j.energy.2008.03.007
  • Wang, C.-N., Tsai, T.-T., & Ying-Fang, H. (2019). A Model for Optimizing Location Selection for Biomass Energy Power Plants. National Kaohsiung University of Science and Technology, 7(6)(353), 1–13.
  • Wang, L., Skreiberg, Ø., Becidan, M., & Li, H. (2016). Investigation Of Rye Straw Ash Sintering Characteristics And The Effect Of Additives. Applied Energy, 162, 1195–1204. https://doi.org/10.1016/j.apenergy.2015.05.027
  • Yang, T., Ma, J., Kai, X., Li, R., & Ding, J. (2016). Ash Transformation And Deposition Characteristic During Straw Combustion ,. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 38(6), 790–796. https://doi.org/10.1080/15567036.2013.837548
  • Yao, X., Xu, K., Yan, F., & Liang, Y. (2017). The Influence Of Ashing Temperature On Ash Foulinq And Slagging Characteristics During Combustion Of Biomass Fuels. BioResources, 12(1), 1593–1610. https://doi.org/10.15376/biores.12.1.1593-1610
  • Yue, D., You, F., & Snyder, S. W. (2014). Biomass-to-Bioenergy And Biofuel Supply Chain Optimization: Overview, Key Issues And Challenges. Computers and Chemical Engineering, 66, 36–56. https://doi.org/10.1016/j.compchemeng.2013.11.016
  • Zahraee, S. M., Shiwakoti, N., & Stasinopoulos, P. (2020). Biomass Supply Chain Environmental And Socio-Economic Analysis: 40-Years Comprehensive Review Of Methods, Decision Issues, Sustainability Challenges, And The Way Forward. Biomass and Bioenergy, 142, 1–33. https://doi.org/10.1016/j.biombioe.2020.105777
  • Zhang, L., & Hu, G. (2013). Supply Chain Design and Operational Planning Models for Biomass to Drop-in Fuel Production. Biomass and Bioenergy, 58, 238–250. https://doi.org/10.1016/j.biombioe.2013.08.016
  • Zhao, C., Liu, X., Chen, A., Chen, J., Lv, W., & Liu, X. (2020). Characteristics Evaluation Of Bio-Char Produced By Pyrolysis From Waste Hazelnut Shell At Various Temperatures. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 00(00), 1–11. https://doi.org/10.1080/15567036.2020.1754530
  • Zhao, X., & Li, A. (2016). A Multi-Objective Sustainable Location Model for Biomass Power Plants : Case of China. Energy, 112, 1184–1193. https://doi.org/10.1016/j.energy.2016.07.011
  • Zhou, H., Luo, Z., Liu, D., & Ma, W. C. (2019). Effect Of Biomass Ashes On Sintering Characteristics Of High/Low Melting Bituminous Coal Ash. Fuel Processing Technology, 189(January), 62–73. https://doi.org/10.1016/j.fuproc.2019.01.017

Agricultural Residues in Turkey: Energy Potential and Evaluation of Existing Biomass Power Plants

Year 2022, , 119 - 131, 31.03.2022
https://doi.org/10.29133/yyutbd.1030233

Abstract

Biomass energy gains importance constantly in order to increase energy security, diversity and develop the rural economy. Most of the existing biomass energy power plants in Turkey use solid waste, it is extremely important to encourage the use of agricultural residues in these facilities. In this study, agricultural residues were examined under two headings: primary residues (PR) are the residues left in the field after harvest (corn stalk, wheat straw, etc.), and secondary residues (SR) are the residues after the products are processed in the factory (almond shell, corn cob, etc.) When calculating the amount of agricultural residues, special uses such as soil protection, animal feeding, heating purposes are taken into account. The most cultivated products across 81 provinces in Turkey are listed and the residues are concentrated on products with high calorific value. The amount of primary and secondary residues belonging to these agricultural products was extracted and mapped based on provinces. Then the energy potential of these residues was calculated. The total amount of PR and SR produced in Turkey is 39 412 683 tonnes and 6 803 787 tonnes. By assuming the total efficiency of the power plant as 30% and the capacity factor of the biomass power plant as 0.65, the power to be obtained from only PRs will be 2 438.5 MW and from only SR will be 830 MW in the total of 81 provinces. Based on AHP method, cost is the most important criterion in the selection of pretreatment before transportation.

References

  • Acar, S., & Ayanoglu, A. (2012). Determination Of Higher Heating Values (HHVs) Of Biomass Fuels. Energy Education Science and Technology Part A: Energy Science and Research, 28(2), 749–758.
  • Akkuş, G. (2018). Bağ Budama Artıklarından Torrefaksiyon İle Katı Atık Üretimi.
  • Alatzas, S., Moustakas, K., Malamis, D., & Vakalis, S. (2019). Biomass Potential from Agricultural Waste for Energetic Utilization in Greece. Energies, 12(6)(1095), 1–20. https://doi.org/10.3390/en12061095
  • Aqsha, A., Tijani, M. M., & Mahinpey, N. (2014). Catalytic Pyrolysis Of Straw Biomasses (Wheat, Flax, Oat And Barley Straw) And The Comparison Of Their Product Yields. WIT Transactions on Ecology and the Environment, 190 VOLUME, 1007–1015. https://doi.org/10.2495/EQ140942
  • Atashbar, N. Z. (2017). Modeling and Optimization of Biomass Supply Chains for Several Bio-Refineries.
  • Avcıoğlu, A. O., Dayıoğlu, M. A., & Türker, U. (2019). Assessment of The Energy Potential of Agricultural Biomass Residues İn Turkey. Renewable Energy, 138, 610–619. https://doi.org/10.1016/j.renene.2019.01.053
  • Ba, B. H., Prins, C., & Prodhon, C. (2016). Models For Optimization and Performance Evaluation Of Biomass Supply Chains: An Operations Research Perspective. Renewable Energy, 87, 977–989. https://doi.org/10.1016/j.renene.2015.07.045
  • Bai, X., Wang, G., Gong, C., Yu, Y., Liu, W., & Wang, D. (2017). Co-Pelletizing Characteristics of Torrefied Wheat Straw With Peanut Shell. Bioresource Technology, 233, 373–381. https://doi.org/10.1016/j.biortech.2017.02.091
  • Bajwa, D. S., Peterson, T., Sharma, N., Shojaeiarani, J., & Bajwa, S. G. (2018). A Review of Densified Solid Biomass For Energy Production. Renewable and Sustainable Energy Reviews, 96(July), 296–305. https://doi.org/10.1016/j.rser.2018.07.040
  • Bilgiç, E. (2014). The Comparıson of Effects of Torrefaction and Carbonızation Treatments On Biomass (Issue June).
  • Biomass Supply Chains Harvesting & Collection, Pre-Treatment And Upgrading, Storage, Transportation & Handling. (2018). World Bioenergy Association.
  • Biswas, B., Pandey, N., Bisht, Y., Singh, R., Kumar, J., & Bhaskar, T. (2017). Pyrolysis Of Agricultural Biomass Residues: Comparative Study Of Corn Cob, Wheat Straw, Rice Straw And Rice Husk. Bioresource Technology, 237, 57–63. https://doi.org/10.1016/j.biortech.2017.02.046
  • Bledzki, A. K., Mamun, A. A., Erdmann, K., & Volk, J. (n.d.). Characterization of Grain By-Products and Properties of Its Biodegrade Composites. Naro.Tech Messe Und Kongresse Fü Nachwa Chsende Rohstoffe; Sept 6-9., 1–11.
  • Bledzki, A. K., Mamun, A. A., & Volk, J. (2010). Physical, Chemical and Surface Properties of Wheat Husk, Rye Husk and Soft Wood and Their Polypropylene Composites. Composites Part A: Applied Science and Manufacturing, 41(4), 480–488. https://doi.org/10.1016/j.compositesa.2009.12.004
  • Bojić, S., Datkov, D., Brcanov, D., Georgijević, M., & Martinov, M. (2013). Location Allocation of Solid Biomass Power Plants: Case Study of Vojvodina. Renewable and Sustainable Energy Reviews, 26, 769–775. https://doi.org/10.1016/j.rser.2013.06.039
  • Çakır, G. (2019). Tarımsal Ürünler Tedarik Zinciri Yönteimi: Çiçek Bamyası Uygulaması. cholar.google.es/scholar?hl=es&as_sdt=0%2C5&q=Funcionalidad+Familiar+en+Alumnos+de+1°+y+2°+grado+de+secundaria+de+la+institución+educativa+parroquial+“Pequeña+Belén”+en+la+comunidad+de+Peralvillo%2C+ubicada+en+el+distrito+de+Chancay+-+periodo+2018&btnG=
  • Cebi, S., Ilbahar, E., & Atasoy, A. (2016). A Fuzzy Information Axiom Based Method to Determine the Optimal Location for A Biomass Power Plant : A Case Study in Aegean Region of Turkey. Energy, 116, 894–907. https://doi.org/10.1016/j.energy.2016.10.024
  • Chang, P., & Lin, H. (2015). Manufacturing Plant Location Selection in Logistics Network Using Analytic Hierarchy Process. Journal of Industrial Engineering and Management, 8(5), 1547–1575.
  • Cobuloglu, H. I., & Büyüktahtakin, I. E. (2014). A Multi-Criteria Approach For Biomass Crop Selection Under Fuzzy Environment. IIE Annual Conference and Expo 2014, May 2014, 4003–4012.
  • Danish, M., Naqvi, M., Farooq, U., & Naqvi, S. (2015). Characterization Of South Asian Agricultural Residues For Potential Utilization İn Future ‘Energy Mix.’ Energy Procedia, 75, 2974–2980. https://doi.org/10.1016/j.egypro.2015.07.604
  • Delivand, M. K., Cammerino, A. R. B., Garofalo, P., & Monteleone, M. (2015). Optimal Locations of Bioenergy Facilities, Biomass Spatial Availability, Logistics Costs and GHG (Greenhouse Gas) Emissions: A Case Study on Electricity Productions in South Italy. Journal of Cleaner Production, 99, 129–139. https://doi.org/10.1016/j.jclepro.2015.03.018
  • Demirbaş, A. (2002). Fuel Characteristics Of Olive Husk And Walnut, Hazelnut, Sunflower, And Almond Shells. Energy Sources, 24(3), 215–221. https://doi.org/10.1080/009083102317243601
  • Demirbaş, A. (2003). Relationships Between Heating Value And Lignin, Fixed Carbon, And Volatile Material Contents Of Shells From Biomass Products. Energy Sources, 25(7), 629–635. https://doi.org/10.1080/00908310390212336
  • Demirbas, A. (2016). Calculation Of Higher Heating Values Of Biomass Fuels. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 38(18), 2693–2697. https://doi.org/10.1080/15567036.2015.1115924
  • Eker, M., Çoban, H. O., & Alkan, H. (2010). Hasat Artıkları Tedarik Zincirine Yönelik Sistem Tasarımı. III. Ulusal Karadeniz Ormancılık Kongresi 20-22 Mayıs 2010, 2, 524–534.
  • Estiati, I., Freire, F. B., Freire, J. T., Aguado, R., & Olazar, M. (2016). Fitting Performance Of Artificial Neural Networks And Empirical Correlations To Estimate Higher Heating Values Of Biomass. Fuel, 180, 377–383. https://doi.org/10.1016/j.fuel.2016.04.051
  • Fornés Comas, J., Socias i Company, R., & Alonso Segura, J. M. (2019). Shell Hardness in Almond: Cracking Load and Kernel Percentage. Scientia Horticulturae, 245(June 2018), 7–11. https://doi.org/10.1016/j.scienta.2018.09.075
  • From Phyllis, C. Wilén, A. Moilanen and E. Kurkula: Biomass feedstock analyses, VTT publications 282, Espoo 1996. (n.d.).
  • From Phyllis, Demirbas, A.: Fuel characteristics of olive husk and walnut, hazelnut, sunflower, and almond shells. Energy Sources 24 (2002) 215-221. (n.d.).
  • From Phyllis, H. Haykiri-Acma, S. Yaman, S. Kucukbayrak: Effect of biomass on temperatures of sintering and initial deformation of lignite ash. Fuel 89 (2010) 3063-3068. (n.d.).
  • From Phyllis, http://edv1.vt.tuwien.ac.at/AG_HOFBA/BIOBIB/Biobib.htm (1997). (n.d.).
  • From Phyllis, http://rredc.nrel.gov:80/biomass/doe/nrel/comp/alki/appendix.html (1998). Link obsolete. Instead, try http://www.nrel.gov/rredc/biomass_resource.html. (n.d.).
  • From Phyllis, M. Theis, B.-J. Skrifvars, M. Zevenhoven, M. Hupa, H. Tran: Fouling tendency of ash resulting from burning mixtures of biofuels. Part 2: Deposit chemistry. Fuel 85 (2006) 1992-2001. (n.d.).
  • From Phyllis, N. Magasiner and J. W. de Kock: Design criteria for fibrous fuel fired boilers. Energy World (8-9) pp. 4-12 (1987). (n.d.).
  • From Phyllis, S. Gaur and T.B. Reed; An Atlas of Thermal Data For Biomass and Other Fuels. NREL/TP-433-7965, June 1995. (n.d.).
  • From Phyllis, S. K. Sharma, K. L. Kalra and H. S. Grewal: Enzymatic saccharification of pretreated sunflower stalks. Biomass and bioenergy 23-3 (2002) 237-243. (n.d.).
  • From Phyllis, W. R. Livingston: Straw ash characteristics, Babcock Energy Limited, DE92 519748, 23 p. (1991). (n.d.).
  • From Phyllis, Y.J. Lu, L.J. Guo, C.M. Ji, X.M. Zhang, X.H. Hao, Q.H. Yan:Hydrogen production by biomass gasification in supercritical water: a parametric study. Int J Hydrogen Energy 31 (2006) 822-831. (n.d.).
  • García, R., Pizarro, C., Lavín, A. G., & Bueno, J. L. (2014). Spanish Biofuels Heating Value Estimation. Part I: Ultimate Analysis Data. Fuel, 117(PARTB), 1130–1138. https://doi.org/10.1016/j.fuel.2013.08.048
  • García-Cubero, M. T., González-Benito, G., Indacoechea, I., Coca, M., & Bolado, S. (2009). Effect Of Ozonolysis Pretreatment On Enzymatic Digestibility Of Wheat And Rye Straw. Bioresource Technology, 100(4), 1608–1613. https://doi.org/10.1016/j.biortech.2008.09.012
  • Gebreegziabher, T., Oyedun, A. O., Luk, H. T., Lam, T. Y. G., Zhang, Y., & Hui, C. W. (2014). Design and Optimization of Biomass Power Plant. Chemical Engineering Research and Design, 92(8), 1412–1427. https://doi.org/10.1016/j.cherd.2014.04.013
  • Ghaderi, H., Pishvaee, M. S., & Moini, A. (2016). Biomass Supply Chain Network Design : An Optimization-Oriented Review and Analysis. Industrial Crops & Products, 94, 972–1000. https://doi.org/10.1016/j.indcrop.2016.09.027
  • Gital Durmaz, Y., & Bilgen, B. (2020). Multi-Objective Optimization Of Sustainable Biomass Supply Chain Network Design. Applied Energy, 272, 1–13. https://doi.org/10.1016/j.apenergy.2020.115259
  • Havrysh, V., Kalinichenko, A., Brzozowska, A., & Stebila, J. (2021). Life Cycle Energy Consumption and Carbon Dioxide Emissions of Agricultural Residue Feedstock for Bioenergy. Applied Sciences, 11(5), 2009. https://doi.org/10.3390/app11052009
  • https://enerji.gov.tr/, Date Accessed: 18 October 2021. (n.d.).
  • Jeong, J. S., & Ramírez-Gómez, Á. (2017). A Multicriteria GIS-Based Assessment To Optimize Biomass Facility Sites With Parallel Environment - A Case Study İn Spain. Energies, 10(12). https://doi.org/10.3390/en10122095
  • Jiang, H., Ye, Y., Lu, P., Zhao, M., Xu, G., Chen, D., & Song, T. (2021). Effects Of Torrefaction Conditions On The Hygroscopicity Of Biochars. Journal of the Energy Institute, 96, 260–268. https://doi.org/10.1016/j.joei.2021.03.018
  • Jiang, Y., Havrysh, V., Klymchuk, O., Nitsenko, V., Balezentis, T., & Streimikiene, D. (2019). Utilization of Crop Residue For Power Generation: The Case of Ukraine. Sustainability, 11(24), 1–21. https://doi.org/10.3390/su11247004
  • Kapluhan, E. (2014). Enerji Coğrafyası Açısından Bir İnceleme: Biyokütle Enerjisinin Dünyadaki ve Türkiye’deki Kullanım Durumu. Marmara Coğrafya Dergisi, 30, 97–125. https://doi.org/10.14781/MCD.2014308146
  • Khdair, A., & Abu-Rumman, G. (2020). Sustainable Environmental Management and Valorization Options for Olive Mill Byproducts in the Middle East and North Africa (MENA) Region. Processes, 8(6), 1–22. https://doi.org/10.3390/PR8060671
  • Lo, S. L. Y., How, B. S., Leong, W. D., Teng, S. Y., Rhamdhani, M. A., & Sunarso, J. (2021). Techno-Economic Analysis For Biomass Supply Chain: A State-Of-The-Art Review. In Renewable and Sustainable Energy Reviews (Vol. 135, pp. 1–19). Elsevier Ltd. https://doi.org/10.1016/j.rser.2020.110164
  • Mani, T., Murugan, P., Abedi, J., & Mahinpey, N. (2010). Pyrolysis Of Wheat Straw İn A Thermogravimetric Analyzer: Effect Of Particle Size And Heating Rate On Devolatilization And Estimation Of Global Kinetics. Chemical Engineering Research and Design, 88(8), 952–958. https://doi.org/10.1016/j.cherd.2010.02.008
  • Moayedi, H., Aghel, B., Abdullahi, M. M., Nguyen, H., & Safuan A Rashid, A. (2019). Applications Of Rice Husk Ash As Green And Sustainable Biomass. Journal of Cleaner Production, 237, 117851. https://doi.org/10.1016/j.jclepro.2019.117851
  • Mohammed, I. Y., Abakr, Y. A., Musa, M., Yusup, S., Singh, A., & Kazi, F. K. (2016). Valorization Of Bambara Groundnut Shell Via İntermediate Pyrolysis: Products Distribution And Characterization. Journal of Cleaner Production, 139, 717–728. https://doi.org/10.1016/j.jclepro.2016.08.090
  • Montero, G., Coronado, M. A., Torres, R., Jaramillo, B. E., García, C., Stoytcheva, M., Vázquez, A. M., León, J. A., Lambert, A. A., & Valenzuela, E. (2016). Higher Heating Value Determination Of Wheat Straw From Baja California, Mexico. Energy, 109, 612–619. https://doi.org/10.1016/j.energy.2016.05.011
  • Morato, T., Vaezi, M., & Kumar, A. (2019). Assessment Of Energy Production Potential From Agricultural Residues in Bolivia. Renewable and Sustainable Energy Reviews, 102(October 2018), 14–23. https://doi.org/10.1016/j.rser.2018.11.032
  • Murele, O. C., Zulkafli, N. I., Kopanos, G., Hart, P., & Hanak, D. P. (2020). Integrating Biomass Into Energy Supply Chain Networks. Journal of Cleaner Production, 248. https://doi.org/10.1016/j.jclepro.2019.119246
  • Nhuchhen, D. R., & Abdul Salam, P. (2012). Estimation Of Higher Heating Value Of Biomass From Proximate Analysis: A New Approach. Fuel, 99, 55–63. https://doi.org/10.1016/j.fuel.2012.04.015
  • Nunes, L. J. R., Causer, T. P., & Ciolkosz, D. (2020). Biomass For Energy: A Review On Supply Chain Management Models. Renewable and Sustainable Energy Reviews, 120, 1–8. https://doi.org/10.1016/j.rser.2019.109658
  • Oladeji, J. (2010). Fuel Characterization of Briquettes Produced from Corncob and Rice Husk Resides. Pacific Journal of Science and Technology, 11(1), 101–106.
  • Parikh, J., Channiwala, S. A., & Ghosal, G. K. (2007). A Correlation For Calculating Elemental Composition From Proximate Analysis Of Biomass Materials. Fuel, 86(12–13), 1710–1719. https://doi.org/10.1016/j.fuel.2006.12.029
  • Pasaoglu, G., Garcia, N. P., & Zubi, G. (2018). A Multi-Criteria and Multi-Expert Decision Aid Approach to Evaluate the Future Turkish Power Plant Portfolio. Energy Policy, 119(January), 654–665. https://doi.org/10.1016/j.enpol.2018.04.044
  • Patomtummakan, J., & Nananukul, N. (2018). Biomass Power Plant Location And Distribution Planning System. GMSARN International Journal, 12(1), 11–18.
  • Patsios, S. I., Kontogiannopoulos, K. N., Mitrouli, S. T., Plakas, K. v., & Karabelas, A. J. (2016). Characterisation of Agricultural Waste Co- and By-Products. In AgroCycle.
  • Perea-Moreno, M. A., Manzano-Agugliaro, F., & Perea-Moreno, A. J. (2018). Sustainable Energy Based on Sunflower Seed Husk Boiler for Residential Buildings. Sustainability (Switzerland), 10(10). https://doi.org/10.3390/su10103407
  • Pinho, T. M., Coelho, J. P., Moreira, A. P., & Boaventura-Cunha, J. (2017). A Multilayer Model Predictive Control Applied to A Supply Chain Management Problem. Lecture Notes in Electrical Engineering, 402, 167–177. https://doi.org/10.1007/978-3-319-43671-5_15
  • POLAT, M. (2020). Türkiye’nin Tarımsal Atık Biyokütle Enerji Potansiyelindeki Değişim. Toprak Su Dergisi, 19–24. https://doi.org/10.21657/topraksu.692275
  • Poudel, J., & Oh, S. C. (2014). Effect Of Torrefaction On The Properties Of Corn Stalk To Enhance Solid Fuel Qualities. Energies, 7(9), 5586–5600. https://doi.org/10.3390/en7095586
  • Qian, H., Zhu, W., Fan, S., Liu, C., Lu, X., Wang, Z., Huang, D., & Chen, W. (2017). Prediction Models For Chemical Exergy Of Biomass On Dry Basis From Ultimate Analysis Using Available Electron Concepts. Energy, 131, 251–258. https://doi.org/10.1016/j.energy.2017.05.037
  • Rentizelas, A. A., Tolis, A. J., & Tatsiopoulos, I. P. (2009). Logistics Issues of Biomass : The Storage Problem and The Multi-Biomass Supply Chain. Renewable and Sustainable Energy Reviews, 13, 887–894. https://doi.org/10.1016/j.rser.2008.01.003
  • Ríos-Badrán, I. M., Luzardo-Ocampo, I., García-Trejo, J. F., Santos-Cruz, J., & Gutiérrez-Antonio, C. (2020). Production And Characterization Of Fuel Pellets From Rice Husk And Wheat Straw. Renewable Energy, 145, 500–507. https://doi.org/10.1016/j.renene.2019.06.048
  • Santos, J., Ouadi, M., Jahangiri, H., & Hornung, A. (2019). Integrated İntermediate Catalytic Pyrolysis Of Wheat Husk. Food and Bioproducts Processing, 114, 23–30. https://doi.org/10.1016/j.fbp.2018.11.001
  • Sharma, B., Ingalls, R. G., Jones, C. L., & Khanchi, A. (2013). Biomass Supply Chain Design and Analysis: Basis, Overview, Modeling, Challenges, and Future. Renewable and Sustainable Energy Reviews, 24, 608–627. https://doi.org/10.1016/j.rser.2013.03.049
  • Shen, J., Zhu, S., Liu, X., Zhang, H., & Tan, J. (2010). The Prediction Of Elemental Composition Of Biomass Based On Proximate Analysis. Energy Conversion and Management, 51(5), 983–987. https://doi.org/10.1016/j.enconman.2009.11.039
  • Soares, R., Marques, A., Amorim, P., & Rasinmäki, J. (2019). Multiple Vehicle Synchronisation In a Full Truck-Load Pickup And Delivery Problem: A case-Study In The Biomass Supply Chain. European Journal of Operational Research, 277(1), 174–194. https://doi.org/10.1016/j.ejor.2019.02.025
  • Solangi, Y. A., Tan, Q., Mirjat, N. H., Valasai, G. das, Khan, M. W. A., & Ikram, M. (2019). An İntegrated Delphi-AHP And Fuzzy TOPSIS Approach Toward Ranking And Selection Of Renewable Energy Resources İn Pakistan. Processes, 7(2), 1–31. https://doi.org/10.3390/pr7020118
  • Tang, C., Zhang, D., & Lu, X. (2015). Improving The Yield And Quality Of Tar During Co-Pyrolysis Of Coal And Cotton Stalk. BioResources, 10(4), 7667–7680. https://doi.org/10.15376/biores.10.4.7667-7680
  • Thanarak, P. (2012). Supply Chain Management of Agricultural Waste for Biomass Utilization and CO2 Emission Reduction in the Lower Northern Region of Thailand. 14, 843–848. https://doi.org/10.1016/j.egypro.2011.12.1021
  • Üçgül, İ., & Akgül, G. (2010). Biyokütle Teknolojisi. SDÜ Yekarum E-Dergi, 1(1), 3–11.
  • Uslu, A., Faaij, A. P. C., & Bergman, P. C. A. (2008). Pre-Treatment Technologies, and Their Effect On International Bioenergy Supply Chain Logistics. Techno-Economic Evaluation Of Torrefaction, Fast Pyrolysis and Pelletisation. Energy, 33(8), 1206–1223. https://doi.org/10.1016/j.energy.2008.03.007
  • Wang, C.-N., Tsai, T.-T., & Ying-Fang, H. (2019). A Model for Optimizing Location Selection for Biomass Energy Power Plants. National Kaohsiung University of Science and Technology, 7(6)(353), 1–13.
  • Wang, L., Skreiberg, Ø., Becidan, M., & Li, H. (2016). Investigation Of Rye Straw Ash Sintering Characteristics And The Effect Of Additives. Applied Energy, 162, 1195–1204. https://doi.org/10.1016/j.apenergy.2015.05.027
  • Yang, T., Ma, J., Kai, X., Li, R., & Ding, J. (2016). Ash Transformation And Deposition Characteristic During Straw Combustion ,. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 38(6), 790–796. https://doi.org/10.1080/15567036.2013.837548
  • Yao, X., Xu, K., Yan, F., & Liang, Y. (2017). The Influence Of Ashing Temperature On Ash Foulinq And Slagging Characteristics During Combustion Of Biomass Fuels. BioResources, 12(1), 1593–1610. https://doi.org/10.15376/biores.12.1.1593-1610
  • Yue, D., You, F., & Snyder, S. W. (2014). Biomass-to-Bioenergy And Biofuel Supply Chain Optimization: Overview, Key Issues And Challenges. Computers and Chemical Engineering, 66, 36–56. https://doi.org/10.1016/j.compchemeng.2013.11.016
  • Zahraee, S. M., Shiwakoti, N., & Stasinopoulos, P. (2020). Biomass Supply Chain Environmental And Socio-Economic Analysis: 40-Years Comprehensive Review Of Methods, Decision Issues, Sustainability Challenges, And The Way Forward. Biomass and Bioenergy, 142, 1–33. https://doi.org/10.1016/j.biombioe.2020.105777
  • Zhang, L., & Hu, G. (2013). Supply Chain Design and Operational Planning Models for Biomass to Drop-in Fuel Production. Biomass and Bioenergy, 58, 238–250. https://doi.org/10.1016/j.biombioe.2013.08.016
  • Zhao, C., Liu, X., Chen, A., Chen, J., Lv, W., & Liu, X. (2020). Characteristics Evaluation Of Bio-Char Produced By Pyrolysis From Waste Hazelnut Shell At Various Temperatures. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 00(00), 1–11. https://doi.org/10.1080/15567036.2020.1754530
  • Zhao, X., & Li, A. (2016). A Multi-Objective Sustainable Location Model for Biomass Power Plants : Case of China. Energy, 112, 1184–1193. https://doi.org/10.1016/j.energy.2016.07.011
  • Zhou, H., Luo, Z., Liu, D., & Ma, W. C. (2019). Effect Of Biomass Ashes On Sintering Characteristics Of High/Low Melting Bituminous Coal Ash. Fuel Processing Technology, 189(January), 62–73. https://doi.org/10.1016/j.fuproc.2019.01.017
There are 90 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering, Agricultural Policy
Journal Section Articles
Authors

Ayşegül Bahadıroğlu 0000-0003-2874-0855

Buse Nur Atay 0000-0002-4848-197X

Sibel Başakçılardan Kabakcı 0000-0001-9717-5111

Publication Date March 31, 2022
Acceptance Date February 28, 2022
Published in Issue Year 2022

Cite

APA Bahadıroğlu, A., Atay, B. N., & Başakçılardan Kabakcı, S. (2022). Agricultural Residues in Turkey: Energy Potential and Evaluation of Existing Biomass Power Plants. Yuzuncu Yıl University Journal of Agricultural Sciences, 32(1), 119-131. https://doi.org/10.29133/yyutbd.1030233

Creative Commons License
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi CC BY 4.0 lisanslıdır.