Research Article
BibTex RIS Cite

First Report of the Endophytic Bacteria Associated with Phormidium sp.

Year 2022, , 602 - 608, 30.09.2022
https://doi.org/10.29133/yyutbd.1128340

Abstract

Recent molecular studies on endophytic bacterial diversity have revealed a large richness of species. Associations between endobiotic bacterial-algae interactions have been studied for more than 40 years but were, up to now, never molecularly analyzed within the filamentous Cyanobacteria Phormidium. Therefore, the endophytic bacteria associated with fresh microalgae Phormidium, a group of ubiquitous photosynthetic organisms that play an important role in aquatic ecosystems, has been investigated. To study this partnership, Phormidium sp. was cultured in BG-11 medium using optimal conditions, and after the incubation period, cell biomass was obtained. Total genomic DNA from biomass was extracted and used for endophytic bacteria determination by using the 16S rRNA gene. Sequencing results revealed that a total of seven endophytic bacteria living within the cytoplasm of the host Phormidium sp. have been identified, including six bacteria belonging to three genera, namely Sphingomonas, Sphingopyxis, and Stenotrophobacter and while one bacteria remained unidentified due to low sequence homology in the GenBank database. The results highlighted the importance of endophytic bacteria associated with Phormidium sp. for the first time by using sequence-based identification.

Supporting Institution

Manisa Celal Bayar University

Project Number

2015-075

References

  • Bao, C., Jianguo, S., Xincheng, Z., Fengshan, P., Xiaoe, Y., & Ying, F. (2014). The Endophytic bacterium, Sphingomonas SaMR12, improves the potential for zinc phytoremediation by its host, Sedum alfredii. Plos One, 9, 1-12. https://doi.org/10.1371/journal.pone.0106826
  • Battu, L., Reddy, M. M., Goud, B. R., Ulaganathan, K., & Kandasamy, U. (2017). Genome inside genome: NGS based identification and assembly of endophytic Sphingopyxis granuli and Pseudomonas aeruginosa genomes from rice genomic reads. Genomics, 109, 141-146. https://doi.org/10.1016/j.ygeno.2017.02.002
  • Bilal, S., Khan, A. L., Shahzad, R., Kim, Y. H., Imran, M., Khan, M. J., Harrasi, A. A., Kim, T. H., & Lee, I. J. (2018). Mechanisms of Cr(VI) resistance by endophytic Sphingomonas sp. LK11 and its Cr(VI) phytotoxic mitigating effects in soybean (Glycine max L.). Ecotoxicology and Environmental Safety, 164, 648-658. https://doi.org/10.1016/j.ecoenv.2018.08.043
  • Cheng, C., Wang, R., Sun, L., He, L., & Sheng, X. (2021). Cadmium-resistant and arginine decarboxylase-producing endophytic Sphingomonas sp. C40 decreases cadmium accumulation in host rice (Oryza sativa Cliangyou 513). Chemosphere, 275, 109-130. https://doi.org/10.1016/j.chemosphere.2021.130109
  • Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
  • Feng, F., Ge, J., Li, Y., Cheng, J., Zhong, J., & Yu, X. (2017). Isolation, colonization, and chlorpyrifos degradation mediation of the endophytic bacterium Sphingomonas strain HJY in Chinese chives (Allium tuberosum). Journal of Agricultural and Food Chemistry, 65, 1131–1138. https://doi.org/ 10.1021/acs.jafc.6b05283
  • Flewelling, J., Currie, J., Gray, C. A., & Johnson, J. A. (2015). Endophytes from marine macroalgae: promising sources of novel natural products. Current Science, 109, 88-111.
  • Glaeser, S. P., & Kämpfer, P. (2014). The family Sphingomonadaceae. In E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, & F. Thompson (Eds.), The Prokaryotes –Alphaproteobacteria and Betaproteobacteria (pp. 643–707). Springer-Verlag Berlin Heidelberg; Berlin.
  • Gouda, S., Das, G., Sandeep, Sen, S. K., Shin, H. S., & Patra, J. K. (2016). Endophytes: A treasure house of bioactive compounds of medicinal importance. Frontiers in Microbiology, 29, 1538-1549. https://doi.org/10.3389/fmicb.2016.01538
  • Guiry, M. D., & Guiry, G. M. (2016). World-wide electronic publication, National University of Ireland, Galway. AlgaeBase. http://www.algaebase.org Hall, T.A. (1990). BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.
  • Halo, B. A., Khan, A. L., Waqas, M., AlHarrasi, A., Hussain, J., Ali, L., Adnan, M., & Lee, I. J. (2015). Endophytic bacteria (Sphingomonas sp. LK11) and gibberellin can improve Solanum lycopersicum growth and oxidative stress under salinity. Journal of Plant Interactions, 10, 117-125. https://doi.org/10.1080/17429145.2015.1033659
  • Ismail, I., Anwar, H., Asif, M., Muhammad, Q., Husna, A., Amjad, I., Muhammad, H., & Naeem, K. (2020). Thermal stress alleviating potential of endophytic fungus Rhizopus oryzae inoculated to sunflower (Helianthus annuus L.) and soybean (Glycine max L.). Pakistan Journal of Botany, 52, 1857-1865. http://dx.doi.org/10.30848/PJB2020-5(10)
  • Jindal, S., Dua, A., & Lal, R. (2013). Sphingopyxis indica sp. nov., isolated from a high dose point hexachlorocyclohexane (HCH) contaminated dumpsite. International Journal of Systematic and Evolutionary Microbiology, 63, 2186-2191. https://doi.org/10.1099/ijs.0.040840-0
  • Kampfer, P., Witzenberger, R., Denner, E. B. D., Busse, H.J., & Neef, A. (2002). Sphingopyxis witflariensis sp. nov., isolated from activated sludge. International Journal of Systematic and Evolutionary Microbiology, 52, 2029–2034 https://doi.org/10.1099/ijs.0.02217-0
  • Karthick, P., & Mohanraju, R. (2018). Antimicrobial potential of epiphytic bacteria associated with seaweeds of little andaman, India. Frontier Microbiology, 9, 1-11. https://doi.org/10.3389/fmicb.2018.00611
  • Khan, A. R., Ullah, I., Waqas, M., Park, G. S., Khan, A. L., Hong, S. J., Ullah, R., Jung, B. K., Park, C. E., Ur-Rehman, S., Lee, I. J., & Shin, J. H. (2017). Host plant growth promotion and cadmium detoxification in Solanum nigrum, mediated by endophytic fungi. Ecotoxicology and Environmental Safety, 136, 180-188. https://doi.org/10.1016/j.ecoenv.2016.03.014
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35, 1547-1549. https://doi.org/10.1093/molbev/msy096
  • Lane, D. (1991). J. 16S/23S rRNA sequencing. In E. Stackebrandt & M. Goodfellow (Eds.), Nucleic acid techniques in bacterial systematics (pp. 115-175). New York: John Wiley and Sons Press.
  • Liu, Q., Chen, J., Munyaneza, J., & Civerolo, E. (2011). Endophytic bacteria in potato tubers affected by zebra chip disease. Phytopathology, 101, 108, 2011.
  • Mandelare, P. E., Adpressa, D. A., Kaweesa, E. N., Zakharov, L. N., & Loesgen, S. (2018). Coculture of two developmental stages of a marine-derived Aspergillus alliaceus results in the production of the cytotoxic bianthrone allianthrone A. Journal of Natural Products, 81, 1014–1022.https://doi.org/10.1021/acs.jnatprod.8b00024
  • Manomi, S., Neema, J., & Rosamma, P. (2015). Bioactive potential of endophytic fungi from macroalgae. International Journal of Research in Marine Sciences, 4, 27-32.
  • Miyamoto, T., Kawahara, M., & Minamisawa, K. (2004). Novel endophytic nitrogen-fixing clostridia from the grass Miscanthus sinensis as revealed by terminal restriction fragment length polymorphism analysis. Applied and Environmental Microbiology, 70, 6580–6586. https://doi.org/10.1128/AEM.70.11.6580-6586.2004
  • Muyzer, G., Brinkhoff, T., Nübel, U., Santegoeds, C., Schäfer, H. Wawer, C., Kowalchuk, G. A., Bruijn, F. J., Head, I. M., Akkermans, A. D. L., Elsas, J. D. (2004). Denaturing gradient gel electrophoresis in marine microbial ecology. Moleculer Microbial Ecology Manual, 1-2, 743-769.
  • Nouh, F. A., Abu-Elsaoud, A. M., & Abdel-Azeem, A. M. (2021). The role of endophytic fungi in combating abiotic stress on tomato. Microbial Biosystems, 6, 35-48. https://doi.org/10.21608/mb.2021.91779.1037
  • Pascual, J., Huber, K. J., Foesel, B. U., & Overmann, J. (2017). Stenotrophobacter. John Wiley & Sons, Inc., in association with Bergey's Manual Trust, Bergey's Manual of Systematics of Archaea and Bacteria (pp.1-8). https://doi.org/10.1002/9781118960608.gbm01429
  • Rappé, M. S., & Giovannoni, S. J. (2003). The uncultured microbial majority. Annual Review of Microbiology, 57, 369-394. https://doi.org/10.1146/annurev.micro.57.030502.090759
  • Reiter, B., Pfeifer, U., Schwab, H., & Sessitsch, A. (2002). Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Applied and Environmental Microbiology, 68, 2261–2268. https://doi.org/10.1128/AEM.68.5.2261-2268.2002
  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
  • Singh, R. P., & Reddy, C.R.K. (2014). Seaweed–microbial interactions: key functions of seaweed-associated bacteria. Microbiology Ecology, 88, 213–230. https://doi.org/10.1111/1574-6941.12297
  • Stanier, R. Y., Kunisawa, R., Mandel, M., & Cohen-Bazire, G. (1971). Purification and properties of unicellular blue-green algae (order Chroococcales). Bacterological Reviews, 35, 171-205.
  • Takeuchi, M., Hamana, K. & Hiraishi, A. (2001). Proposal of the genusSphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic andchemotaxonomic analyses. International Journal of Systematic and Evolutionary Microbiology, 51, 1405–141. https://doi.org/10.1099/00207713-51-4-1405
  • Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences (USA), 101, 11030-11035. https://doi.org/10.1073/pnas.0404206101
  • Verma, H., Rani, P., Singh, A. K., Kumar, R., Dwivedi, V., & Negi, V. (2015). Sphingopyxis flava sp. nov. isolated from a hexachlorocyclohexane (HCH)-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 65, 3720-3726. https://doi.org/10.1099/ijsem.0.000482
  • Wahl, M., Goecke, F., Labes, A., Dobretsov, S., & Weinberger, F. (2012). The second skin: ecological role of epibiotic biofilms on marine organisms. Frontier Microbiology, 3, 1-21. https://doi.org/10.3389/fmicb.2012.00292
  • Wang, Y., Li, T., Li, C., & Song, F. (2020). Differences in microbial community and metabolites in litter layer of plantation and original Korean pine forests in north temperate zone. Microorganisms, 8, 2-23. https://doi:10.3390/microorganisms8122023
  • Yabuuchi, E., Kosako, Y., Fujiwara, N., Naka, T., Matsunaga, I., Ogura, H., & Kobayashi, K. (2002). Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. International Journal of Systematic and Evolutionary Microbiology, 52, 1485–1496. https://doi.org/10.1099/00207713-52-5-1485
  • Yaish, M. W., Irin, A., & Bernard, R. G. (2015). Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. International Journal of General and Molecular Microbiology, 107, 1519–1532. http://doi.org/10.1007/s10482-015-0445-z
  • Zhang, J., Wang, J. D., Liu, C. X., Yuan, J. H., Wang, X. J., & Xiang, W. S. (2014). A new prenylated indole derivative from endophytic actinobacteria Streptomyces sp. neau-D50. Natural Product Research, 28, 431–437. https://doi: 10.1080/14786419.2013.871546
Year 2022, , 602 - 608, 30.09.2022
https://doi.org/10.29133/yyutbd.1128340

Abstract

Project Number

2015-075

References

  • Bao, C., Jianguo, S., Xincheng, Z., Fengshan, P., Xiaoe, Y., & Ying, F. (2014). The Endophytic bacterium, Sphingomonas SaMR12, improves the potential for zinc phytoremediation by its host, Sedum alfredii. Plos One, 9, 1-12. https://doi.org/10.1371/journal.pone.0106826
  • Battu, L., Reddy, M. M., Goud, B. R., Ulaganathan, K., & Kandasamy, U. (2017). Genome inside genome: NGS based identification and assembly of endophytic Sphingopyxis granuli and Pseudomonas aeruginosa genomes from rice genomic reads. Genomics, 109, 141-146. https://doi.org/10.1016/j.ygeno.2017.02.002
  • Bilal, S., Khan, A. L., Shahzad, R., Kim, Y. H., Imran, M., Khan, M. J., Harrasi, A. A., Kim, T. H., & Lee, I. J. (2018). Mechanisms of Cr(VI) resistance by endophytic Sphingomonas sp. LK11 and its Cr(VI) phytotoxic mitigating effects in soybean (Glycine max L.). Ecotoxicology and Environmental Safety, 164, 648-658. https://doi.org/10.1016/j.ecoenv.2018.08.043
  • Cheng, C., Wang, R., Sun, L., He, L., & Sheng, X. (2021). Cadmium-resistant and arginine decarboxylase-producing endophytic Sphingomonas sp. C40 decreases cadmium accumulation in host rice (Oryza sativa Cliangyou 513). Chemosphere, 275, 109-130. https://doi.org/10.1016/j.chemosphere.2021.130109
  • Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
  • Feng, F., Ge, J., Li, Y., Cheng, J., Zhong, J., & Yu, X. (2017). Isolation, colonization, and chlorpyrifos degradation mediation of the endophytic bacterium Sphingomonas strain HJY in Chinese chives (Allium tuberosum). Journal of Agricultural and Food Chemistry, 65, 1131–1138. https://doi.org/ 10.1021/acs.jafc.6b05283
  • Flewelling, J., Currie, J., Gray, C. A., & Johnson, J. A. (2015). Endophytes from marine macroalgae: promising sources of novel natural products. Current Science, 109, 88-111.
  • Glaeser, S. P., & Kämpfer, P. (2014). The family Sphingomonadaceae. In E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, & F. Thompson (Eds.), The Prokaryotes –Alphaproteobacteria and Betaproteobacteria (pp. 643–707). Springer-Verlag Berlin Heidelberg; Berlin.
  • Gouda, S., Das, G., Sandeep, Sen, S. K., Shin, H. S., & Patra, J. K. (2016). Endophytes: A treasure house of bioactive compounds of medicinal importance. Frontiers in Microbiology, 29, 1538-1549. https://doi.org/10.3389/fmicb.2016.01538
  • Guiry, M. D., & Guiry, G. M. (2016). World-wide electronic publication, National University of Ireland, Galway. AlgaeBase. http://www.algaebase.org Hall, T.A. (1990). BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.
  • Halo, B. A., Khan, A. L., Waqas, M., AlHarrasi, A., Hussain, J., Ali, L., Adnan, M., & Lee, I. J. (2015). Endophytic bacteria (Sphingomonas sp. LK11) and gibberellin can improve Solanum lycopersicum growth and oxidative stress under salinity. Journal of Plant Interactions, 10, 117-125. https://doi.org/10.1080/17429145.2015.1033659
  • Ismail, I., Anwar, H., Asif, M., Muhammad, Q., Husna, A., Amjad, I., Muhammad, H., & Naeem, K. (2020). Thermal stress alleviating potential of endophytic fungus Rhizopus oryzae inoculated to sunflower (Helianthus annuus L.) and soybean (Glycine max L.). Pakistan Journal of Botany, 52, 1857-1865. http://dx.doi.org/10.30848/PJB2020-5(10)
  • Jindal, S., Dua, A., & Lal, R. (2013). Sphingopyxis indica sp. nov., isolated from a high dose point hexachlorocyclohexane (HCH) contaminated dumpsite. International Journal of Systematic and Evolutionary Microbiology, 63, 2186-2191. https://doi.org/10.1099/ijs.0.040840-0
  • Kampfer, P., Witzenberger, R., Denner, E. B. D., Busse, H.J., & Neef, A. (2002). Sphingopyxis witflariensis sp. nov., isolated from activated sludge. International Journal of Systematic and Evolutionary Microbiology, 52, 2029–2034 https://doi.org/10.1099/ijs.0.02217-0
  • Karthick, P., & Mohanraju, R. (2018). Antimicrobial potential of epiphytic bacteria associated with seaweeds of little andaman, India. Frontier Microbiology, 9, 1-11. https://doi.org/10.3389/fmicb.2018.00611
  • Khan, A. R., Ullah, I., Waqas, M., Park, G. S., Khan, A. L., Hong, S. J., Ullah, R., Jung, B. K., Park, C. E., Ur-Rehman, S., Lee, I. J., & Shin, J. H. (2017). Host plant growth promotion and cadmium detoxification in Solanum nigrum, mediated by endophytic fungi. Ecotoxicology and Environmental Safety, 136, 180-188. https://doi.org/10.1016/j.ecoenv.2016.03.014
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35, 1547-1549. https://doi.org/10.1093/molbev/msy096
  • Lane, D. (1991). J. 16S/23S rRNA sequencing. In E. Stackebrandt & M. Goodfellow (Eds.), Nucleic acid techniques in bacterial systematics (pp. 115-175). New York: John Wiley and Sons Press.
  • Liu, Q., Chen, J., Munyaneza, J., & Civerolo, E. (2011). Endophytic bacteria in potato tubers affected by zebra chip disease. Phytopathology, 101, 108, 2011.
  • Mandelare, P. E., Adpressa, D. A., Kaweesa, E. N., Zakharov, L. N., & Loesgen, S. (2018). Coculture of two developmental stages of a marine-derived Aspergillus alliaceus results in the production of the cytotoxic bianthrone allianthrone A. Journal of Natural Products, 81, 1014–1022.https://doi.org/10.1021/acs.jnatprod.8b00024
  • Manomi, S., Neema, J., & Rosamma, P. (2015). Bioactive potential of endophytic fungi from macroalgae. International Journal of Research in Marine Sciences, 4, 27-32.
  • Miyamoto, T., Kawahara, M., & Minamisawa, K. (2004). Novel endophytic nitrogen-fixing clostridia from the grass Miscanthus sinensis as revealed by terminal restriction fragment length polymorphism analysis. Applied and Environmental Microbiology, 70, 6580–6586. https://doi.org/10.1128/AEM.70.11.6580-6586.2004
  • Muyzer, G., Brinkhoff, T., Nübel, U., Santegoeds, C., Schäfer, H. Wawer, C., Kowalchuk, G. A., Bruijn, F. J., Head, I. M., Akkermans, A. D. L., Elsas, J. D. (2004). Denaturing gradient gel electrophoresis in marine microbial ecology. Moleculer Microbial Ecology Manual, 1-2, 743-769.
  • Nouh, F. A., Abu-Elsaoud, A. M., & Abdel-Azeem, A. M. (2021). The role of endophytic fungi in combating abiotic stress on tomato. Microbial Biosystems, 6, 35-48. https://doi.org/10.21608/mb.2021.91779.1037
  • Pascual, J., Huber, K. J., Foesel, B. U., & Overmann, J. (2017). Stenotrophobacter. John Wiley & Sons, Inc., in association with Bergey's Manual Trust, Bergey's Manual of Systematics of Archaea and Bacteria (pp.1-8). https://doi.org/10.1002/9781118960608.gbm01429
  • Rappé, M. S., & Giovannoni, S. J. (2003). The uncultured microbial majority. Annual Review of Microbiology, 57, 369-394. https://doi.org/10.1146/annurev.micro.57.030502.090759
  • Reiter, B., Pfeifer, U., Schwab, H., & Sessitsch, A. (2002). Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Applied and Environmental Microbiology, 68, 2261–2268. https://doi.org/10.1128/AEM.68.5.2261-2268.2002
  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
  • Singh, R. P., & Reddy, C.R.K. (2014). Seaweed–microbial interactions: key functions of seaweed-associated bacteria. Microbiology Ecology, 88, 213–230. https://doi.org/10.1111/1574-6941.12297
  • Stanier, R. Y., Kunisawa, R., Mandel, M., & Cohen-Bazire, G. (1971). Purification and properties of unicellular blue-green algae (order Chroococcales). Bacterological Reviews, 35, 171-205.
  • Takeuchi, M., Hamana, K. & Hiraishi, A. (2001). Proposal of the genusSphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic andchemotaxonomic analyses. International Journal of Systematic and Evolutionary Microbiology, 51, 1405–141. https://doi.org/10.1099/00207713-51-4-1405
  • Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences (USA), 101, 11030-11035. https://doi.org/10.1073/pnas.0404206101
  • Verma, H., Rani, P., Singh, A. K., Kumar, R., Dwivedi, V., & Negi, V. (2015). Sphingopyxis flava sp. nov. isolated from a hexachlorocyclohexane (HCH)-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 65, 3720-3726. https://doi.org/10.1099/ijsem.0.000482
  • Wahl, M., Goecke, F., Labes, A., Dobretsov, S., & Weinberger, F. (2012). The second skin: ecological role of epibiotic biofilms on marine organisms. Frontier Microbiology, 3, 1-21. https://doi.org/10.3389/fmicb.2012.00292
  • Wang, Y., Li, T., Li, C., & Song, F. (2020). Differences in microbial community and metabolites in litter layer of plantation and original Korean pine forests in north temperate zone. Microorganisms, 8, 2-23. https://doi:10.3390/microorganisms8122023
  • Yabuuchi, E., Kosako, Y., Fujiwara, N., Naka, T., Matsunaga, I., Ogura, H., & Kobayashi, K. (2002). Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. International Journal of Systematic and Evolutionary Microbiology, 52, 1485–1496. https://doi.org/10.1099/00207713-52-5-1485
  • Yaish, M. W., Irin, A., & Bernard, R. G. (2015). Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. International Journal of General and Molecular Microbiology, 107, 1519–1532. http://doi.org/10.1007/s10482-015-0445-z
  • Zhang, J., Wang, J. D., Liu, C. X., Yuan, J. H., Wang, X. J., & Xiang, W. S. (2014). A new prenylated indole derivative from endophytic actinobacteria Streptomyces sp. neau-D50. Natural Product Research, 28, 431–437. https://doi: 10.1080/14786419.2013.871546
There are 38 citations in total.

Details

Primary Language English
Subjects Hydrobiology
Journal Section Articles
Authors

Tuğba Şentürk 0000-0002-9882-0079

Mustafa Oskay 0000-0001-8693-5621

Project Number 2015-075
Publication Date September 30, 2022
Acceptance Date September 6, 2022
Published in Issue Year 2022

Cite

APA Şentürk, T., & Oskay, M. (2022). First Report of the Endophytic Bacteria Associated with Phormidium sp. Yuzuncu Yıl University Journal of Agricultural Sciences, 32(3), 602-608. https://doi.org/10.29133/yyutbd.1128340

Creative Commons License
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi CC BY 4.0 lisanslıdır.