Research Article
BibTex RIS Cite

Evaluation of the Relationship Between Infiltration Rate and Some Soil Properties under Different Land-Use

Year 2022, , 623 - 634, 30.09.2022
https://doi.org/10.29133/yyutbd.1130123

Abstract

Soil infiltration rate (IR) is an important parameter and a good indicator of soil quality and fertility. The most influential factors for all conditions where the best performance in infiltration surveys is achieved are soil properties and land-use type. Therefore, a detailed understanding of infiltration is required for different land-use complexes. In this study, the effects of soil properties on IR in soils under different land-uses (pasture, fallow, and orchard) were investigated. Soil samples were taken from 30 points determined by GPS from 3 land-uses within the border of the Çubuk district of Ankara Province, Turkey. IR (with Minidisc infiltrometer, MDI), bulk density, and penetration resistance were measured in undisturbed soil samples. Saturated hydraulic conductivity (Ks) and sorptivity were obtained from infiltration measurements. Soil parametric analyses and morphological descriptions were made in disturbed soil samples. In order to digitize the morphological properties, the coding system was created with the help of soil identification cards. The average IR value was found to be the highest in the orchard and the lowest in pasture samples. Correlation analysis, one-way ANOVA, and factor analyses were used to evaluate the relationships between soil variables and IR. IR showed the highest correlation with sorptivity (0.72), sand (0.69), and Ks (0.86) in the pasture, fallow, and orchard, respectively. IR in different land-uses was loaded on the same factors with different soil variables. Due to different land management practices, such additional measurements need to be made to accurately assess the potential impact of land-use and management changes on agricultural activities.

Supporting Institution

Cankırı Karatekin University

Project Number

BAP (OF210621L18)

Thanks

The authors thank the Çankırı Karatekin University for the financial support given under the grant of BAP (OF210621L18).

References

  • Alagna, V., Bagarello, V., Di Prima, S., & Iovino, M. (2016). Determining hydraulic properties of a loam soil by alternative infiltrometer techniques. Hydrological Processes, 30 (2), 263-275. doi: 10.1002/hyp.10607.
  • Angelaki, A., Sakellariou-Makrantonaki, M., & Tzimopoulos, C. (2013). Theoretical and experimental research of cumulative infiltration. Transport in Porous Media, 100 (2), 247-257. doi: 10.1007/s11242-013-0214-2.
  • Baranian Kabir, E., Bashari, H., Bassiri, M., & Mosaddeghi, M. R. (2020). Effects of land-use/cover change on soil hydraulic properties and pore characteristics in a semi-arid region of central Iran. Soil and Tillage Research, 197. doi: 10.1016/j.still.2019.104478.
  • Biro, K., Pradhan, B., Muchroithner, M., & Makeschin, F. (2013). Land use/land cover change analysis and its impact on soil properties in the northern part of Gadarif region, Sudan. Land Degradation and Development, 24, 90–102. doi:10.1002/ldr.1116.
  • Black G.R., & Hartge, K.H. (1986). Bulk Density. In A. Klute (Ed.), Methods of soil analysis. Part 1. Physical and mineralogical methods (2nd ed., pp. 363-375). American Society of Agronomy and Soil Science Society of America, Agronomy Series No: 9. doi:10.1097/00010694-198808000-00014.
  • Chu, S.T.(1978). Infiltration during unsteady rain. Water Resour. Research, 14(3), 461-466. doi:10.1029/WR014i003p00461.
  • Dionizio, E.A., & Costa, M.H. (2019). Influence of Land Use and Land Cover on Hydraulic and Physical Soil Properties at the Cerrado Agricultural Frontier. Agriculture, 9(24), 9-24. doi:10.3390/agriculture9010024.
  • Gee, G.W., & Bauder, J. W. (1986). Particle-size analysis. In A. Klute (Ed.), Methods of soil analysis. Part 1. Physical and mineralogical methods (2nd ed., pp. 383-411). American Society of Agronomy and Soil Science Society of America, Agronomy Series No: 9. doi:10.1097/00010694-198808000-00014.
  • Decagon Devices, Inc. (2014). Infiltrometer, Mini Disk User’s Manual Version 10.
  • Horel, Á., Tóth, E., Gelybó, G., Kása, I., Bakacsi, Z., & Farkas, C. (2015). Effects of Land Use and Management on Soil Hydraulic Properties. Open Geoscience. 7(1). doi: 10.1515/geo-2015-0053.
  • Jakab, G., Dobos, E., Madarász, B., Szalai, Z., & Szabó, J. A. (2019). Spatial and temporal changes in infiltration and aggregate stability: Cropland., A case study of a subhumid irrigated. Water, 11, 876. doi: 10.3390/w11050876.
  • Kalaycı, Ş. (2010). SPSS uygulamalı çok değişkenli istatistik teknikleri. Vol(5). Asil Yayın Dağıtım Ankara, Turkey.
  • Karahan, G., & Erşahin, S. (2017). Relating macropore flow to soil parametric and morphological variables. Soil Science Society of America Journal, 81(5). doi:10.2136/sssaj2016.10.0327.
  • Kemper, W.D. & Rosenau, R.C. (1986). Aggregate stability and size distribution. In A. Klute (Ed.), Methods of soil analysis. Part 1. Physical and mineralogical methods (2nd ed., pp. 425-442). American Society of Agronomy and Soil Science Society of America, Agronomy Series No: 9. https://eprints.nwisrl.ars.usda.gov/id/eprint/732/3/585.pdf
  • Klute, A., & Dirksen, C. (1986). Conductivity and diffusivity: Laboratory methods. In A. Klute (Ed.), Methods of Soil Analysis: Part 1. Physical and Mineralogical Methods (pp. 687-734). American Society of Agronomy and Soil Science Society of America, Agronomy Series No: 9.
  • Kohnke, H. (1968). Soil physics. Tata Mcgraw-Hill Publishing Company Limited, New Dilhi.
  • Minasny, B., & George, B. H. (1999). The measurement of soil hydraulic properties in the field. In B. H. Cattle, S.R., George (Eds.), Describing, Analysing and Managing Our Soil (1st ed., pp. 185-204). Science:22, University of Sydney and Australian Soil Science Society Inc.
  • Mulla, D.J., & Mc Bratney, A. B. (2001). Soil spatial variability. In A. W. Warrick (Ed.), Handbook of Soil Science (pp. 368-400). Soil Physics Companion. CRS Pres. doi:10.1201/9781420041651.
  • Orkun, Ö., Karaer, Z., Çakmak, A., & Nalbanoğlu, S. (2014). Identification of tick-borne pathogens in ticks feeding on humans in Turkey. PLoS Negl Trop Dis, 8, 3049-3067. doi: 10. 1371/ 67, al. pntd. 00030.
  • Page, A.L., Miller, R.H., & Kccney, D.K. (1982). Chemical and Microbiological Properties. In A. Klute (Ed.), Methods of Soil Analysis: Part 2. Chemical and microbiological properties. American Society of Agronomy and Soil Science Society of America, Agronomy Series No: 9.
  • Patle, G.T., Sikar, T.T., Rawat, K.S., & Singh, S.K. (2019). Estimation of infiltration rate from soil properties usingregression model for cultivated land. Geology, Ecology, and Landscapes, 3(1), 1-13. doi:10.1080/24749508.2018.1481633.
  • Pedretti, D., Barahona-Palomo, M., Bolster, D., Sanchez-Vila, X., & Fernàndez-Garcia, D. (2012). A quick and inexpensive method to quantify spatially variable infiltration capacity for artificial recharge ponds using photographic images. Journal of Hydrology, 430, 118–126. doi:10.1016/j.jhydrol.2012.02.008.
  • Philip, J.R. (1957). The theory of infiltration: 1. The infiltration equation and its solution. Soil Science, 83(5), 345–358. doi: 10.1097/00010694-195705000-00002.
  • Rhoades, J.D. (1982). Cation exchange capacity. In A. L. Page (Ed.), Methods of soil analysis. Part 2. Chemical and microbiological properties (2nd ed., pp. 149-157). American Society of Agronomy and Soil Science Society of America, Agronomy Series No: 9.
  • Sarıdemir, H. (2010). Çubuk (Ankara) ilçesinin beşeri ve ekonomik coğrafyası. MS thesis. Selçuk Üniversitesi Eğitim Bilimleri Enstitüsü, Konya, Turkey.
  • Schafer, W.M., & Singer, M.J. (1976). A new method of measuring shrink-swell potential using soil pastes. Soil Science Society of America Journal, 40(5), 805–806. doi: 10.2136/sssaj1976.03615995004000050050x
  • Schoeneberger, P.J., Wysocki, D.A., Benham, E.C., & Broderson, W.D. (2012). Field book for describing and sampling soils. Version 3.0. National Soil Survey Center, Lincoln, NE. USA.
  • SPSS Inc. (2015). Statistics for windows. Version 23.
  • Sun, D., Yang, H., Guan, D., Yang, M., Wu, J., Yuan, F., Jin, C., Wang, A., & Zhang, Y. (2018). The effects of land use change on soil infiltration capacity in China: A meta-analysis. Science of the Total Environment, 626, 1394-1401. doi:10.1016/j.scitotenv.2018.01.104
  • Vand, A. S., Sihag, P., Singh, B., & Zand, M. (2018). Comparative Civil, Evaluation of Infiltration Models. KSCE Journal of Engineering, 1-12. doi:10.1007/s12205-018-1347-1.
  • Webster, R. (2001). Statistics to support soil research and their presentation. European Journal of Soil Science, 52, 330-340. doi:10.1046/j.1365-2389.2001.00383.x.
  • White, I., & Perroux, K. M. (1987). The use of sorptivity to determine field soil hydraulic properties., Soil Science Society of America Journal, 51(1093-1101). doi: 10.2136/sssaj1987.03615995005100050001x.
  • Zhang, R. (1997). Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Science Society of America Journal, 61, 1024-1030.
Year 2022, , 623 - 634, 30.09.2022
https://doi.org/10.29133/yyutbd.1130123

Abstract

Project Number

BAP (OF210621L18)

References

  • Alagna, V., Bagarello, V., Di Prima, S., & Iovino, M. (2016). Determining hydraulic properties of a loam soil by alternative infiltrometer techniques. Hydrological Processes, 30 (2), 263-275. doi: 10.1002/hyp.10607.
  • Angelaki, A., Sakellariou-Makrantonaki, M., & Tzimopoulos, C. (2013). Theoretical and experimental research of cumulative infiltration. Transport in Porous Media, 100 (2), 247-257. doi: 10.1007/s11242-013-0214-2.
  • Baranian Kabir, E., Bashari, H., Bassiri, M., & Mosaddeghi, M. R. (2020). Effects of land-use/cover change on soil hydraulic properties and pore characteristics in a semi-arid region of central Iran. Soil and Tillage Research, 197. doi: 10.1016/j.still.2019.104478.
  • Biro, K., Pradhan, B., Muchroithner, M., & Makeschin, F. (2013). Land use/land cover change analysis and its impact on soil properties in the northern part of Gadarif region, Sudan. Land Degradation and Development, 24, 90–102. doi:10.1002/ldr.1116.
  • Black G.R., & Hartge, K.H. (1986). Bulk Density. In A. Klute (Ed.), Methods of soil analysis. Part 1. Physical and mineralogical methods (2nd ed., pp. 363-375). American Society of Agronomy and Soil Science Society of America, Agronomy Series No: 9. doi:10.1097/00010694-198808000-00014.
  • Chu, S.T.(1978). Infiltration during unsteady rain. Water Resour. Research, 14(3), 461-466. doi:10.1029/WR014i003p00461.
  • Dionizio, E.A., & Costa, M.H. (2019). Influence of Land Use and Land Cover on Hydraulic and Physical Soil Properties at the Cerrado Agricultural Frontier. Agriculture, 9(24), 9-24. doi:10.3390/agriculture9010024.
  • Gee, G.W., & Bauder, J. W. (1986). Particle-size analysis. In A. Klute (Ed.), Methods of soil analysis. Part 1. Physical and mineralogical methods (2nd ed., pp. 383-411). American Society of Agronomy and Soil Science Society of America, Agronomy Series No: 9. doi:10.1097/00010694-198808000-00014.
  • Decagon Devices, Inc. (2014). Infiltrometer, Mini Disk User’s Manual Version 10.
  • Horel, Á., Tóth, E., Gelybó, G., Kása, I., Bakacsi, Z., & Farkas, C. (2015). Effects of Land Use and Management on Soil Hydraulic Properties. Open Geoscience. 7(1). doi: 10.1515/geo-2015-0053.
  • Jakab, G., Dobos, E., Madarász, B., Szalai, Z., & Szabó, J. A. (2019). Spatial and temporal changes in infiltration and aggregate stability: Cropland., A case study of a subhumid irrigated. Water, 11, 876. doi: 10.3390/w11050876.
  • Kalaycı, Ş. (2010). SPSS uygulamalı çok değişkenli istatistik teknikleri. Vol(5). Asil Yayın Dağıtım Ankara, Turkey.
  • Karahan, G., & Erşahin, S. (2017). Relating macropore flow to soil parametric and morphological variables. Soil Science Society of America Journal, 81(5). doi:10.2136/sssaj2016.10.0327.
  • Kemper, W.D. & Rosenau, R.C. (1986). Aggregate stability and size distribution. In A. Klute (Ed.), Methods of soil analysis. Part 1. Physical and mineralogical methods (2nd ed., pp. 425-442). American Society of Agronomy and Soil Science Society of America, Agronomy Series No: 9. https://eprints.nwisrl.ars.usda.gov/id/eprint/732/3/585.pdf
  • Klute, A., & Dirksen, C. (1986). Conductivity and diffusivity: Laboratory methods. In A. Klute (Ed.), Methods of Soil Analysis: Part 1. Physical and Mineralogical Methods (pp. 687-734). American Society of Agronomy and Soil Science Society of America, Agronomy Series No: 9.
  • Kohnke, H. (1968). Soil physics. Tata Mcgraw-Hill Publishing Company Limited, New Dilhi.
  • Minasny, B., & George, B. H. (1999). The measurement of soil hydraulic properties in the field. In B. H. Cattle, S.R., George (Eds.), Describing, Analysing and Managing Our Soil (1st ed., pp. 185-204). Science:22, University of Sydney and Australian Soil Science Society Inc.
  • Mulla, D.J., & Mc Bratney, A. B. (2001). Soil spatial variability. In A. W. Warrick (Ed.), Handbook of Soil Science (pp. 368-400). Soil Physics Companion. CRS Pres. doi:10.1201/9781420041651.
  • Orkun, Ö., Karaer, Z., Çakmak, A., & Nalbanoğlu, S. (2014). Identification of tick-borne pathogens in ticks feeding on humans in Turkey. PLoS Negl Trop Dis, 8, 3049-3067. doi: 10. 1371/ 67, al. pntd. 00030.
  • Page, A.L., Miller, R.H., & Kccney, D.K. (1982). Chemical and Microbiological Properties. In A. Klute (Ed.), Methods of Soil Analysis: Part 2. Chemical and microbiological properties. American Society of Agronomy and Soil Science Society of America, Agronomy Series No: 9.
  • Patle, G.T., Sikar, T.T., Rawat, K.S., & Singh, S.K. (2019). Estimation of infiltration rate from soil properties usingregression model for cultivated land. Geology, Ecology, and Landscapes, 3(1), 1-13. doi:10.1080/24749508.2018.1481633.
  • Pedretti, D., Barahona-Palomo, M., Bolster, D., Sanchez-Vila, X., & Fernàndez-Garcia, D. (2012). A quick and inexpensive method to quantify spatially variable infiltration capacity for artificial recharge ponds using photographic images. Journal of Hydrology, 430, 118–126. doi:10.1016/j.jhydrol.2012.02.008.
  • Philip, J.R. (1957). The theory of infiltration: 1. The infiltration equation and its solution. Soil Science, 83(5), 345–358. doi: 10.1097/00010694-195705000-00002.
  • Rhoades, J.D. (1982). Cation exchange capacity. In A. L. Page (Ed.), Methods of soil analysis. Part 2. Chemical and microbiological properties (2nd ed., pp. 149-157). American Society of Agronomy and Soil Science Society of America, Agronomy Series No: 9.
  • Sarıdemir, H. (2010). Çubuk (Ankara) ilçesinin beşeri ve ekonomik coğrafyası. MS thesis. Selçuk Üniversitesi Eğitim Bilimleri Enstitüsü, Konya, Turkey.
  • Schafer, W.M., & Singer, M.J. (1976). A new method of measuring shrink-swell potential using soil pastes. Soil Science Society of America Journal, 40(5), 805–806. doi: 10.2136/sssaj1976.03615995004000050050x
  • Schoeneberger, P.J., Wysocki, D.A., Benham, E.C., & Broderson, W.D. (2012). Field book for describing and sampling soils. Version 3.0. National Soil Survey Center, Lincoln, NE. USA.
  • SPSS Inc. (2015). Statistics for windows. Version 23.
  • Sun, D., Yang, H., Guan, D., Yang, M., Wu, J., Yuan, F., Jin, C., Wang, A., & Zhang, Y. (2018). The effects of land use change on soil infiltration capacity in China: A meta-analysis. Science of the Total Environment, 626, 1394-1401. doi:10.1016/j.scitotenv.2018.01.104
  • Vand, A. S., Sihag, P., Singh, B., & Zand, M. (2018). Comparative Civil, Evaluation of Infiltration Models. KSCE Journal of Engineering, 1-12. doi:10.1007/s12205-018-1347-1.
  • Webster, R. (2001). Statistics to support soil research and their presentation. European Journal of Soil Science, 52, 330-340. doi:10.1046/j.1365-2389.2001.00383.x.
  • White, I., & Perroux, K. M. (1987). The use of sorptivity to determine field soil hydraulic properties., Soil Science Society of America Journal, 51(1093-1101). doi: 10.2136/sssaj1987.03615995005100050001x.
  • Zhang, R. (1997). Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Science Society of America Journal, 61, 1024-1030.
There are 33 citations in total.

Details

Primary Language English
Subjects Soil Sciences and Ecology
Journal Section Articles
Authors

Gülay Karahan 0000-0003-1285-6546

Yavuz Şuayip Yalım 0000-0003-2726-7429

Project Number BAP (OF210621L18)
Publication Date September 30, 2022
Acceptance Date September 12, 2022
Published in Issue Year 2022

Cite

APA Karahan, G., & Yalım, Y. Ş. (2022). Evaluation of the Relationship Between Infiltration Rate and Some Soil Properties under Different Land-Use. Yuzuncu Yıl University Journal of Agricultural Sciences, 32(3), 623-634. https://doi.org/10.29133/yyutbd.1130123

Creative Commons License
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi CC BY 4.0 lisanslıdır.