Research Article
BibTex RIS Cite
Year 2023, , 54 - 63, 31.03.2023
https://doi.org/10.29133/yyutbd.1205091

Abstract

Supporting Institution

-

Project Number

-

Thanks

Çalışmada emeği geçen hocalarıma teşekkür ediyorum

References

  • Akhtar, K. P., Shah, T. M., Atta, B. M., Dickinson, M., Hodgetts, J., Khan, R. A., Haq, M. A., & Hameed, S. (2009). Symptomatology, etiology and transmission of chickpea phyllody disease in Pakistan. Journal of Plant Patholology, 91, 649-653. https://doi.org/10.2307/41998682
  • Alfaro-Fernández, A., Abdalla Ali, M., Mobarak Abdelraheem, F., Abd Elhameed Saeed, E., & Isabel Font San Ambrosio, M. (2012). Molecular identification of 16SrII-D subgroup phytoplasmas associated with chickpea and faba bean in Sudan. European Journal of Plant Pathology, 133, 791-795.https://doi.org/10.1007/s10658-012-9975-7
  • Alkuwaiti, N. Kareem, T.A., & Sabier, L.J. (2017). Molecular detection of ´Candidatus Phytoplasma australasia´ and ´Ca. P. cynodontis´ in Iraq. Agriculture (Poľnohospodárstvo), 63 (3), 112–119. https://doi.org/10.1515/agri-2017-0011
  • Amaral-Mello, A.P., Bedendo, I, Kitajima, E.W, Ribeiro, L.F., & Kobori R. (2006). Tomato big bud associated with a phytoplasma belonging to group 16Sr III in Brazil. International Journal of Pest Management, 52, 233-237. https://doi.org/10.1080/09670870600733766
  • Arocha Y., Antesana O., Montellano E., Franco P., Plata G., & Jones P. (2007).‘Candidatus Phytoplasma lycopersici’, a phytoplasma associated with ‘hoja de perejil’ disease in Bolivia. International Journal of Systematic and Evolutionary Microbiology. 57, 1704–1710. https://doi.org/10.1099/ijs.0.64851-0
  • Ayvaci, H., Guldur M.E., Simsek E., & Dikilitas M. (2020). First report of a ‘Candidatus Phytoplasma australasia’-related strain (16SrII-D subgroup) associated with alfalfa leaf chlorosis disease in Turkey. New Disease Reports. 42, 20. http://dx.doi.org/10.5197/j.2044-0588.2020.042.020.
  • Bertaccini, A., & Lee, I.M. (2018). “Phytoplasmas: an update”. in: Phytoplasmas: Plant Pathogenic Bacteria-I, in Characterization and Epidemiology of Phytoplasma-Associated Diseases, eds G. P. Rao, A. Bertaccini, N. Fiore, and L. Liefting (Singapore: Springer)
  • Bertaccini, A. (2021). Containment of Phytoplasma-Associated Plant Diseases by Antibiotics and Other Antimicrobial Molecules. Antibiotics (Basel). 14, 10(11):1398. doi: 10.3390/antibiotics10111398.
  • Cagirgan, M.I., Topuz, H., Mbaye, N., & Silme, R.S. (2014). First report on the occurrence and symptomatology of phyllody disease in jute (Corchorus olitorius, L.) and its plant characteristics in Turkey. Turkish Journal of Field Crops, 19 (1), 129e135.https://doi.org/10.17557/tjfc.40243
  • Çağlar, B.K., Satar, S., & Elbeaino, T. (2013). Detection and Molecular Characterization of Bermuda Grass (Cynodon dactylon) White Leaf Phytoplasma from Turkey. International Journal of Agriculture and Biology, 15, 90-94.
  • Çağlar B.K., & Şimşek E. (2022). Detection and Multigene Typing of 'Candidatus Phytoplasma solani'-Related Strains Infecting Tomato and Potato Plants in Different Regions of Turkey. Pathogens, 11(9), 1031. https://doi.org/10.3390/pathogens11091031.
  • Canik, D., Ertunc, F., Paltrinieri, S., Contaldo, N., & Bertaccini, A. (2011). Identification of different phytoplasmas infecting grapevine in Turkey. Bulletin of Insectology, 64, 225–226.
  • Canik Orel D., Paltrinieri S., Ertunç F., & Bertaccini A. (2019). Molecular diversity of ‘Candidatus Phytoplasma’ species in pome and stone fruits in Turkey. Plant Protection Bulletin, 59 (1): 7-14. https://doi.org/10.16955/bitkorb.508890
  • Chiykowski L.N. (1991). Vector-pathogen-host plant relationships of clover phyllody mycoplasma-like organism and the vector leafhopper Paraphlepsius irroratus. Canadian Journal of Plant Pathology, 13, 11-18. https://doi.org/10.1080/07060669109500958
  • CIA (Central Intelligence Agency). 2017. The World Factbook, Field Listing: Exports – Commodities. CIA, Washington, DC. https://www.cia.gov/library/publications/the-world-factbook/fields/2049.html
  • Contaldo, N., Stepanovi´c, J., Pacini, F., Bertaccini, A., & Duduk B. (2021). Molecular Variability and Host Distribution of ‘Candidatus Phytoplasma solani’ Strains from Different Geographic Origins. Microorganisms, 9, 2530. https://doi.org/10.3390/microorganisms9122530
  • Davis R.E., Zhao Y., Dally E.L., Lee I.M., Jomantiene R., & Douglas SM. (2013). ‘Candidatus Phytoplasma pruni’, a novel taxon associated with X-disease of stone fruits, Prunus spp.: multilocus characterization based on 16S rRNA, secY, and ribosomal protein genes. International Journal of Systematic and Evolutionary Microbiology. 63, 766–776. https://doi.org/10.1099/ijs.0.041202-0
  • Davoodi A, Panjekeh N, Moslemkhani K, & Taheri A. (2019). Detection and molecular characterization of tomato big bud disease in Qazvin province. Journal of Crop Protection, 8 (4), 379-388.
  • Del Serreno, P., Marzachì, C., Bragaloni, M. & Galeffi, P. (2001). Phytoplasma infection of tomato in central Italy. Phytopathologia Mediterranea, 40, 137-142. https://doi.org/10.14601/Phytopathol_Mediterr-1601
  • Dong, J., Zhang, L., Li, W.H., Zhang, Z.K. & McBeath, J.H. (2013). ‘Canditatus Phytoplasma aurantifolia’-related strain associated with tomato yellows disease in China. Journal of General Plant Pathology, 79(5), DOI: 10.1007/s10327-013-0463-5.
  • Dumonceaux, T.J., Green, M., Hammond, C., Perez, E., & Olivier, C. (2014). Molecular Diagnostic Tools for Detection and Differentiation of Phytoplasmas Based on Chaperonin-60 Reveal Differences in Host Plant Infection Patterns. PLoS ONE. 9(12), 1-21.https://doi.org/10.1371/journal.pone.0116039
  • El-Sisi Y., Omar AF., Sidaros SA., & ElSharkawy M.M. (2017). Characterization of 16SrII-D subgroup associated phytoplasmas in new host plants in Egypt, Archives of Phytopathology and Plant Protection, 50 (9-10), 504-513.https://doi.org/10.1080/03235408.2017.1336154
  • Esmailzadeh Hosseini, S.A., Khodakaramian, G., Salehi, M., Fani S.R., Mirchenari S.M., Salehi, E., & Bertaccini A. (2015). Incidence, distribution and economic importance of alfalfa witches’ broom disease in Sistan–Baluchestan (Iran) and characterization of associated phytoplasma. Phytopathogenic Mollicutes, 5(2), 84–90.https://doi.org/10.5958/2249-Phytopathogenic
  • Esmailzadeh Hosseini, SA., Salehi M., Babaie G. & Bertaccini A. (2018). Characterization of a 16SrII subgroup D phytoplasma strain associated with Calendula officinalis phyllody in Iran. 3 Biotech. 8(7), 295.https://doi.org/10.1007/s13205-018-1320-1
  • Gül, M., & Özenç, S. (2020). The Profitability and Characteristics of Greenhouse Capia Pepper Farmers: A Case of Kaş District, Antalya, Turkey. International Journal of Agriculture Forestry and Life Sciences, 4 (1), 115–119.
  • Güller, A., & Usta, M. (2020). Stolbur and Clover Proliferation Phytoplasma Infections in Tomato from Bingöl province, Turkey. Turkish Journal of Agricultural and Natural Sciences. 7(4), 855-866. https://doi.org/10.30910/turkjans.727892
  • Gundersen, D.E., & Lee I.M. (1996). Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathologia Mediterranea, 35, 144-151.https://www.jstor.org/stable/42685262
  • Hemmati, C., Al-Subhi AM., Al-Housni MT. & Al-Sadi AM. (2020b). Molecular detection and characterization of a 16SrII-D phytoplasma associated with streak yellows of date palm in Oman. Australasian Plant Disease Notes. 15, 35. https://doi.org/10.1007/s13314-020-00404-w
  • Hemmati, C., Al-Subhi AM., & Al-Sadi AM. (2020a). First Report of Association of 16SrII-D phytoplasma with Cycas revoluta in Oman. Disease Notes, 104, 3249. https://doi.org/10.1094/PDIS-05-20-1094-PDN
  • Hemmati, C., Nikooei M., & Bertaccini A. (2019). Identification, occurrence, incidence and transmission of phytoplasma associated with Petunia violacea witches’ broom in Iran. 167(10): 547-552. https://doi.org/10.1111/jph.12838
  • Khalil, H.A., Yousef R.N., Girsova N.V., Bogoutdinov D.Z., Kastalyeva T.B. & Aldenkawe S.A. (2019). Detection of phytoplasma causing tomato big bud disease in Syria. Arab Journal of Plant Protection, 37(1), 71-76. https://doi.org/10.22268/AJPP-037.1.071076
  • Krawczyk, K., Pospieszny H., & Kamasa J. (2010). Identification of New Members of Canditatus Phytoplasma asteris Affecting Tomato Plants in Poland. Journal of Phytopathology, 158, 496–502. https://doi.org/10.1111/j.1439-0434.2009.01648.x
  • Kumari, S., Nagendran K., Rai A.B., Singh B., Rao G.P., & Bertaccini A. (2019). Global Status of Phytoplasma Diseases in Vegetable Crops. Frontiers in Microbiology, 27, 10:1349. https://doi.org/10.3389/fmicb.2019.01349.
  • Lee, I.M., Hammond R.W., Davis R.E., & Gundersen DE (1993). Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasma-like organisms. Phytopathology, 83, 834-842.
  • Li, Z., Tang Y., She X., Yu L., Lan G., & He Z. (2019). First report of 16SrII-D phytoplasma associated with eggplant phyllody in China, Canadian Journal of Plant Pathology, 41 (3), 339-344. https://doi.org/10.1080/07060661.2019.1596162
  • Namba, S. (2019). Molecular and biological properties of phytoplasmas. Proceedings of the Japan Academy, Ser. B, Physical and Biological Sciences, 95(7), 401-418. https://doi.org/10.2183/pjab.95.028.
  • Oksal, H.D. (2020). Natural phytoplasma infections on fruit, vegetable and weed plants at the same agroecosystem and their molecular properties. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(2), 615-625. https://doi.org/10.15835/nbha48211940
  • Omar, A.F., & Foissac, X. (2012). Occurrence and incidence of phytoplasmas of the 16SrII-D subgroup on solanaceous and cucurbit crops in Egypt. European Journal of Plant Pathology, 133, 353–360. https://doi.org/10.1007/s10658-011-9908-x
  • Oshima, K., Maejima K., & Namba S. (2013). Genomic and evolutionary aspects of phytoplasmas. Frontiers in Microbiology, 14, 4:230. doi: 10.3389/fmicb.2013.00230. PMID: 23966988
  • Özdemir, Z., & Cagirgan M.I. (2015). Identification and characterization of a phytoplasma disease of jute (Corchorus olitorius L.) from south-western Turkey. Crop Protection, 74, 1-8. https://doi.org/10.1016/j.cropro.2015.03.018
  • Ozdemir, Z., Topuz, H., Erler, F., & Çagırgan, M.I. (2014). Detection of ‘Candidatus Phytoplasma australasia’ in Orosius orientalis (Matsumura) (Homoptera: Cicadellidae) Collected from Sesame Fields in Antalya Province. Turkey. V. Plant Protection Congress. 03-05 February 2014, Antalya, Turkey (Abstract), p. 191.
  • Pearce, T., & Scott, J. B. (2011). First report of witches’- broom phytoplasma (16SrII-D Group) in purple coneflower in Australia. Plant Disease, 95, 773. https://doi.org/10.1094/PDIS-03-11-0155
  • Rao, G. P., & Kumar, M. (2017). World status of phytoplasma diseases associate with eggplant. Crop Protection, 96, 22–29. https://doi.org/10.1016/j.cropro.2017.01.005
  • Salehi, E., Salehi, M., Taghavi, S.M., & Izadpanah K. (2014). A 16SrII-D Phytoplasma strain associated with Tomato Witches'- Broom in Bushehr province, Iran. Journal of Crop Protection, 3(3), 377-388.
  • Serçe, Ç.U., & Yılmaz, S. (2019). First report of ‘Candidatus Phytoplasma trifolii’ (16SrVI group) infecting cabbage (Brassica oleracea) in Turkey. Journal of Plant Pathology, 102 (2),https://doi.org/10.1007/s42161-019-00443-y
  • Sertkaya, G., Osler R., Musetti R, Ermacora P., & Martini M. (2004). Detection of phytoplasmas in Rubus spp. by microscopy and molecular techniques in Turkey. Acta Horticulturae, 656, 181-186.https://doi.org/10.17660/ActaHortic.2004.656.29
  • Shiomi, T., & Sugiura M. (1984). Difference among Macrosteles orientalis-transmitted MLO, potato purple-top wilt MLO in Japan and aster yellows MLO from USA. Annals of the Phytopathological Society of Japan, 50 (4), 455-460. https://doi.org/10.3186/jjphytopath.50.455
  • Singh, J., Rani, A., Kumar, P., Baranwal, V.K., Saroj, P.L., & Sirohi, A. (2012). First report of a 16SrII-D phytoplasma 'Canditatus Phytoplasma australasia' associated with a tomato disease in India. New Disease Reports, 26, 14.https://doi.org/10.5197/j.2044-0588.2012.026.014
  • Upadhyay, R. (2016). Varietal susceptibility and effect of antibiotics on little leaf phytoplasma of brinjal (Solanum melongena L). International Journal of Emerging Trends in Science and Technology, 3, 3911–3914. https://doi.org/10.18535/ijetst/v3i05.10
  • Usta, M., Güller, A., & Sipahioğlu, H.M. (2018). Molecular analysis of ‘Canditatus Phytoplasma trifolii’ and ‘Canditatus Phytoplasma solani’ associated with phytoplasma diseases of tomato (PDT) in Turkey. International Journal of Agriculture and Biology, 20, 1991-1996. https://doi.org/10.17957/IJAB/15.0721
  • Usta, M., Güller, A., & Demirel, S. (2021). Molecular identification of ‘Candidatus phytoplasma solani’using Secy and Vmp1 genes in tomato plants from van province. Yuzuncu Yıl University Journal of Agricultural Sciences, 31(4), 951-960.
  • Valiunas, D., Jomantiene, R., Ivanauskas, A., Sneideris, D., Zizyte‐Eidetiene, M., Shao, J., Yan Z., Costanzo Z., & Davis RE. (2019). Rapid detection and identification of ‘Candidatus Phytoplasma pini’‐related strains based on genomic markers present in 16S rRNA and tuf genes. Forest Pathology. 49 (6). doi: 10.1111/efp.12553
  • Venkataravanappa, V, Narasimha Reddy L.R.C., Polam S, Subbanna S.K., & Manem Krishna R. (2017). Detection and characterization of ‘Candidatus Phytoplasma asteris’ associated with littleleaf disease of bitter gourd from India by 16S rRNA phylogenetic and RFLP (in vitro and virtual) analysis. Archives of Biological Sciences, 69(4), 707-714. Venkataravanappa, V. (2017). Detection, Characterization and in-Silico Analysis of Candidatus Phytoplasma Australasia associated with Phyllody Disease of Sesame. Advances in Plants & Agriculture Research, 7, doi: 10.15406/apar.2017.07.00256.
  • White, D. T., Blackall, L. L., Scott, P. T., & Walsh, K. B. (1998): Phylogenetic positions of phytoplasmas associated with dieback, yellow crinkle and mosaic diseases of papaya, and their proposed inclusion in ‘Candidatus Phytoplasma australiense’ and a new taxon', ‘Candidatus Phytoplasma australasia’. International Journal of Systematic Bacteriology, 48, 941–951. https://doi.org/10.1099/00207713-48-3-941
  • Xu X., Mou H.Q., Zhu S.F., Liao X.L., & Zhao W.J. (2013): Detection and Characterization of Phytoplasma Associated with Big Bud Disease of Tomato in China. Journal of Phytopathology, 161, 430-433. https://doi.org/10.1111/jph.12065
  • Zelyut, F.R., Santosa A.I., Karanfil A. (2022). ‘Candidatus Phytoplasma solani’ (Subgroup 16SrXII-A) Associated with Nicotiana tabacum Leaf Abnormality in Turkey. Journal of Tekirdag Agricultural Faculty, 19 (3), 571-581.https://doi.org/10.33462/jotaf.1028263
  • Zhao, Y, Wei W, Lee I.M., Shao J., Suo X., & Davis R.E. (2013). The iPhyClassifier, an Interactive Online Tool for Phytoplasma Classification and Taxonomic Assignment. In: Dickinson, M., Hodgetts, J. (eds) Phytoplasma. Methods in Molecular Biology, vol 938. p. 329–338, Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-089-2_28
  • Zibadoost, S., Rastgou M., & Tazehkand S.A. (2016). Detection and molecular identification of ‘Candidatus phytoplasma trifoli’infecting some cultivated crops and vegetables in West Azarbaijan province, Iran. Australasian Plant Disease Notes, 11(1), 1-4.

First Report of ‘Candidatus Phytoplasma australasia’ Strain Related to Witches’-Broom of Tomato in Türkiye

Year 2023, , 54 - 63, 31.03.2023
https://doi.org/10.29133/yyutbd.1205091

Abstract

Phytoplasmas are dangerous bacteria severely infecting agricultural production worldwide. In the present study, the identification of phytoplasmas infecting tomato plants showing symptoms such as small leaves, flower abnormalities, stunting, witches' broom, and reddening was performed. Five plants, two symptomatic and three asymptomatic, were tested to verify phytoplasma infection. Total DNA isolated from 5 leaf samples was used as a template for PCR reactions. The phytoplasma agents were confirmed in the two symptomatic samples. BLASTn search of 16S rRNA of two sequences shared identity similarity of 99.84% with ‘Candidatus Phytoplasma australasia’. Computer-simulated virtual RFLP profiles show that the 16S rRNA sequences is identical to the reference pattern of the 16SrII-D subgroup, with a similarity coefficient of 1.00. Based on BLAST, virtual RFLP, and phylogenetic dendrogram, the identified phytoplasma strains are enclosed in the 16SrII-D subgroup. This is the first report of tomato witches' broom disease related to 16SrII-D subgroup phytoplasma strains in the Antalya province of Türkiye.

Project Number

-

References

  • Akhtar, K. P., Shah, T. M., Atta, B. M., Dickinson, M., Hodgetts, J., Khan, R. A., Haq, M. A., & Hameed, S. (2009). Symptomatology, etiology and transmission of chickpea phyllody disease in Pakistan. Journal of Plant Patholology, 91, 649-653. https://doi.org/10.2307/41998682
  • Alfaro-Fernández, A., Abdalla Ali, M., Mobarak Abdelraheem, F., Abd Elhameed Saeed, E., & Isabel Font San Ambrosio, M. (2012). Molecular identification of 16SrII-D subgroup phytoplasmas associated with chickpea and faba bean in Sudan. European Journal of Plant Pathology, 133, 791-795.https://doi.org/10.1007/s10658-012-9975-7
  • Alkuwaiti, N. Kareem, T.A., & Sabier, L.J. (2017). Molecular detection of ´Candidatus Phytoplasma australasia´ and ´Ca. P. cynodontis´ in Iraq. Agriculture (Poľnohospodárstvo), 63 (3), 112–119. https://doi.org/10.1515/agri-2017-0011
  • Amaral-Mello, A.P., Bedendo, I, Kitajima, E.W, Ribeiro, L.F., & Kobori R. (2006). Tomato big bud associated with a phytoplasma belonging to group 16Sr III in Brazil. International Journal of Pest Management, 52, 233-237. https://doi.org/10.1080/09670870600733766
  • Arocha Y., Antesana O., Montellano E., Franco P., Plata G., & Jones P. (2007).‘Candidatus Phytoplasma lycopersici’, a phytoplasma associated with ‘hoja de perejil’ disease in Bolivia. International Journal of Systematic and Evolutionary Microbiology. 57, 1704–1710. https://doi.org/10.1099/ijs.0.64851-0
  • Ayvaci, H., Guldur M.E., Simsek E., & Dikilitas M. (2020). First report of a ‘Candidatus Phytoplasma australasia’-related strain (16SrII-D subgroup) associated with alfalfa leaf chlorosis disease in Turkey. New Disease Reports. 42, 20. http://dx.doi.org/10.5197/j.2044-0588.2020.042.020.
  • Bertaccini, A., & Lee, I.M. (2018). “Phytoplasmas: an update”. in: Phytoplasmas: Plant Pathogenic Bacteria-I, in Characterization and Epidemiology of Phytoplasma-Associated Diseases, eds G. P. Rao, A. Bertaccini, N. Fiore, and L. Liefting (Singapore: Springer)
  • Bertaccini, A. (2021). Containment of Phytoplasma-Associated Plant Diseases by Antibiotics and Other Antimicrobial Molecules. Antibiotics (Basel). 14, 10(11):1398. doi: 10.3390/antibiotics10111398.
  • Cagirgan, M.I., Topuz, H., Mbaye, N., & Silme, R.S. (2014). First report on the occurrence and symptomatology of phyllody disease in jute (Corchorus olitorius, L.) and its plant characteristics in Turkey. Turkish Journal of Field Crops, 19 (1), 129e135.https://doi.org/10.17557/tjfc.40243
  • Çağlar, B.K., Satar, S., & Elbeaino, T. (2013). Detection and Molecular Characterization of Bermuda Grass (Cynodon dactylon) White Leaf Phytoplasma from Turkey. International Journal of Agriculture and Biology, 15, 90-94.
  • Çağlar B.K., & Şimşek E. (2022). Detection and Multigene Typing of 'Candidatus Phytoplasma solani'-Related Strains Infecting Tomato and Potato Plants in Different Regions of Turkey. Pathogens, 11(9), 1031. https://doi.org/10.3390/pathogens11091031.
  • Canik, D., Ertunc, F., Paltrinieri, S., Contaldo, N., & Bertaccini, A. (2011). Identification of different phytoplasmas infecting grapevine in Turkey. Bulletin of Insectology, 64, 225–226.
  • Canik Orel D., Paltrinieri S., Ertunç F., & Bertaccini A. (2019). Molecular diversity of ‘Candidatus Phytoplasma’ species in pome and stone fruits in Turkey. Plant Protection Bulletin, 59 (1): 7-14. https://doi.org/10.16955/bitkorb.508890
  • Chiykowski L.N. (1991). Vector-pathogen-host plant relationships of clover phyllody mycoplasma-like organism and the vector leafhopper Paraphlepsius irroratus. Canadian Journal of Plant Pathology, 13, 11-18. https://doi.org/10.1080/07060669109500958
  • CIA (Central Intelligence Agency). 2017. The World Factbook, Field Listing: Exports – Commodities. CIA, Washington, DC. https://www.cia.gov/library/publications/the-world-factbook/fields/2049.html
  • Contaldo, N., Stepanovi´c, J., Pacini, F., Bertaccini, A., & Duduk B. (2021). Molecular Variability and Host Distribution of ‘Candidatus Phytoplasma solani’ Strains from Different Geographic Origins. Microorganisms, 9, 2530. https://doi.org/10.3390/microorganisms9122530
  • Davis R.E., Zhao Y., Dally E.L., Lee I.M., Jomantiene R., & Douglas SM. (2013). ‘Candidatus Phytoplasma pruni’, a novel taxon associated with X-disease of stone fruits, Prunus spp.: multilocus characterization based on 16S rRNA, secY, and ribosomal protein genes. International Journal of Systematic and Evolutionary Microbiology. 63, 766–776. https://doi.org/10.1099/ijs.0.041202-0
  • Davoodi A, Panjekeh N, Moslemkhani K, & Taheri A. (2019). Detection and molecular characterization of tomato big bud disease in Qazvin province. Journal of Crop Protection, 8 (4), 379-388.
  • Del Serreno, P., Marzachì, C., Bragaloni, M. & Galeffi, P. (2001). Phytoplasma infection of tomato in central Italy. Phytopathologia Mediterranea, 40, 137-142. https://doi.org/10.14601/Phytopathol_Mediterr-1601
  • Dong, J., Zhang, L., Li, W.H., Zhang, Z.K. & McBeath, J.H. (2013). ‘Canditatus Phytoplasma aurantifolia’-related strain associated with tomato yellows disease in China. Journal of General Plant Pathology, 79(5), DOI: 10.1007/s10327-013-0463-5.
  • Dumonceaux, T.J., Green, M., Hammond, C., Perez, E., & Olivier, C. (2014). Molecular Diagnostic Tools for Detection and Differentiation of Phytoplasmas Based on Chaperonin-60 Reveal Differences in Host Plant Infection Patterns. PLoS ONE. 9(12), 1-21.https://doi.org/10.1371/journal.pone.0116039
  • El-Sisi Y., Omar AF., Sidaros SA., & ElSharkawy M.M. (2017). Characterization of 16SrII-D subgroup associated phytoplasmas in new host plants in Egypt, Archives of Phytopathology and Plant Protection, 50 (9-10), 504-513.https://doi.org/10.1080/03235408.2017.1336154
  • Esmailzadeh Hosseini, S.A., Khodakaramian, G., Salehi, M., Fani S.R., Mirchenari S.M., Salehi, E., & Bertaccini A. (2015). Incidence, distribution and economic importance of alfalfa witches’ broom disease in Sistan–Baluchestan (Iran) and characterization of associated phytoplasma. Phytopathogenic Mollicutes, 5(2), 84–90.https://doi.org/10.5958/2249-Phytopathogenic
  • Esmailzadeh Hosseini, SA., Salehi M., Babaie G. & Bertaccini A. (2018). Characterization of a 16SrII subgroup D phytoplasma strain associated with Calendula officinalis phyllody in Iran. 3 Biotech. 8(7), 295.https://doi.org/10.1007/s13205-018-1320-1
  • Gül, M., & Özenç, S. (2020). The Profitability and Characteristics of Greenhouse Capia Pepper Farmers: A Case of Kaş District, Antalya, Turkey. International Journal of Agriculture Forestry and Life Sciences, 4 (1), 115–119.
  • Güller, A., & Usta, M. (2020). Stolbur and Clover Proliferation Phytoplasma Infections in Tomato from Bingöl province, Turkey. Turkish Journal of Agricultural and Natural Sciences. 7(4), 855-866. https://doi.org/10.30910/turkjans.727892
  • Gundersen, D.E., & Lee I.M. (1996). Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathologia Mediterranea, 35, 144-151.https://www.jstor.org/stable/42685262
  • Hemmati, C., Al-Subhi AM., Al-Housni MT. & Al-Sadi AM. (2020b). Molecular detection and characterization of a 16SrII-D phytoplasma associated with streak yellows of date palm in Oman. Australasian Plant Disease Notes. 15, 35. https://doi.org/10.1007/s13314-020-00404-w
  • Hemmati, C., Al-Subhi AM., & Al-Sadi AM. (2020a). First Report of Association of 16SrII-D phytoplasma with Cycas revoluta in Oman. Disease Notes, 104, 3249. https://doi.org/10.1094/PDIS-05-20-1094-PDN
  • Hemmati, C., Nikooei M., & Bertaccini A. (2019). Identification, occurrence, incidence and transmission of phytoplasma associated with Petunia violacea witches’ broom in Iran. 167(10): 547-552. https://doi.org/10.1111/jph.12838
  • Khalil, H.A., Yousef R.N., Girsova N.V., Bogoutdinov D.Z., Kastalyeva T.B. & Aldenkawe S.A. (2019). Detection of phytoplasma causing tomato big bud disease in Syria. Arab Journal of Plant Protection, 37(1), 71-76. https://doi.org/10.22268/AJPP-037.1.071076
  • Krawczyk, K., Pospieszny H., & Kamasa J. (2010). Identification of New Members of Canditatus Phytoplasma asteris Affecting Tomato Plants in Poland. Journal of Phytopathology, 158, 496–502. https://doi.org/10.1111/j.1439-0434.2009.01648.x
  • Kumari, S., Nagendran K., Rai A.B., Singh B., Rao G.P., & Bertaccini A. (2019). Global Status of Phytoplasma Diseases in Vegetable Crops. Frontiers in Microbiology, 27, 10:1349. https://doi.org/10.3389/fmicb.2019.01349.
  • Lee, I.M., Hammond R.W., Davis R.E., & Gundersen DE (1993). Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasma-like organisms. Phytopathology, 83, 834-842.
  • Li, Z., Tang Y., She X., Yu L., Lan G., & He Z. (2019). First report of 16SrII-D phytoplasma associated with eggplant phyllody in China, Canadian Journal of Plant Pathology, 41 (3), 339-344. https://doi.org/10.1080/07060661.2019.1596162
  • Namba, S. (2019). Molecular and biological properties of phytoplasmas. Proceedings of the Japan Academy, Ser. B, Physical and Biological Sciences, 95(7), 401-418. https://doi.org/10.2183/pjab.95.028.
  • Oksal, H.D. (2020). Natural phytoplasma infections on fruit, vegetable and weed plants at the same agroecosystem and their molecular properties. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(2), 615-625. https://doi.org/10.15835/nbha48211940
  • Omar, A.F., & Foissac, X. (2012). Occurrence and incidence of phytoplasmas of the 16SrII-D subgroup on solanaceous and cucurbit crops in Egypt. European Journal of Plant Pathology, 133, 353–360. https://doi.org/10.1007/s10658-011-9908-x
  • Oshima, K., Maejima K., & Namba S. (2013). Genomic and evolutionary aspects of phytoplasmas. Frontiers in Microbiology, 14, 4:230. doi: 10.3389/fmicb.2013.00230. PMID: 23966988
  • Özdemir, Z., & Cagirgan M.I. (2015). Identification and characterization of a phytoplasma disease of jute (Corchorus olitorius L.) from south-western Turkey. Crop Protection, 74, 1-8. https://doi.org/10.1016/j.cropro.2015.03.018
  • Ozdemir, Z., Topuz, H., Erler, F., & Çagırgan, M.I. (2014). Detection of ‘Candidatus Phytoplasma australasia’ in Orosius orientalis (Matsumura) (Homoptera: Cicadellidae) Collected from Sesame Fields in Antalya Province. Turkey. V. Plant Protection Congress. 03-05 February 2014, Antalya, Turkey (Abstract), p. 191.
  • Pearce, T., & Scott, J. B. (2011). First report of witches’- broom phytoplasma (16SrII-D Group) in purple coneflower in Australia. Plant Disease, 95, 773. https://doi.org/10.1094/PDIS-03-11-0155
  • Rao, G. P., & Kumar, M. (2017). World status of phytoplasma diseases associate with eggplant. Crop Protection, 96, 22–29. https://doi.org/10.1016/j.cropro.2017.01.005
  • Salehi, E., Salehi, M., Taghavi, S.M., & Izadpanah K. (2014). A 16SrII-D Phytoplasma strain associated with Tomato Witches'- Broom in Bushehr province, Iran. Journal of Crop Protection, 3(3), 377-388.
  • Serçe, Ç.U., & Yılmaz, S. (2019). First report of ‘Candidatus Phytoplasma trifolii’ (16SrVI group) infecting cabbage (Brassica oleracea) in Turkey. Journal of Plant Pathology, 102 (2),https://doi.org/10.1007/s42161-019-00443-y
  • Sertkaya, G., Osler R., Musetti R, Ermacora P., & Martini M. (2004). Detection of phytoplasmas in Rubus spp. by microscopy and molecular techniques in Turkey. Acta Horticulturae, 656, 181-186.https://doi.org/10.17660/ActaHortic.2004.656.29
  • Shiomi, T., & Sugiura M. (1984). Difference among Macrosteles orientalis-transmitted MLO, potato purple-top wilt MLO in Japan and aster yellows MLO from USA. Annals of the Phytopathological Society of Japan, 50 (4), 455-460. https://doi.org/10.3186/jjphytopath.50.455
  • Singh, J., Rani, A., Kumar, P., Baranwal, V.K., Saroj, P.L., & Sirohi, A. (2012). First report of a 16SrII-D phytoplasma 'Canditatus Phytoplasma australasia' associated with a tomato disease in India. New Disease Reports, 26, 14.https://doi.org/10.5197/j.2044-0588.2012.026.014
  • Upadhyay, R. (2016). Varietal susceptibility and effect of antibiotics on little leaf phytoplasma of brinjal (Solanum melongena L). International Journal of Emerging Trends in Science and Technology, 3, 3911–3914. https://doi.org/10.18535/ijetst/v3i05.10
  • Usta, M., Güller, A., & Sipahioğlu, H.M. (2018). Molecular analysis of ‘Canditatus Phytoplasma trifolii’ and ‘Canditatus Phytoplasma solani’ associated with phytoplasma diseases of tomato (PDT) in Turkey. International Journal of Agriculture and Biology, 20, 1991-1996. https://doi.org/10.17957/IJAB/15.0721
  • Usta, M., Güller, A., & Demirel, S. (2021). Molecular identification of ‘Candidatus phytoplasma solani’using Secy and Vmp1 genes in tomato plants from van province. Yuzuncu Yıl University Journal of Agricultural Sciences, 31(4), 951-960.
  • Valiunas, D., Jomantiene, R., Ivanauskas, A., Sneideris, D., Zizyte‐Eidetiene, M., Shao, J., Yan Z., Costanzo Z., & Davis RE. (2019). Rapid detection and identification of ‘Candidatus Phytoplasma pini’‐related strains based on genomic markers present in 16S rRNA and tuf genes. Forest Pathology. 49 (6). doi: 10.1111/efp.12553
  • Venkataravanappa, V, Narasimha Reddy L.R.C., Polam S, Subbanna S.K., & Manem Krishna R. (2017). Detection and characterization of ‘Candidatus Phytoplasma asteris’ associated with littleleaf disease of bitter gourd from India by 16S rRNA phylogenetic and RFLP (in vitro and virtual) analysis. Archives of Biological Sciences, 69(4), 707-714. Venkataravanappa, V. (2017). Detection, Characterization and in-Silico Analysis of Candidatus Phytoplasma Australasia associated with Phyllody Disease of Sesame. Advances in Plants & Agriculture Research, 7, doi: 10.15406/apar.2017.07.00256.
  • White, D. T., Blackall, L. L., Scott, P. T., & Walsh, K. B. (1998): Phylogenetic positions of phytoplasmas associated with dieback, yellow crinkle and mosaic diseases of papaya, and their proposed inclusion in ‘Candidatus Phytoplasma australiense’ and a new taxon', ‘Candidatus Phytoplasma australasia’. International Journal of Systematic Bacteriology, 48, 941–951. https://doi.org/10.1099/00207713-48-3-941
  • Xu X., Mou H.Q., Zhu S.F., Liao X.L., & Zhao W.J. (2013): Detection and Characterization of Phytoplasma Associated with Big Bud Disease of Tomato in China. Journal of Phytopathology, 161, 430-433. https://doi.org/10.1111/jph.12065
  • Zelyut, F.R., Santosa A.I., Karanfil A. (2022). ‘Candidatus Phytoplasma solani’ (Subgroup 16SrXII-A) Associated with Nicotiana tabacum Leaf Abnormality in Turkey. Journal of Tekirdag Agricultural Faculty, 19 (3), 571-581.https://doi.org/10.33462/jotaf.1028263
  • Zhao, Y, Wei W, Lee I.M., Shao J., Suo X., & Davis R.E. (2013). The iPhyClassifier, an Interactive Online Tool for Phytoplasma Classification and Taxonomic Assignment. In: Dickinson, M., Hodgetts, J. (eds) Phytoplasma. Methods in Molecular Biology, vol 938. p. 329–338, Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-089-2_28
  • Zibadoost, S., Rastgou M., & Tazehkand S.A. (2016). Detection and molecular identification of ‘Candidatus phytoplasma trifoli’infecting some cultivated crops and vegetables in West Azarbaijan province, Iran. Australasian Plant Disease Notes, 11(1), 1-4.
There are 58 citations in total.

Details

Primary Language English
Subjects Botany
Journal Section Articles
Authors

Mustafa Usta 0000-0002-3940-2774

Abdullah Güller 0000-0003-3887-4208

Hikmet Murat Sipahioğlu 0000-0002-2304-2794

Project Number -
Publication Date March 31, 2023
Acceptance Date January 19, 2023
Published in Issue Year 2023

Cite

APA Usta, M., Güller, A., & Sipahioğlu, H. M. (2023). First Report of ‘Candidatus Phytoplasma australasia’ Strain Related to Witches’-Broom of Tomato in Türkiye. Yuzuncu Yıl University Journal of Agricultural Sciences, 33(1), 54-63. https://doi.org/10.29133/yyutbd.1205091
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.