Research Article
BibTex RIS Cite
Year 2023, , 259 - 268, 30.06.2023
https://doi.org/10.29133/yyutbd.1249017

Abstract

References

  • Acquaah, G. (2007). Principles of plant genetics and breeding. Blackwell Publishing.
  • Allier, A., Teyssèdre, S., Lehermeier, C., Moreau, L., & Charcosset, A. (2020). Optimized breeding strategies to harness genetic resources with different performance levels. BMC Genomics, 21(1), 1–16. https://doi.org/10.1186/s12864-020-6756-0
  • Altieri, M. A. (1999). The ecological role of biodiversity in agroecosystems. Ecosystems and Environment, 74, 19–31.
  • Bayu, E. M., & Ashari, S. (2019). Analisis klaster durian (Durio zibethinus Murr.) unggul lokal di Kecamatan Kasembon [Cluster analysis of local superior durians (Durio zibethinus Murr.) from Kasembon]. Jurnal Produksi Tanaman, 7(7), 1347–1353.
  • Bioversity International, (2007). Descriptors for durian (Durio zibethinus Murr.). Bioversity International. www.earthprint.com
  • BMKG, (2023). Prakiraan cuaca Kalimantan Selatan. https://stamet.syamsudinnoor.bmkg.go.id/ prakiraan-cuaca
  • Capinera, J. L. (2008). Encyclopedia of entomology (2nd ed.). Springer.
  • Delfini, J., Moda-Cirino, V., dos Santos Neto, J., Ruas, P. M., Sant’Ana, G. C., Gepts, P., & Gonçalves, L. S. A. (2021). Population structure, genetic diversity and genomic selection signatures among a Brazilian common bean germplasm. Scientific Reports, 11(1), 1–12. https://doi.org/10.1038/s41598-021-82437-4
  • Durian Harvests Indonesia. (2021). Global durian production. Https://Www.Durianharvestsindonesia.Com/Production/.
  • Dwivedi, S. L., Goldman, I., Ceccarelli, S., & Ortiz, R. (2020). Advanced analytics, phenomics and biotechnology approaches to enhance genetic gains in plant breeding. In D. L. Sparks (Ed.), Advances in Agronomy (1st ed., Vol. 162, pp. 89–142). Elsevier Inc. https://doi.org/10.1016/bs.agron.2020.02.002
  • Gao, Y., Yin, S., Yang, H., Wu, L., & Yan, Y. (2017). Genetic diversity and phylogenetic relationships of seven Amorphophallus species in southwestern China revealed by chloroplast DNA sequences. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 29(5), 679–686. https://doi.org/10.1080/24701394.2017.1350855
  • Handayani, R. S., & Ismadi. (2018). Inventory and morphological characterization of durian (Durio zibethinus) in Langkahan and Sawang sub-district of North Aceh Indonesia. Emerald Reach Proceedings Series, 1, 601–608. https://doi.org/10.1108/978-1-78756-793-1-00027
  • Husin, N. A., Rahman, S., Karunakaran, R., & Bhore, S. J. (2018). A review on the nutritional, medicinal, molecular and genome attributes of Durian (Durio zibethinus L.), the King of fruits in Malaysia. Bioinformation, 14(06), 265–270. https://doi.org/10.6026/97320630014265
  • Iverson, A. L., Marín, L. E., Ennis, K. K., Gonthier, D. J., Connor-Barrie, B. T., Remfert, J. L., Cardinale, B. J., & Perfecto, I. (2014). Do polycultures promote win-wins or trade-offs in agricultural ecosystem services? A meta-analysis. Journal of Applied Ecology, 51(6), 1593–1602. https://doi.org/10.1111/1365-2664.12334
  • Kovach, W. (2007). MVSP-Multi-Variate Statistical Package (3.1; pp. 1–145). Kovach Computing Services.
  • Kurniadinata, O. F., Wenpei, S., Zaini, A., & Rusdiansyah. (2019). Six potential superior durian plants resulted by cross breeding of D. zibethinus and D. kutejensis from East Kalimantan, Indonesia: initial identification. Journal of Tropical Horticulture, 2(2), 45–49. https://doi.org/10.33089/jthort.v2i2.24
  • Lloyd, M. M., Makukhov, A. D., & Pespeni, M. H. (2016). Loss of genetic diversity as a consequence of selection in response to high pCO2. Evolutionary Applications, 9(9), 1124–1132. https://doi.org/10.1111/eva.12404
  • Loomis, R. S. (2022). Perils of production with perennial polycultures. Outlook on Agriculture, 51(1), 22–31. https://doi.org/10.1177/00307270211063910
  • Mursyidin, D. H. (2022). Genetic diversity and phylogenetic position of traditional rice (Oryza sativa L.) landraces: A case study of South Kalimantan in Indonesia. Yuzuncu Yil University Journal of Agricultural Sciences, 32(4), 775–784. https://doi.org/10.29133/yyutbd.1146378
  • Mursyidin, D. H., & Daryono, B. S. (2016). Genetic diversity of local durian (Durio zibethinus Murr.) cultivars of South Kalimantan’s province based on RAPD markers. AIP Conference Proceedings, 1755. https://doi.org/10.1063/1.4958483
  • Mursyidin, D. H., & Khairullah, I. (2020). Genetic evaluation of tidal swamp rice from south Kalimantan, Indonesia based on the agro-morphological markers. Biodiversitas, 21(10), 4795–4803. https://doi.org/10.13057/biodiv/d211045
  • Mursyidin, D. H., Makruf, M. I., Badruzsaufari, & Noor, A. (2022). Molecular diversity of exotic durian (Durio spp.) germplasm: a case study of Kalimantan, Indonesia. Journal of Genetic Engineering and Biotechnology, 20(39), 1–13. https://doi.org/10.1186/s43141-022-00321-8
  • Mursyidin, D. H., Purnomo, Sumardi, I., & Daryono, B. S. (2019). Phenotypic diversity of the tidal swamp rice (Oryza sativa L.) germplasm from South Kalimantan, Indonesia. Australian Journal of Crop Science, 13(3), 386–394. https://doi.org/10.21475/ajcs.19.13.03.p1268
  • Retnoningsih, A., Rahayu, E. S., & Sari, P. I. (2016). Characterization of local durian germplasm based on the morphology of fruit. Sainteknologi, 14(2), 89–94.
  • Rey, S. J., Arribas-Bel, D., & Wolf, L. J. (2020). Clustering & regionalization. In Geographic Data Science with Python (pp. 1–29). https://geographicdata.science.
  • Roy, S., Marndi, B. C., Mawkhlieng, B., Banerjee, A., Yadav, R. M., Misra, A. K., & Bansal, K. C. (2016). Genetic diversity and structure in hill rice (Oryza sativa L.) landraces from the North-Eastern Himalayas of India. BMC Genetics, 17(107), 1–15. https://doi.org/10.1186/s12863-016-0414-1
  • Sawitri, A. D., Yuniastuti, E., & Nandariyah. (2019). Morphological characterization of local durian as parent tree in Bitingan District, Rembang. IOP Conference Series: Earth and Environmental Science, 250(1), 1–6. https://doi.org/10.1088/1755-1315/250/1/012002
  • Sihaloho, M. A., Hanafia, D. S., Julianti, E., & Basyuni, M. (2021). Morphological characters of local origin durian (Durio zibethinus Murr.) fruits and seeds from Central Tapanuli Regency, North Sumatra, Indonesia. International Journal on Advanced Science, Engineering and Information Technology, 11(1), 213–222. https://doi.org/10.18517/ijaseit.11.1.11211
  • Sundari, Mas’ud, A., Arumingtyas, Hakim, L., Azrianingsih, R., & Wahyudi, D. (2019). Taxonomical status of local durian (Durio spp.) from Ternate Island north Maluku base on morphological character and geographical factor. International Journal of Conservation Science, 10(4), 711–720. www.ijcs.uaic.ro
  • Susila, A., Bety, Y. A., Hindarwati, Y., Arianti, F. D., Haskarini, D., Malik, A., Santoso, B., & Cempaka, I. G. (2021). Characterization of durian (Durio zibethinus) monthok from Blora, Central Java, Indonesia. E3S Web of Conferences, 306, 01003. https://doi.org/10.1051/e3sconf/202130601003
  • Swarup, S., Cargill, E. J., Crosby, K., Flagel, L., Kniskern, J., & Glenn, K. C. (2021). Genetic diversity is indispensable for plant breeding to improve crops. Crop Science, 61(2), 839–852. https://doi.org/10.1002/csc2.20377
  • Wallace, J. G., Upadhyaya, H. D., Vetriventhan, M., Buckler, E. S., Tom Hash, C., & Ramu, P. (2015). The genetic makeup of a global Barnyard millet germplasm collection. The Plant Genome, 8(1), 1–7. https://doi.org/10.3835/plantgenome2014.10.0067
  • Wu, F., Ma, S., Zhou, J., Han, C., Hu, R., Yang, X., Nie, G., & Zhang, X. (2021). Genetic diversity and population structure analysis in a large collection of white clover (Trifolium repens L.) germplasm worldwide. PeerJ, 9, 1–17. https://doi.org/10.7717/peerj.11325

Phenotypic Diversity of Super Local Durian (Durio zibethinus Murr.) Varieties from South Kalimantan, Indonesia: A Case Study

Year 2023, , 259 - 268, 30.06.2023
https://doi.org/10.29133/yyutbd.1249017

Abstract

Durio zibethinus, known as durian in several Southeast Asian countries, is a prospective horticultural commodity to cultivate and develop. This study aimed to determine the phenotypic diversity and relationship of superior durian varieties from South Kalimantan in Indonesia based on morphological characteristics. Here, 20 varieties of durian (D. zibethinus), including an outgroup, were used. Meanwhile, 57 morphological characteristics, comprising 35 qualitative and 22 quantitative, were observed. The Shannon index (H’) method was applied for phenotypic diversity, and the relationships were by the UPGMA. The results show that durians of the region have low phenotypic diversity. However, some morphological characteristics show high ones, e.g., crown shape, fruit skin color and thickness, fruit flesh thickness, and fruit spine length, including tree age. In this case, the highest fruit skin and flesh thickness are present in Malutu and Bamban Birin, respectively. In addition, the fruit spine length and tree age are also in ‘Malutu’. The UPGMA revealed that the durians were separated into seven clusters and near-corresponding to geographic origin. In this case, ‘Gentarbumi Uya’ is the closest to ‘Taradak Uya’, whereas the farthest is ‘Malutu’ with ‘Tapai Idaman’. Thus, this information is essential in promoting the future durian-breeding program in local and global coverages.

References

  • Acquaah, G. (2007). Principles of plant genetics and breeding. Blackwell Publishing.
  • Allier, A., Teyssèdre, S., Lehermeier, C., Moreau, L., & Charcosset, A. (2020). Optimized breeding strategies to harness genetic resources with different performance levels. BMC Genomics, 21(1), 1–16. https://doi.org/10.1186/s12864-020-6756-0
  • Altieri, M. A. (1999). The ecological role of biodiversity in agroecosystems. Ecosystems and Environment, 74, 19–31.
  • Bayu, E. M., & Ashari, S. (2019). Analisis klaster durian (Durio zibethinus Murr.) unggul lokal di Kecamatan Kasembon [Cluster analysis of local superior durians (Durio zibethinus Murr.) from Kasembon]. Jurnal Produksi Tanaman, 7(7), 1347–1353.
  • Bioversity International, (2007). Descriptors for durian (Durio zibethinus Murr.). Bioversity International. www.earthprint.com
  • BMKG, (2023). Prakiraan cuaca Kalimantan Selatan. https://stamet.syamsudinnoor.bmkg.go.id/ prakiraan-cuaca
  • Capinera, J. L. (2008). Encyclopedia of entomology (2nd ed.). Springer.
  • Delfini, J., Moda-Cirino, V., dos Santos Neto, J., Ruas, P. M., Sant’Ana, G. C., Gepts, P., & Gonçalves, L. S. A. (2021). Population structure, genetic diversity and genomic selection signatures among a Brazilian common bean germplasm. Scientific Reports, 11(1), 1–12. https://doi.org/10.1038/s41598-021-82437-4
  • Durian Harvests Indonesia. (2021). Global durian production. Https://Www.Durianharvestsindonesia.Com/Production/.
  • Dwivedi, S. L., Goldman, I., Ceccarelli, S., & Ortiz, R. (2020). Advanced analytics, phenomics and biotechnology approaches to enhance genetic gains in plant breeding. In D. L. Sparks (Ed.), Advances in Agronomy (1st ed., Vol. 162, pp. 89–142). Elsevier Inc. https://doi.org/10.1016/bs.agron.2020.02.002
  • Gao, Y., Yin, S., Yang, H., Wu, L., & Yan, Y. (2017). Genetic diversity and phylogenetic relationships of seven Amorphophallus species in southwestern China revealed by chloroplast DNA sequences. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 29(5), 679–686. https://doi.org/10.1080/24701394.2017.1350855
  • Handayani, R. S., & Ismadi. (2018). Inventory and morphological characterization of durian (Durio zibethinus) in Langkahan and Sawang sub-district of North Aceh Indonesia. Emerald Reach Proceedings Series, 1, 601–608. https://doi.org/10.1108/978-1-78756-793-1-00027
  • Husin, N. A., Rahman, S., Karunakaran, R., & Bhore, S. J. (2018). A review on the nutritional, medicinal, molecular and genome attributes of Durian (Durio zibethinus L.), the King of fruits in Malaysia. Bioinformation, 14(06), 265–270. https://doi.org/10.6026/97320630014265
  • Iverson, A. L., Marín, L. E., Ennis, K. K., Gonthier, D. J., Connor-Barrie, B. T., Remfert, J. L., Cardinale, B. J., & Perfecto, I. (2014). Do polycultures promote win-wins or trade-offs in agricultural ecosystem services? A meta-analysis. Journal of Applied Ecology, 51(6), 1593–1602. https://doi.org/10.1111/1365-2664.12334
  • Kovach, W. (2007). MVSP-Multi-Variate Statistical Package (3.1; pp. 1–145). Kovach Computing Services.
  • Kurniadinata, O. F., Wenpei, S., Zaini, A., & Rusdiansyah. (2019). Six potential superior durian plants resulted by cross breeding of D. zibethinus and D. kutejensis from East Kalimantan, Indonesia: initial identification. Journal of Tropical Horticulture, 2(2), 45–49. https://doi.org/10.33089/jthort.v2i2.24
  • Lloyd, M. M., Makukhov, A. D., & Pespeni, M. H. (2016). Loss of genetic diversity as a consequence of selection in response to high pCO2. Evolutionary Applications, 9(9), 1124–1132. https://doi.org/10.1111/eva.12404
  • Loomis, R. S. (2022). Perils of production with perennial polycultures. Outlook on Agriculture, 51(1), 22–31. https://doi.org/10.1177/00307270211063910
  • Mursyidin, D. H. (2022). Genetic diversity and phylogenetic position of traditional rice (Oryza sativa L.) landraces: A case study of South Kalimantan in Indonesia. Yuzuncu Yil University Journal of Agricultural Sciences, 32(4), 775–784. https://doi.org/10.29133/yyutbd.1146378
  • Mursyidin, D. H., & Daryono, B. S. (2016). Genetic diversity of local durian (Durio zibethinus Murr.) cultivars of South Kalimantan’s province based on RAPD markers. AIP Conference Proceedings, 1755. https://doi.org/10.1063/1.4958483
  • Mursyidin, D. H., & Khairullah, I. (2020). Genetic evaluation of tidal swamp rice from south Kalimantan, Indonesia based on the agro-morphological markers. Biodiversitas, 21(10), 4795–4803. https://doi.org/10.13057/biodiv/d211045
  • Mursyidin, D. H., Makruf, M. I., Badruzsaufari, & Noor, A. (2022). Molecular diversity of exotic durian (Durio spp.) germplasm: a case study of Kalimantan, Indonesia. Journal of Genetic Engineering and Biotechnology, 20(39), 1–13. https://doi.org/10.1186/s43141-022-00321-8
  • Mursyidin, D. H., Purnomo, Sumardi, I., & Daryono, B. S. (2019). Phenotypic diversity of the tidal swamp rice (Oryza sativa L.) germplasm from South Kalimantan, Indonesia. Australian Journal of Crop Science, 13(3), 386–394. https://doi.org/10.21475/ajcs.19.13.03.p1268
  • Retnoningsih, A., Rahayu, E. S., & Sari, P. I. (2016). Characterization of local durian germplasm based on the morphology of fruit. Sainteknologi, 14(2), 89–94.
  • Rey, S. J., Arribas-Bel, D., & Wolf, L. J. (2020). Clustering & regionalization. In Geographic Data Science with Python (pp. 1–29). https://geographicdata.science.
  • Roy, S., Marndi, B. C., Mawkhlieng, B., Banerjee, A., Yadav, R. M., Misra, A. K., & Bansal, K. C. (2016). Genetic diversity and structure in hill rice (Oryza sativa L.) landraces from the North-Eastern Himalayas of India. BMC Genetics, 17(107), 1–15. https://doi.org/10.1186/s12863-016-0414-1
  • Sawitri, A. D., Yuniastuti, E., & Nandariyah. (2019). Morphological characterization of local durian as parent tree in Bitingan District, Rembang. IOP Conference Series: Earth and Environmental Science, 250(1), 1–6. https://doi.org/10.1088/1755-1315/250/1/012002
  • Sihaloho, M. A., Hanafia, D. S., Julianti, E., & Basyuni, M. (2021). Morphological characters of local origin durian (Durio zibethinus Murr.) fruits and seeds from Central Tapanuli Regency, North Sumatra, Indonesia. International Journal on Advanced Science, Engineering and Information Technology, 11(1), 213–222. https://doi.org/10.18517/ijaseit.11.1.11211
  • Sundari, Mas’ud, A., Arumingtyas, Hakim, L., Azrianingsih, R., & Wahyudi, D. (2019). Taxonomical status of local durian (Durio spp.) from Ternate Island north Maluku base on morphological character and geographical factor. International Journal of Conservation Science, 10(4), 711–720. www.ijcs.uaic.ro
  • Susila, A., Bety, Y. A., Hindarwati, Y., Arianti, F. D., Haskarini, D., Malik, A., Santoso, B., & Cempaka, I. G. (2021). Characterization of durian (Durio zibethinus) monthok from Blora, Central Java, Indonesia. E3S Web of Conferences, 306, 01003. https://doi.org/10.1051/e3sconf/202130601003
  • Swarup, S., Cargill, E. J., Crosby, K., Flagel, L., Kniskern, J., & Glenn, K. C. (2021). Genetic diversity is indispensable for plant breeding to improve crops. Crop Science, 61(2), 839–852. https://doi.org/10.1002/csc2.20377
  • Wallace, J. G., Upadhyaya, H. D., Vetriventhan, M., Buckler, E. S., Tom Hash, C., & Ramu, P. (2015). The genetic makeup of a global Barnyard millet germplasm collection. The Plant Genome, 8(1), 1–7. https://doi.org/10.3835/plantgenome2014.10.0067
  • Wu, F., Ma, S., Zhou, J., Han, C., Hu, R., Yang, X., Nie, G., & Zhang, X. (2021). Genetic diversity and population structure analysis in a large collection of white clover (Trifolium repens L.) germplasm worldwide. PeerJ, 9, 1–17. https://doi.org/10.7717/peerj.11325
There are 33 citations in total.

Details

Primary Language English
Subjects Horticultural Production
Journal Section Articles
Authors

Dindin Hidayatul Mursyidin 0000-0002-1200-0927

Early Pub Date June 15, 2023
Publication Date June 30, 2023
Acceptance Date April 13, 2023
Published in Issue Year 2023

Cite

APA Mursyidin, D. H. (2023). Phenotypic Diversity of Super Local Durian (Durio zibethinus Murr.) Varieties from South Kalimantan, Indonesia: A Case Study. Yuzuncu Yıl University Journal of Agricultural Sciences, 33(2), 259-268. https://doi.org/10.29133/yyutbd.1249017
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.