Research Article
BibTex RIS Cite

Plant Growth Bio-stimulants of Seaweed Extract (Sargasum boveanum): Implications Towards Sustainable Production of Cucumber

Year 2023, , 478 - 490, 30.09.2023
https://doi.org/10.29133/yyutbd.1288078

Abstract

The purpose of this experiment was to compare the growth and quality of cucumber fruits, in response to different concentrations (C0, C0.75, and C1.5 g L-1) and different application methods (M1: foliar sprays, M2: fertigation, M3: combined foliar sprays and fertigation) of seaweed extract (SwE). The simultaneous use of the method and different concentration of SwE increased the fresh weight of the leaf, fruit weight, yield, number of leaves, evaporation, fruit length, fruit diameter and firmness, stomatal conductance, and nitrate concentration of fruit. On the other hand, the highest amount of fruit firmness (69.25 and 69.27 N) was observed in M2C0.75 and M2C1.5 compared to other treatments, respectively. The M1C0.75 treatment increased the fruit diameter by 26.52% more than the M1C0 treatment. Fruit weight, fruit length, and yield were in the following order in different treatments, M1C1.5˃ M1C0.75 ˃ M3C1.5. So that only in the M1C1.5 treatment, fruit weight, yield, and fruit length were 25, 52.55, and 25.86% higher than the M1C0 treatment, respectively. Generally, the M1 and M3 in concentrations of 0.75 and 1.5 created better plant growth, fruit shape, and quality characteristics compared to the second method (M2) and the C0 treatment. Therefore, the concentration of 1.5 g L-1 and the use of foliar spraying methods, and the combination of foliar spraying and fertigation can be recommended to achieve the maximum yield and quality of cucumber fruits.

Supporting Institution

Shahid Chamran University of Ahvaz, Ahvaz, Iran.

Project Number

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Thanks

We would like to acknowledge to Dr. Gh. Mohebbi for providing seaweed for this research. We also thank the vice chancellor for research at Shahid Chamran University of Ahvaz.

References

  • Abdel-Latif, H. H., Shams El-Din, N. G., & Ibrahim, H. A. (2018). Antimicrobial activity of the newly recorded red alga Grateloupia doryphora collected from the Eastern Harbor, Alexandria, Egypt. Journal of Applied Microbiology, 125(5), 1321-1332.
  • Abdel-Mawgoud, A. M. R., Tantaway, A. S., Hafez, M. M., & Habib, H. A. (2010). Seaweed extract improves growth, yield and quality of different watermelon hybrids. Research Journal of Agriculture and Biological Sciences, 6(2), 161-168.
  • Abbas, M., Anwar, J., Zafar-ul-Hye, M., Iqbal Khan, R., Saleem, M., Rahi, A. A., Danish, S., & Datta, R. (2020). Effect of seaweed extract on productivity and quality attributes of four onion cultivars. Horticulturae, 6(2), 28.
  • Ahmed, D. A. E. A., Gheda, S. F., & Ismail, G. A. (2021). Efficacy of two seaweeds dry mass in bioremediation of heavy metal polluted soil and growth of radish (Raphanus sativus L.) plant. Environmental Science and Pollution Research, 28, 12831-12846.
  • Ali, N., Farrell, A., Ramsubhag, A., & Jayaraman, J. (2016). The effect of Ascophyllum nodosum extract on the growth, yield and fruit quality of tomato grown under tropical conditions. Journal of Applied Phycology, 28, 1353-1362.
  • Ashour, M., El-Shafei, A. A., Khairy, H. M., Abd-Elkader, D. Y., Mattar, M. A., Alataway, A., & Hassan, S. M. (2020). Effect of Pterocladia capillacea seaweed extracts on growth parameters and biochemical constituents of Jew’s Mallow. Agronomy, 10(3), 420.
  • Bajpai, V. K. (2016). Antimicrobial bioactive compounds from marine algae: A. mini review. Indian Journal of Geo-Marine Sciences, 45, 1076–1085.
  • Basile, B., Brown, N., Valdes, J. M., Cardarelli, M., Scognamiglio, P., Mataffo, A., Rouphael, Y., Bonini, P., & Colla, G. (2021). Plant-based biostimulant as sustainable alternative to synthetic growth regulators in two sweet cherry cultivars. Plants, 10(4), 619.
  • Billard, V., Etienne, P., Jannin, L., Garnica, M., Cruz, F., Garcia-Mina, J. M., Yvin, J. C., & Ourry, A. (2014). Two biostimulants derived from algae or humic acid induce similar responses in the mineral content and gene expression of winter oilseed rape (Brassica napus L.). Journal of Plant Growth Regulation, 33, 305-316.
  • Colla, G., Cardarelli, M., Bonini, P., & Rouphael, Y. (2017). Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. HortScience, 52(9), 1214-1220.
  • Consentino, B. B., Sabatino, L., Mauro, R. P., Nicoletto, C., De Pasquale, C., Iapichino, G., & La Bella, S. (2021). Seaweed extract improves Lagenaria siceraria young shoot production, mineral profile and functional quality. Horticulturae, 7(12), 549.
  • Consentino, B. B., Virga, G., La Placa, G. G., Sabatino, L., Rouphael, Y., Ntatsi, G., Iapichino, G., La Bella, S., Mauro, R. P., D’Anna, F., et al. (2020). Celery (Apium graveolens L.) performances as subjected to different sources of protein hydrolysates. Plants, 9(12), 1633.
  • Cozzolino, E., Di Mola, I., Ottaiano, L., El-Nakhel, C., Rouphael, Y., & Mori, M. (2021). Foliar application of plant-based biostimulants improve yield and upgrade qualitative characteristics of processing tomato. Italian Journal of Agronomy, 16(2).
  • Desoky, E. S., Elrys, A. S., Mansour, E., Eid, R. S., Selem, E., Rady, M. M., Ali, E. F., Mersal, G. A., & Semida, W. M. (2021). Application of biostimulants promotes growth and productivity by fortifying the antioxidant machinery and suppressing oxidative stress in faba bean under various abiotic stresses. Scientia Horticulturae, 288,110340.
  • Di Mola, I., Conti, S., Cozzolino, E., Melchionna, G., Ottaiano, L., Testa, A., Sabatino, L., Rouphael, Y., & Mori, M. (2021). Plant-Based Protein Hydrolysate Improves Salinity Tolerance in Hemp: Agronomical and Physiological Aspects. Agronomy, 11, 342.
  • Ertani, A., Schiavon, M., & Nardi, S. (2017). Transcriptome-wide identification of differentially expressed genes in Solanum lycopersicon L. in response to an alfalfa-protein hydrolysate using microarrays. Frontiers in Plant Science, 8, 1159.
  • Haider, M. W., Ayyub, C. M., Pervez, M. A., Asad, H. U., Manan, A., Raza, S. A., & Ashraf, I. (2012). Impact of foliar application of seaweed extract on growth, yield andquality of potato (Solanum tuberosum L.). Soil and Environment, 31, 157-162.
  • Hamed, S. M., Abd El-Rhman, A. A., Abdel-Raouf, N., & Ibraheem, I. B. (2018). Role of marine macroalgae in plant protection & improvement for sustainable agriculture technology. Beni-Suef University Journal of Basic and Applied Sciences, 7(1), 104-110.
  • Hassan, E. F., & Hussein, A. A. (2020). Effect of soil coverage with organic mulching and spraying with seaweed extract on some vegetative and productive traits of cucumber grown in greenhouses. Diyala Agricultural Sciences Journal, 12(special Issue), 206-220.
  • Hassan, S. M., Ashour, M., Sakai, N., Zhang, L., Hassanien, H. A., Gaber, A., & Ammar, G. (2021). Impact of seaweed liquid extract biostimulant on growth, yield, and chemical composition of cucumber (Cucumis sativus). Agriculture, 11(4), 320.
  • Hocking, B., Tyerman, S. D., Burton, R. A., & Gilliham, M. (2016). Fruit Calcium: Transport and Physiology. Frontiers in Plant Science, 7, 569.
  • Khalifeh, T., Vazirizadeh, A., Mohebbi, Gh., Barmak, A. R., & Darabi, A. H. (2021). Determination of some nutraceutical compounds, amino acids and fatty acids present in the extracts of Sargasum boveanum algae obtained from the coastal waters of central bushehr, Iran. Iranian South Medical Journal, 24(2), 134-159.
  • Kocira, S., Szparaga, A., Hara, P., Treder, K., Findura, P., Bartoš, P., & Filip, M. (2020). Biochemical and economical effect of application biostimulants containing seaweed extracts and amino acids as an element of agroecological management of bean cultivation. Scientific Reports, 10(1), 1-16.
  • Kumari, R., Kaur, I., & Bhatnagar, A. K. (2011). Effect of aqueous extract of Sargassum johnstonii Setchell & Gardner on growth, yield and quality of Lycopersicon esculentum Mill. Journal of Applied Phycology, 23, 623-633.
  • La Bella, S., Consentino, B. B., Rouphael, Y., Ntatsi, G., De Pasquale, C., Iapichino, G., & Sabatino, L. (2021). Impact of Ecklonia maxima seaweed extract and Mo foliar treatments on biofortification, spinach yield, quality and NUE. Plants, 10, 1139.
  • Lucini, L., Rouphael, Y., Cardarelli, M., Bonini, P., Baffi, C., & Colla, G. (2018). A vegetal biopolymer-based biostimulant promoted root growth in melon while triggering brassinosteroids and stress-related compounds. Frontiers in Plant Science, 9, 472.
  • Mannino, G., Campobenedetto, C., Vigliante, I., Contartese, V., Gentile, C., & Bertea, C. M. (2020). The application of a plant biostimulant based on seaweed and yeast extract improved tomato fruit development and quality. Biomolecules, 10(12), 1662.
  • Meng, C., Gu, X., Liang, H., Wu, M., Wu, Q., Yang, L., & Shen, P. (2022). Optimized preparation and high-efficient application of seaweed fertilizer on peanut. Journal of Agriculture and Food Research, 7, 100275.
  • Mohkami, A., & Habibi-Pirkoohi, M. (2019). Inhibitory effect of the brown seaweed Sargassum angustifolium extraction on growth and virulence factors of staphylococcus aureus. Journal of Phycological Research, 3(2), 421-431.
  • Mzibra, A., Aasfar, A., Khouloud, M., Farrie, Y., Boulif, R., Kadmiri, I. M., & Douira, A. (2021). Improving growth, yield, and quality of tomato plants (Solanum lycopersicum L.) by the application of moroccan seaweed-based biostimulants under greenhouse conditions. Agronomy, 11(7), 1373.
  • Ozbay, N., & Demirkiran, A. R. (2019). Enhancement of growth in ornamental pepper (Capsicum annuum L.) Plants with application of a commercial seaweed product, stimplex®. Applied Ecology and Environmental Research, 17, 4361-4375.
  • Rodrigues, M., Baptistella, J. L., Horz, D. C., Bortolato, L. M., & Mazzafera, P. (2020). Organic plant biostimulants and fruit quality-A review. Agronomy, 10, 988.
  • Rouphael, Y., Cardarelli, M., Di Mattia, E., Tullio, M., Rea, E., & Colla, G. (2010). Enhancement of alkalinity tolerance in two cucumber genotypes inoculated with an arbuscular mycorrhizal biofertilizer containing Glomus intraradices. Biology and Fertility of Soils, 46, 499-509.
  • Rouphael, Y., & Colla, G. (2020). Biostimulants in agriculture. Frontiers of Plant Science, 11, 40.
  • Rouphael, Y., Giordano, M., Cardarelli, M., Cozzolino, E., Mori, M., Kyriacou, M. C., & Colla, G. (2018). Plant-and seaweed-based extracts increase yield but differentially modulate nutritional quality of greenhouse spinach through biostimulant action. Agronomy, 8(7),126.
  • Sabatino, L., Consentino, B. B., Rouphael, Y., De Pasquale, C., Iapichino, G., D’Anna, F., La Bella, S. (2021). Protein hydrolysates and Mo-biofortification interactively modulate plant performance and quality of ‘Canasta’ lettuce grown in a protected environment. Agronomy, 11, 1023.
  • Sendur Kumaran, S. (2016). Effect of hydrophilic polymers on yield and quality of tomato. International journal of applied and pure science and agriculture, 2, 56–60. Sestili, F., Rouphael, Y., Cardarelli, M., Pucci, A., Bonini, P., Canaguier, R., & Colla, G. (2018). Protein hydrolysate stimulates growth and N uptake in tomato coupled with N-dependent gene expression involved in N assimilation. Frontiers of Plant Science, 9, 1233.
  • Shabani, E. (2023). Improving the growth, P uptake and quality characteristics of ‘Lollo Rosso’lettuce in the nutrient solution by Bacillus subtilis in different phosphorus concentrations. Journal of Plant Nutrition, 46(6), 971-983.
  • Shafie, F., Bayat, H., Aminifard, M. H., & Daghighi, S. (2021). Biostimulant effects of seaweed extract and amino acids on growth, antioxidants, and nutrient content of yarrow (Achillea millefolium L.) in the field and greenhouse conditions. Communications in Soil Science and Plant Analysis, 52(9), 964-975.
  • Slatnar, A., Konic, A., Žnidarčič, D., Ilin, Ž. M., Adamovič, B., Dumičić, G., & Schmitzer, V. (2019). The influence of biostimulators based on brown seaweed (Ascophyllum nodosum L.) on cucumber yield and fruit quality. Sa54, 302.
  • Szczepanek, M., Wszelaczyńska, E., Pobereżny, J., & Ochmian, I. (2017). Response of onion (Allium cepa L.) to the method of seaweed biostimulant application. Acta Scientiarum Polonorum, Hortorum Cultus, 16(2), 113-122.
  • Tabatabaei, S. J. (2013). Principles of mineral Nutrition Plant. University of Tabriz press. Tabriz, Iran.
  • Tahiluddin, A., Irin, S. S., Jumadil, K., Muddihil, R., & Terzi, E. (2022). Use of brown seaweed extracts as bio-fertilizers and their effects on the carrageenan yield, ice-ice disease occurrence, and growth rate of the red seaweed Kappaphycus striatus. Yuzuncu Yıl University Journal of Agricultural Sciences, 32(2), 436-447.
  • Trejo Valencia, R., Sánchez Acosta, L., Fortis Hernández, M., Preciado Rangel, P., Gallegos Robles, M. Á., Antonio Cruz, R. D. C., & Vázquez Vázquez, C. (2018). Effect of seaweed aqueous extracts and compost on vegetative growth, yield, and nutraceutical quality of cucumber (Cucumis sativus L.) fruit. Agronomy, 8(11), 264.
  • Tsouvaltzis, P., Koukounaras, A., & Siomos, A. S. (2014). Application of amino acids improves lettuce crop uniformity and inhibits nitrate accumulation induced by the supplemental inorganic nitrogen fertilization. International Journal of Agriculture and Biology, 16(5), 951-955.
  • Xu, C., & Leskovar, D. I. (2015). Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition value under drought stress. Scientia Horticulturae, 183, 39-47.
Year 2023, , 478 - 490, 30.09.2023
https://doi.org/10.29133/yyutbd.1288078

Abstract

Project Number

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

References

  • Abdel-Latif, H. H., Shams El-Din, N. G., & Ibrahim, H. A. (2018). Antimicrobial activity of the newly recorded red alga Grateloupia doryphora collected from the Eastern Harbor, Alexandria, Egypt. Journal of Applied Microbiology, 125(5), 1321-1332.
  • Abdel-Mawgoud, A. M. R., Tantaway, A. S., Hafez, M. M., & Habib, H. A. (2010). Seaweed extract improves growth, yield and quality of different watermelon hybrids. Research Journal of Agriculture and Biological Sciences, 6(2), 161-168.
  • Abbas, M., Anwar, J., Zafar-ul-Hye, M., Iqbal Khan, R., Saleem, M., Rahi, A. A., Danish, S., & Datta, R. (2020). Effect of seaweed extract on productivity and quality attributes of four onion cultivars. Horticulturae, 6(2), 28.
  • Ahmed, D. A. E. A., Gheda, S. F., & Ismail, G. A. (2021). Efficacy of two seaweeds dry mass in bioremediation of heavy metal polluted soil and growth of radish (Raphanus sativus L.) plant. Environmental Science and Pollution Research, 28, 12831-12846.
  • Ali, N., Farrell, A., Ramsubhag, A., & Jayaraman, J. (2016). The effect of Ascophyllum nodosum extract on the growth, yield and fruit quality of tomato grown under tropical conditions. Journal of Applied Phycology, 28, 1353-1362.
  • Ashour, M., El-Shafei, A. A., Khairy, H. M., Abd-Elkader, D. Y., Mattar, M. A., Alataway, A., & Hassan, S. M. (2020). Effect of Pterocladia capillacea seaweed extracts on growth parameters and biochemical constituents of Jew’s Mallow. Agronomy, 10(3), 420.
  • Bajpai, V. K. (2016). Antimicrobial bioactive compounds from marine algae: A. mini review. Indian Journal of Geo-Marine Sciences, 45, 1076–1085.
  • Basile, B., Brown, N., Valdes, J. M., Cardarelli, M., Scognamiglio, P., Mataffo, A., Rouphael, Y., Bonini, P., & Colla, G. (2021). Plant-based biostimulant as sustainable alternative to synthetic growth regulators in two sweet cherry cultivars. Plants, 10(4), 619.
  • Billard, V., Etienne, P., Jannin, L., Garnica, M., Cruz, F., Garcia-Mina, J. M., Yvin, J. C., & Ourry, A. (2014). Two biostimulants derived from algae or humic acid induce similar responses in the mineral content and gene expression of winter oilseed rape (Brassica napus L.). Journal of Plant Growth Regulation, 33, 305-316.
  • Colla, G., Cardarelli, M., Bonini, P., & Rouphael, Y. (2017). Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. HortScience, 52(9), 1214-1220.
  • Consentino, B. B., Sabatino, L., Mauro, R. P., Nicoletto, C., De Pasquale, C., Iapichino, G., & La Bella, S. (2021). Seaweed extract improves Lagenaria siceraria young shoot production, mineral profile and functional quality. Horticulturae, 7(12), 549.
  • Consentino, B. B., Virga, G., La Placa, G. G., Sabatino, L., Rouphael, Y., Ntatsi, G., Iapichino, G., La Bella, S., Mauro, R. P., D’Anna, F., et al. (2020). Celery (Apium graveolens L.) performances as subjected to different sources of protein hydrolysates. Plants, 9(12), 1633.
  • Cozzolino, E., Di Mola, I., Ottaiano, L., El-Nakhel, C., Rouphael, Y., & Mori, M. (2021). Foliar application of plant-based biostimulants improve yield and upgrade qualitative characteristics of processing tomato. Italian Journal of Agronomy, 16(2).
  • Desoky, E. S., Elrys, A. S., Mansour, E., Eid, R. S., Selem, E., Rady, M. M., Ali, E. F., Mersal, G. A., & Semida, W. M. (2021). Application of biostimulants promotes growth and productivity by fortifying the antioxidant machinery and suppressing oxidative stress in faba bean under various abiotic stresses. Scientia Horticulturae, 288,110340.
  • Di Mola, I., Conti, S., Cozzolino, E., Melchionna, G., Ottaiano, L., Testa, A., Sabatino, L., Rouphael, Y., & Mori, M. (2021). Plant-Based Protein Hydrolysate Improves Salinity Tolerance in Hemp: Agronomical and Physiological Aspects. Agronomy, 11, 342.
  • Ertani, A., Schiavon, M., & Nardi, S. (2017). Transcriptome-wide identification of differentially expressed genes in Solanum lycopersicon L. in response to an alfalfa-protein hydrolysate using microarrays. Frontiers in Plant Science, 8, 1159.
  • Haider, M. W., Ayyub, C. M., Pervez, M. A., Asad, H. U., Manan, A., Raza, S. A., & Ashraf, I. (2012). Impact of foliar application of seaweed extract on growth, yield andquality of potato (Solanum tuberosum L.). Soil and Environment, 31, 157-162.
  • Hamed, S. M., Abd El-Rhman, A. A., Abdel-Raouf, N., & Ibraheem, I. B. (2018). Role of marine macroalgae in plant protection & improvement for sustainable agriculture technology. Beni-Suef University Journal of Basic and Applied Sciences, 7(1), 104-110.
  • Hassan, E. F., & Hussein, A. A. (2020). Effect of soil coverage with organic mulching and spraying with seaweed extract on some vegetative and productive traits of cucumber grown in greenhouses. Diyala Agricultural Sciences Journal, 12(special Issue), 206-220.
  • Hassan, S. M., Ashour, M., Sakai, N., Zhang, L., Hassanien, H. A., Gaber, A., & Ammar, G. (2021). Impact of seaweed liquid extract biostimulant on growth, yield, and chemical composition of cucumber (Cucumis sativus). Agriculture, 11(4), 320.
  • Hocking, B., Tyerman, S. D., Burton, R. A., & Gilliham, M. (2016). Fruit Calcium: Transport and Physiology. Frontiers in Plant Science, 7, 569.
  • Khalifeh, T., Vazirizadeh, A., Mohebbi, Gh., Barmak, A. R., & Darabi, A. H. (2021). Determination of some nutraceutical compounds, amino acids and fatty acids present in the extracts of Sargasum boveanum algae obtained from the coastal waters of central bushehr, Iran. Iranian South Medical Journal, 24(2), 134-159.
  • Kocira, S., Szparaga, A., Hara, P., Treder, K., Findura, P., Bartoš, P., & Filip, M. (2020). Biochemical and economical effect of application biostimulants containing seaweed extracts and amino acids as an element of agroecological management of bean cultivation. Scientific Reports, 10(1), 1-16.
  • Kumari, R., Kaur, I., & Bhatnagar, A. K. (2011). Effect of aqueous extract of Sargassum johnstonii Setchell & Gardner on growth, yield and quality of Lycopersicon esculentum Mill. Journal of Applied Phycology, 23, 623-633.
  • La Bella, S., Consentino, B. B., Rouphael, Y., Ntatsi, G., De Pasquale, C., Iapichino, G., & Sabatino, L. (2021). Impact of Ecklonia maxima seaweed extract and Mo foliar treatments on biofortification, spinach yield, quality and NUE. Plants, 10, 1139.
  • Lucini, L., Rouphael, Y., Cardarelli, M., Bonini, P., Baffi, C., & Colla, G. (2018). A vegetal biopolymer-based biostimulant promoted root growth in melon while triggering brassinosteroids and stress-related compounds. Frontiers in Plant Science, 9, 472.
  • Mannino, G., Campobenedetto, C., Vigliante, I., Contartese, V., Gentile, C., & Bertea, C. M. (2020). The application of a plant biostimulant based on seaweed and yeast extract improved tomato fruit development and quality. Biomolecules, 10(12), 1662.
  • Meng, C., Gu, X., Liang, H., Wu, M., Wu, Q., Yang, L., & Shen, P. (2022). Optimized preparation and high-efficient application of seaweed fertilizer on peanut. Journal of Agriculture and Food Research, 7, 100275.
  • Mohkami, A., & Habibi-Pirkoohi, M. (2019). Inhibitory effect of the brown seaweed Sargassum angustifolium extraction on growth and virulence factors of staphylococcus aureus. Journal of Phycological Research, 3(2), 421-431.
  • Mzibra, A., Aasfar, A., Khouloud, M., Farrie, Y., Boulif, R., Kadmiri, I. M., & Douira, A. (2021). Improving growth, yield, and quality of tomato plants (Solanum lycopersicum L.) by the application of moroccan seaweed-based biostimulants under greenhouse conditions. Agronomy, 11(7), 1373.
  • Ozbay, N., & Demirkiran, A. R. (2019). Enhancement of growth in ornamental pepper (Capsicum annuum L.) Plants with application of a commercial seaweed product, stimplex®. Applied Ecology and Environmental Research, 17, 4361-4375.
  • Rodrigues, M., Baptistella, J. L., Horz, D. C., Bortolato, L. M., & Mazzafera, P. (2020). Organic plant biostimulants and fruit quality-A review. Agronomy, 10, 988.
  • Rouphael, Y., Cardarelli, M., Di Mattia, E., Tullio, M., Rea, E., & Colla, G. (2010). Enhancement of alkalinity tolerance in two cucumber genotypes inoculated with an arbuscular mycorrhizal biofertilizer containing Glomus intraradices. Biology and Fertility of Soils, 46, 499-509.
  • Rouphael, Y., & Colla, G. (2020). Biostimulants in agriculture. Frontiers of Plant Science, 11, 40.
  • Rouphael, Y., Giordano, M., Cardarelli, M., Cozzolino, E., Mori, M., Kyriacou, M. C., & Colla, G. (2018). Plant-and seaweed-based extracts increase yield but differentially modulate nutritional quality of greenhouse spinach through biostimulant action. Agronomy, 8(7),126.
  • Sabatino, L., Consentino, B. B., Rouphael, Y., De Pasquale, C., Iapichino, G., D’Anna, F., La Bella, S. (2021). Protein hydrolysates and Mo-biofortification interactively modulate plant performance and quality of ‘Canasta’ lettuce grown in a protected environment. Agronomy, 11, 1023.
  • Sendur Kumaran, S. (2016). Effect of hydrophilic polymers on yield and quality of tomato. International journal of applied and pure science and agriculture, 2, 56–60. Sestili, F., Rouphael, Y., Cardarelli, M., Pucci, A., Bonini, P., Canaguier, R., & Colla, G. (2018). Protein hydrolysate stimulates growth and N uptake in tomato coupled with N-dependent gene expression involved in N assimilation. Frontiers of Plant Science, 9, 1233.
  • Shabani, E. (2023). Improving the growth, P uptake and quality characteristics of ‘Lollo Rosso’lettuce in the nutrient solution by Bacillus subtilis in different phosphorus concentrations. Journal of Plant Nutrition, 46(6), 971-983.
  • Shafie, F., Bayat, H., Aminifard, M. H., & Daghighi, S. (2021). Biostimulant effects of seaweed extract and amino acids on growth, antioxidants, and nutrient content of yarrow (Achillea millefolium L.) in the field and greenhouse conditions. Communications in Soil Science and Plant Analysis, 52(9), 964-975.
  • Slatnar, A., Konic, A., Žnidarčič, D., Ilin, Ž. M., Adamovič, B., Dumičić, G., & Schmitzer, V. (2019). The influence of biostimulators based on brown seaweed (Ascophyllum nodosum L.) on cucumber yield and fruit quality. Sa54, 302.
  • Szczepanek, M., Wszelaczyńska, E., Pobereżny, J., & Ochmian, I. (2017). Response of onion (Allium cepa L.) to the method of seaweed biostimulant application. Acta Scientiarum Polonorum, Hortorum Cultus, 16(2), 113-122.
  • Tabatabaei, S. J. (2013). Principles of mineral Nutrition Plant. University of Tabriz press. Tabriz, Iran.
  • Tahiluddin, A., Irin, S. S., Jumadil, K., Muddihil, R., & Terzi, E. (2022). Use of brown seaweed extracts as bio-fertilizers and their effects on the carrageenan yield, ice-ice disease occurrence, and growth rate of the red seaweed Kappaphycus striatus. Yuzuncu Yıl University Journal of Agricultural Sciences, 32(2), 436-447.
  • Trejo Valencia, R., Sánchez Acosta, L., Fortis Hernández, M., Preciado Rangel, P., Gallegos Robles, M. Á., Antonio Cruz, R. D. C., & Vázquez Vázquez, C. (2018). Effect of seaweed aqueous extracts and compost on vegetative growth, yield, and nutraceutical quality of cucumber (Cucumis sativus L.) fruit. Agronomy, 8(11), 264.
  • Tsouvaltzis, P., Koukounaras, A., & Siomos, A. S. (2014). Application of amino acids improves lettuce crop uniformity and inhibits nitrate accumulation induced by the supplemental inorganic nitrogen fertilization. International Journal of Agriculture and Biology, 16(5), 951-955.
  • Xu, C., & Leskovar, D. I. (2015). Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition value under drought stress. Scientia Horticulturae, 183, 39-47.
There are 46 citations in total.

Details

Primary Language English
Subjects Horticultural Production
Journal Section Articles
Authors

Edris Shabani 0000-0002-4208-616X

Naser Alemzadeh Ansari This is me 0000-0002-8122-2400

Mohammad Reza Fayezizadeh This is me 0009-0008-3650-6157

Project Number The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.
Early Pub Date September 11, 2023
Publication Date September 30, 2023
Acceptance Date July 6, 2023
Published in Issue Year 2023

Cite

APA Shabani, E., Alemzadeh Ansari, N., & Fayezizadeh, M. R. (2023). Plant Growth Bio-stimulants of Seaweed Extract (Sargasum boveanum): Implications Towards Sustainable Production of Cucumber. Yuzuncu Yıl University Journal of Agricultural Sciences, 33(3), 478-490. https://doi.org/10.29133/yyutbd.1288078

Creative Commons License
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi CC BY 4.0 lisanslıdır.