Exploring the Potential of Furofuran Lignans Isolated from Beilschmiedia pulverulenta for Drug Development: A Computational Approach
Year 2023,
, 491 - 502, 30.09.2023
Abubakar Siddiq Salihu
Wan Mohd Nuzul Hakimi Wan Salleh
Abstract
Natural products have played a significant role in drug discovery and continue to be an important source of lead for new drugs. In recent years, computer-based drug discovery methods have emerged as an effective approach for identifying small molecule leads with desirable pharmacokinetic and toxicity profiles. This study investigated the pharmacological and bioactivity of five furofuran lignans, namely, epiexcelsin, sesamin, sesartemin, syringaresinol, and yangambin, isolated from the plant Beilschmiedia pulverulenta. In silico studies were conducted to predict the pharmacological activities, toxicity, and drug likeliness properties of the lead compounds. The results showed that all compounds had promising pharmacokinetic activities, with epiexcelsin exhibiting strong binding affinity (-8.13 kcal mol-1) and inhibitory activity (1.1 µM) against estrogen receptor-α, and predicted to be bioavailable and effective lead. The findings of this study provide important insights into the potential therapeutic uses of natural medicinal plants and emphasize the potential of combining traditional medicinal knowledge with modern scientific approaches in drug discovery. Overall, the furofuran lignans isolated from Beilschmiedia pulverulenta represent a promising source of natural compounds for the development of effective drugs.
Supporting Institution
Fundamental University Research Grant (GPUF2022)
Project Number
2022-0130-102-01
Thanks
The authors also would like to thank the Department of Chemistry, Faculty of Science and Mathematics, UPSI for research facilities.
References
- Alexey, L., Rajesh K. G., Gawande, D. Y., Pahwa, P., Gloriozova, T. A., Dmitriev, A., Ivanov, S., Rudik, A. V., Konova, V. I., Pogodin, P. V., Druzhilovsky, D. S. & Vladimir, P. (2014). Chemo- and bioinformatics resources for in silico drug discovery from medicinal plants beyond their traditional use: a critical review. Natural Product Reports, 31(11), 1585-1611. doi: 10.1039/c4np00068d
- Batista, A. N. de L., Batista Junior, J. M., López, S. N., Furlan, M., Cavalheiro, A. J., Silva, D. H. S., Bolzani, V. da S., Nunomura, S. M. & Yoshida, M. (2010). Aromatic compounds from three Brazilian Lauraceae species. Química Nova, 33(2), 321-323. doi: 10.1590/s0100-40422010000200017
BIOVIA Discovery Studio. (2019). Discovery Studio Visualizer. San Diego.
- Daina, A., Michielin, O. & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. doi: 10.1038/srep42717
- Khan, S. U., Ahemad, N., Chuah, L. H., Naidu, R. & Htar, T. T. (2020). Natural bioactive compounds as a new source of promising G protein-coupled estrogen receptor (GPER) modulators: comprehensive in silico approach. Journal of Biomolecular Structure and Dynamics, 40(4), 1617-1628. doi: 10.1080/07391102.2020.1830853
- Lee, S. Y., Lee, D. Y., Kang, J. H., Jeong, J. W., Kim, J. H., Kim, H. W., Oh, D. H., Kim, J. M., Rhim, S. J., Kim, G. D., Kim, H. S., Jang, Y. D., Park, Y. & Hur, S. J. (2022). Alternative experimental approaches to reduce animal use in biomedical studies. Journal of Drug Delivery Science and Technology, 68, 103-131. doi: 10.1016/j.jddst.2022.103131
- Lipinski, C. A. (2000). Drug-like properties and the causes of poor solubility and poor permeability. Journal of Pharmacological and Toxicological Methods, 44(1), 235-249. doi: 10.1016/s1056-8719(00)00107-6
- Mittal, R., Sharma, S. & Kushwah, A. S. (2021). An overview of novel bioactive compounds with potent anti-inflammatory activity via dual COX-2 and 5-LOX enzyme inhibition. Current Bioactive Compounds, 18(9), e301221199689. doi: 10.2174/1573407218666211230151139
- Molinspiration Chemoinformatics software. (2006). Bratislava University, Slovak.
- Paramashivam, S. K., Elayaperumal, K., Natarajan, B., Ramamoorthy, M., Balasubramanian, S. & Dhiraviam, K. (2015). In silico pharmacokinetic and molecular docking studies of small molecules derived from Indigofera aspalathoides Vahl targeting receptor tyrosine kinases. Bioinformation, 11(2), 73-84. doi: 10.6026/97320630011073
- Pushpa, R. R. N. S., Babulal, K.S., Kumaran, R., Shoba, G. & Balakumaran, M. D. (2022). In silico molecular interaction analysis and pharmacokinetic profiling of flavonoids from Catharanthus roseus (flower) against TXNIP protein. Trends in Sciences, 20(1), 6394. doi: 10.48048/tis.2023.6394
- Ramadan, A. K., Bakhotmah, D. A., Abdallah, A.E., Elkady, H., Taghour, M. S., Eissa, I. H. & El-Zahabi, M. A. (2022). Design, synthesis, and biological evaluation of novel bioactive thalidomide analogs as anticancer immunomodulatory agents. RSC Advances, 12(52), 33525-33539. doi: 10.1039/D2RA06188K
- Sadybekov, A. V. & Katritch, V. (2023). Computational approaches streamlining drug discovery. Nature, 616(7958), 673-685. doi: 10.1038/s41586-023-05905-z
- Salihu, A. S., Salleh, W. M. N. H. W. & Ogunwa, T. H. (2023). Chemical composition, acetylcholinesterase inhibition and molecular docking studies of essential oil from Knema hookeriana Warb. (Myristicaceae). Natural Product Research, In press. doi: 10.1080/14786419.2023.2184359
- Salihu, A. S., Salleh, W. M. N. H. W. & Setzer, W. N. (2023). Essential oil composition, anti-tyrosinase activity, and molecular docking studies of Knema intermedia Warb. (Myristicaceae). Zeitschrift für Naturforschung C-Journal of Biosciences, In press. doi: 10.1515/znc-2023-0003
- Salleh, W. M. N. H. W., Ahmad, F., Saidu, J., Abed, S. A., Hashim, N. A. & Khamis, S. (2020). Chemical constituents from Beilschmiedia penangiana Gamble. Chemistry of Natural Compounds, 56(3), 576-577. doi: 10.1007/s10600-020-03097-w
- Salleh, W. M. N. H. W. & Ogunwa, T. H. (2019). Insights into the inhibitory mechanism and molecular interaction of novel alkaloids from Beilschmiedia glabra with lipoxygenase and acetylcholinesterase. Journal of Theoretical and Computational Chemistry, 18(8), 1950038. doi: 10.1142/S021963361950038X
- Salleh, W. M. N. H. W., Ahmad, F., Khong, H. Y. & Zulkifli, R. M. (2016a). Anticholinesterase and anti-inflammatory constituents from Beilschmiedia pulverulenta Kosterm. Natural Product Sciences, 22(4), 225-225. doi: 10.20307/nps.2016.22.4.225
- Salleh, W. M. N. H. W., Ahmad, F., Khong, H. Y. & Razauden, M. Z. (2016b). Chemical composition and biological activities of essential oil of Beilschmiedia pulverulenta. Pharmaceutical Biology, 54(2), 322-330. doi: 10.3109/13880209.2015.1037003
- Salleh, W. M. N. H. W., Ahmad, F., Khong, H. Y. & Zulkifli, R. M. (2016c). Anticholinesterase and anti-inflammatory constituents from Beilschmiedia pulverulenta Kosterm. Natural Product Sciences, 22(4), 225-230. doi: 10.20307/nps.2016.22.4.225
- Salleh, W. M. N. H. W., Ahmad, F., Khong, H. Y., Zulkifli, R. M., Chen, J. J., Nahar, L., Wansi, J. D. & Sarker, S. D. (2016d). Beilschglabrines A and B: Two new bioactive phenanthrene alkaloids from the stem bark of Beilschmiedia glabra. Phytochemistry Letters, 16, 192-196. doi: 10.1016/j.phytol.2016.04.013
- Salleh, W. M. N. H. W., Ahmad, F., Khong, H. Y., Zulkifli, R. M. & Sarker, S. D. (2016e). Madangones A and B: Two new neolignans from the stem bark of Beilschmiedia madang and their bioactivities. Phytochemistry Letters, 15, 68-173. doi: 10.1016/j.phytol.2016.01.004
- Salleh, W. M. N. H. W., Nafiah, M. A., Jauri, M. H. & Khamis, S. (2021). Chemical constituents and acetylcholinesterase inhibitory activity of Beilschmiedia insignis Gamble. Bulletin Chemical Society of Ethiopia, 35(3), 685-691.
- Shams, T., Hoque, M., Suhail, M., Mohammad, M. K., Zughaibi, T. A. & Azhar, A. K. (2022). Identification of anticancer bioactive compounds derived from Ficus sp. by targeting Poly [ADP-ribose] polymerase 1 (PARP-1). Journal of King Saud University - Science, 34(5), 102079-102079. doi: 10.1016/j.jksus.2022.102079
- Shantier, S. W., Ismail, E. M. O., Mohamed, M. S. & Osman, W. (2023). Pharmacokinetics and molecular docking of novel antineoplastic sesquiterpene lactone from Tarchonanthus camphoratus L: an in silico approaches. Structural Chemistry, 34, 703-712. doi: 10.1007/s11224-022-02016-9
- Spartan 14 (112). (2013). Wavefunction, Inc., Irvine.
- Srimai, V., Ramesh, M., Parameshwar, K. S. & Parthasarathy, T. (2013). Computer-aided design of selective Cytochrome P450 inhibitors and docking studies of alkyl resorcinol derivatives. Medicinal Chemistry Research, 22(11), 5314-5323. doi: 10.1007/s00044-013-0532-5
- Srivastava, A., Rai, S., Singh, M. P. & Srivastava, S. (2022). Computational intelligence-based gene expression analysis in colorectal cancer: a review. In: Raza, K. (eds) Computational Intelligence in Oncology. Studies in Computational Intelligence, Vol. 1016. Springer, Singapore. doi: 10.1007/978-981-16-9221-5_22
- Talib, W. H., Daoud, S., Mahmod, A. I., Hamed, R. A., Awajan, D., Abuarab, S. F., Odeh, L. H., Khater, S. & Al Kury, L. T. (2022). Plants as a source of anticancer agents: from bench to bedside. Molecules, 27(15), 4818. doi: 10.3390/molecules27154818
- Trosset, J. Y. & Cavé, C. (2019). In silico drug-target profiling. In: Moll, J., Carotta, S. (eds) Target Identification and Validation in Drug Discovery. Methods in Molecular Biology, vol 1953. Humana Press, New York, NY. doi: 10.1007/978-1-4939-9145-7_6
- Tsoi, H., Tsang, W. C., Man, E. P. S., Leung, M. H., You, C. P., Chan, S. Y., Chan, W. L. & Khoo, U. S. (2022). Checkpoint kinase 2 inhibition can reverse tamoxifen resistance in ER-positive breast cancer. International Journal of Molecular Sciences, 23(20), 12290. doi: 10.3390/ijms232012290
- Umar, A. B. & Uzairu, A. (2023). New flavone-based arylamides as potential V600E-BRAF inhibitors: Molecular docking, DFT, and pharmacokinetic properties. Journal of Taibah University Medical Sciences, 18(5), 1000-1010. doi: 10.1016/j.jtumed.2023.02.010
- Utomo, R. Y., Wulandari, F., Novitasari, D., Susidarti, R. A., Kirihata, M., Hermawan, A. & Meiyanto, E. (2022). Synthesis and cytotoxicity of the boron carrier pentagamaboronon-0-ol for boron neutron capture therapy against breast cancer. Journal of Advanced Pharmaceutical Technology & Research, 13(1), 70-76. doi: 10.4103/japtr.japtr_220_21
- Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W. & Kopple, K. D. (2002). Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. Journal of Medicinal Chemistry, 45(12), 2615-2623. doi: 10.1021/jm020017n
- Xu, W. H., Zhao, P., Wang, M. & Liang, Q. (2018). Naturally occurring furofuran lignans: structural diversity and biological activities. Natural Product Research, 33(9), 1357-1373. doi: 10.1080/14786419.2018.1474467
- Yu, E., Xu, Y., Shi, Y., Yu, Q., Liu, J. & Xu, L. (2019). Discovery of novel natural compound inhibitors targeting estrogen receptor α by an integrated virtual screening strategy. Journal of Molecular Modeling, 25(9), 278. doi: 10.1007/s00894-019-4156-7
Year 2023,
, 491 - 502, 30.09.2023
Abubakar Siddiq Salihu
Wan Mohd Nuzul Hakimi Wan Salleh
Project Number
2022-0130-102-01
References
- Alexey, L., Rajesh K. G., Gawande, D. Y., Pahwa, P., Gloriozova, T. A., Dmitriev, A., Ivanov, S., Rudik, A. V., Konova, V. I., Pogodin, P. V., Druzhilovsky, D. S. & Vladimir, P. (2014). Chemo- and bioinformatics resources for in silico drug discovery from medicinal plants beyond their traditional use: a critical review. Natural Product Reports, 31(11), 1585-1611. doi: 10.1039/c4np00068d
- Batista, A. N. de L., Batista Junior, J. M., López, S. N., Furlan, M., Cavalheiro, A. J., Silva, D. H. S., Bolzani, V. da S., Nunomura, S. M. & Yoshida, M. (2010). Aromatic compounds from three Brazilian Lauraceae species. Química Nova, 33(2), 321-323. doi: 10.1590/s0100-40422010000200017
BIOVIA Discovery Studio. (2019). Discovery Studio Visualizer. San Diego.
- Daina, A., Michielin, O. & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. doi: 10.1038/srep42717
- Khan, S. U., Ahemad, N., Chuah, L. H., Naidu, R. & Htar, T. T. (2020). Natural bioactive compounds as a new source of promising G protein-coupled estrogen receptor (GPER) modulators: comprehensive in silico approach. Journal of Biomolecular Structure and Dynamics, 40(4), 1617-1628. doi: 10.1080/07391102.2020.1830853
- Lee, S. Y., Lee, D. Y., Kang, J. H., Jeong, J. W., Kim, J. H., Kim, H. W., Oh, D. H., Kim, J. M., Rhim, S. J., Kim, G. D., Kim, H. S., Jang, Y. D., Park, Y. & Hur, S. J. (2022). Alternative experimental approaches to reduce animal use in biomedical studies. Journal of Drug Delivery Science and Technology, 68, 103-131. doi: 10.1016/j.jddst.2022.103131
- Lipinski, C. A. (2000). Drug-like properties and the causes of poor solubility and poor permeability. Journal of Pharmacological and Toxicological Methods, 44(1), 235-249. doi: 10.1016/s1056-8719(00)00107-6
- Mittal, R., Sharma, S. & Kushwah, A. S. (2021). An overview of novel bioactive compounds with potent anti-inflammatory activity via dual COX-2 and 5-LOX enzyme inhibition. Current Bioactive Compounds, 18(9), e301221199689. doi: 10.2174/1573407218666211230151139
- Molinspiration Chemoinformatics software. (2006). Bratislava University, Slovak.
- Paramashivam, S. K., Elayaperumal, K., Natarajan, B., Ramamoorthy, M., Balasubramanian, S. & Dhiraviam, K. (2015). In silico pharmacokinetic and molecular docking studies of small molecules derived from Indigofera aspalathoides Vahl targeting receptor tyrosine kinases. Bioinformation, 11(2), 73-84. doi: 10.6026/97320630011073
- Pushpa, R. R. N. S., Babulal, K.S., Kumaran, R., Shoba, G. & Balakumaran, M. D. (2022). In silico molecular interaction analysis and pharmacokinetic profiling of flavonoids from Catharanthus roseus (flower) against TXNIP protein. Trends in Sciences, 20(1), 6394. doi: 10.48048/tis.2023.6394
- Ramadan, A. K., Bakhotmah, D. A., Abdallah, A.E., Elkady, H., Taghour, M. S., Eissa, I. H. & El-Zahabi, M. A. (2022). Design, synthesis, and biological evaluation of novel bioactive thalidomide analogs as anticancer immunomodulatory agents. RSC Advances, 12(52), 33525-33539. doi: 10.1039/D2RA06188K
- Sadybekov, A. V. & Katritch, V. (2023). Computational approaches streamlining drug discovery. Nature, 616(7958), 673-685. doi: 10.1038/s41586-023-05905-z
- Salihu, A. S., Salleh, W. M. N. H. W. & Ogunwa, T. H. (2023). Chemical composition, acetylcholinesterase inhibition and molecular docking studies of essential oil from Knema hookeriana Warb. (Myristicaceae). Natural Product Research, In press. doi: 10.1080/14786419.2023.2184359
- Salihu, A. S., Salleh, W. M. N. H. W. & Setzer, W. N. (2023). Essential oil composition, anti-tyrosinase activity, and molecular docking studies of Knema intermedia Warb. (Myristicaceae). Zeitschrift für Naturforschung C-Journal of Biosciences, In press. doi: 10.1515/znc-2023-0003
- Salleh, W. M. N. H. W., Ahmad, F., Saidu, J., Abed, S. A., Hashim, N. A. & Khamis, S. (2020). Chemical constituents from Beilschmiedia penangiana Gamble. Chemistry of Natural Compounds, 56(3), 576-577. doi: 10.1007/s10600-020-03097-w
- Salleh, W. M. N. H. W. & Ogunwa, T. H. (2019). Insights into the inhibitory mechanism and molecular interaction of novel alkaloids from Beilschmiedia glabra with lipoxygenase and acetylcholinesterase. Journal of Theoretical and Computational Chemistry, 18(8), 1950038. doi: 10.1142/S021963361950038X
- Salleh, W. M. N. H. W., Ahmad, F., Khong, H. Y. & Zulkifli, R. M. (2016a). Anticholinesterase and anti-inflammatory constituents from Beilschmiedia pulverulenta Kosterm. Natural Product Sciences, 22(4), 225-225. doi: 10.20307/nps.2016.22.4.225
- Salleh, W. M. N. H. W., Ahmad, F., Khong, H. Y. & Razauden, M. Z. (2016b). Chemical composition and biological activities of essential oil of Beilschmiedia pulverulenta. Pharmaceutical Biology, 54(2), 322-330. doi: 10.3109/13880209.2015.1037003
- Salleh, W. M. N. H. W., Ahmad, F., Khong, H. Y. & Zulkifli, R. M. (2016c). Anticholinesterase and anti-inflammatory constituents from Beilschmiedia pulverulenta Kosterm. Natural Product Sciences, 22(4), 225-230. doi: 10.20307/nps.2016.22.4.225
- Salleh, W. M. N. H. W., Ahmad, F., Khong, H. Y., Zulkifli, R. M., Chen, J. J., Nahar, L., Wansi, J. D. & Sarker, S. D. (2016d). Beilschglabrines A and B: Two new bioactive phenanthrene alkaloids from the stem bark of Beilschmiedia glabra. Phytochemistry Letters, 16, 192-196. doi: 10.1016/j.phytol.2016.04.013
- Salleh, W. M. N. H. W., Ahmad, F., Khong, H. Y., Zulkifli, R. M. & Sarker, S. D. (2016e). Madangones A and B: Two new neolignans from the stem bark of Beilschmiedia madang and their bioactivities. Phytochemistry Letters, 15, 68-173. doi: 10.1016/j.phytol.2016.01.004
- Salleh, W. M. N. H. W., Nafiah, M. A., Jauri, M. H. & Khamis, S. (2021). Chemical constituents and acetylcholinesterase inhibitory activity of Beilschmiedia insignis Gamble. Bulletin Chemical Society of Ethiopia, 35(3), 685-691.
- Shams, T., Hoque, M., Suhail, M., Mohammad, M. K., Zughaibi, T. A. & Azhar, A. K. (2022). Identification of anticancer bioactive compounds derived from Ficus sp. by targeting Poly [ADP-ribose] polymerase 1 (PARP-1). Journal of King Saud University - Science, 34(5), 102079-102079. doi: 10.1016/j.jksus.2022.102079
- Shantier, S. W., Ismail, E. M. O., Mohamed, M. S. & Osman, W. (2023). Pharmacokinetics and molecular docking of novel antineoplastic sesquiterpene lactone from Tarchonanthus camphoratus L: an in silico approaches. Structural Chemistry, 34, 703-712. doi: 10.1007/s11224-022-02016-9
- Spartan 14 (112). (2013). Wavefunction, Inc., Irvine.
- Srimai, V., Ramesh, M., Parameshwar, K. S. & Parthasarathy, T. (2013). Computer-aided design of selective Cytochrome P450 inhibitors and docking studies of alkyl resorcinol derivatives. Medicinal Chemistry Research, 22(11), 5314-5323. doi: 10.1007/s00044-013-0532-5
- Srivastava, A., Rai, S., Singh, M. P. & Srivastava, S. (2022). Computational intelligence-based gene expression analysis in colorectal cancer: a review. In: Raza, K. (eds) Computational Intelligence in Oncology. Studies in Computational Intelligence, Vol. 1016. Springer, Singapore. doi: 10.1007/978-981-16-9221-5_22
- Talib, W. H., Daoud, S., Mahmod, A. I., Hamed, R. A., Awajan, D., Abuarab, S. F., Odeh, L. H., Khater, S. & Al Kury, L. T. (2022). Plants as a source of anticancer agents: from bench to bedside. Molecules, 27(15), 4818. doi: 10.3390/molecules27154818
- Trosset, J. Y. & Cavé, C. (2019). In silico drug-target profiling. In: Moll, J., Carotta, S. (eds) Target Identification and Validation in Drug Discovery. Methods in Molecular Biology, vol 1953. Humana Press, New York, NY. doi: 10.1007/978-1-4939-9145-7_6
- Tsoi, H., Tsang, W. C., Man, E. P. S., Leung, M. H., You, C. P., Chan, S. Y., Chan, W. L. & Khoo, U. S. (2022). Checkpoint kinase 2 inhibition can reverse tamoxifen resistance in ER-positive breast cancer. International Journal of Molecular Sciences, 23(20), 12290. doi: 10.3390/ijms232012290
- Umar, A. B. & Uzairu, A. (2023). New flavone-based arylamides as potential V600E-BRAF inhibitors: Molecular docking, DFT, and pharmacokinetic properties. Journal of Taibah University Medical Sciences, 18(5), 1000-1010. doi: 10.1016/j.jtumed.2023.02.010
- Utomo, R. Y., Wulandari, F., Novitasari, D., Susidarti, R. A., Kirihata, M., Hermawan, A. & Meiyanto, E. (2022). Synthesis and cytotoxicity of the boron carrier pentagamaboronon-0-ol for boron neutron capture therapy against breast cancer. Journal of Advanced Pharmaceutical Technology & Research, 13(1), 70-76. doi: 10.4103/japtr.japtr_220_21
- Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W. & Kopple, K. D. (2002). Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. Journal of Medicinal Chemistry, 45(12), 2615-2623. doi: 10.1021/jm020017n
- Xu, W. H., Zhao, P., Wang, M. & Liang, Q. (2018). Naturally occurring furofuran lignans: structural diversity and biological activities. Natural Product Research, 33(9), 1357-1373. doi: 10.1080/14786419.2018.1474467
- Yu, E., Xu, Y., Shi, Y., Yu, Q., Liu, J. & Xu, L. (2019). Discovery of novel natural compound inhibitors targeting estrogen receptor α by an integrated virtual screening strategy. Journal of Molecular Modeling, 25(9), 278. doi: 10.1007/s00894-019-4156-7