Research Article
BibTex RIS Cite

Ameliorative Effect of Jamaican Cherry (Muntingia calabura L.) Leaf Extract Toward Glucose Control and Immune Cells Modulation in High Fat Diet-Administrated Mice

Year 2024, , 1 - 13, 31.03.2024
https://doi.org/10.29133/yyutbd.1331257

Abstract

Hyperglycemia is a dangerous condition in which too much glucose circulates in the blood plasma and is the leading cause of diabetes mellitus. It is a complex condition with varying degrees that can change over time, mainly owing to metabolic factors that reduce insulin secretion, decrease glucose use, and increase glucose production. This study aims to evaluate Muntingia calabura leaf extract's effect on glucose control and immune cell modulation in high-fat diet-administrated mice. According to the result, we found that M. calabura leaf extract significantly reduced the fasting blood sugar. Importantly, M. calabura leaf extract exerts immunomodulation effects by suppressing the relative number of regulatory T cells in the hypoglycemic mice model. Finally, this study showed M. calabura leaf extract exerts ameliorative potency against hyperglycemia by lowering the blood sugar level and suppressing the regulatory T cells. These results suggested that M. calabura leaf extract could develop into complementary and alternative medicine.

References

  • Abdelkader, N. F., Eitah, H. E., Maklad, Y. A, Gamaleldin, A. A, Badawi, M. A., & Kenawy, S. A. (2020). New combination therapy of gliclazide and quercetin for protection against STZ-induced diabetic rats. Life Sciences, 247(117458), 1-9. doi: 10.1016/j.lfs.2020.117458.
  • Abideen, Z. U., Mahmud, S. N., Rasheed, A., Farooq, Q. Y., & Ali, F. (2017). Central diabetes insipidus and hyperglycemic hyperosmolar state following accidental carbon monoxide poisoning. Cureus, 9(6), 1-6. doi: 10.7759/cureus.1305.
  • Ahn, K. (2017). The worldwide trend of using botanical drugs and strategies for developing global drugs. BMB Reports, 50(3), 111–116. doi: 10.5483/bmbrep.2017.50.3.221.
  • Alam, W., Khan, H., Shah, M. A., Cauli, O., & Saso, L. (2020). Kaempferol as a dietary anti-inflammatory agent: Current therapeutic standing. Molecules, 25(18), 1–13. doi: 10.3390/molecules25184073.
  • American Diabetes Association Professional Practice Committee. (2021). Classification and diagnosis of diabetes: Standards of medical care in diabetes—2022. Diabetes Care, 45(1), 17–38. doi: 10.2337/dc22-S002.
  • Barnett, R. 2018. Type 1 diabetes. Lancet, 391(10117), 195-195. doi: 10.1016/S0140-6736(18)30024-2.
  • Basu, M., Pandit, K., Banerjee, M., Mondal, S. A., Mukhopadhyay, P., & Ghosh, S. (2020). Profile of auto-antibodies (disease related and other) in children with type 1 diabetes. Indian Journal of Endocrinology and Metabolism, 24(3), 256–259. doi: 10.4103/ijem.IJEM_63_20.
  • Budi, E. H., Muthusamy, B. P., & Derynck, R. (2015). The insulin response integrates increased TGF-β signaling through Akt-induced enhancement of cell surface delivery of TGF-β receptors. Science Signaling, 8(396), 1–37. doi: 10.1126/scisignal.aaa9432.
  • Chaudhury, A., Duvoor, C., Reddy, D. V. S., Kralet, S., Chada, A., Ravilla, R., Marco, A., Shekhawat, N. S., Montales, M. T., Kuriakose, K., Sasapu, A., Beebe, A., & Mirza, W. (2017). Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Frontiers in Endocrinology, 8(6), 1–12. doi: 10.3389/fendo.2017.00006.
  • Chen, H-Y., Ho, Y-J., & Chan, H-L. (2020). The role of transforming growth factor-beta in retinal ganglion cells with hyperglycemia and oxidative stress. International Journal of Molecular Sciences, 21(18), 1-21. doi: 10.3390/ijms21186482.
  • Chen, L., Chen, R., Wang, H., & Liang, F. (2015). Mechanisms linking inflammation to insulin resistance. International Journal of Endocrinology, 2015(508409), 1–9. doi: 10.1155/2015/508409.
  • Das, D., Sarkar, S., & Manna, P. (2018). Daidzein, its effects on impaired glucose and lipid metabolism and vascular inflammation associated with type 2 diabetes. BioFactors, 44(5), 407–417. doi: 10.1002/biof.1439.
  • Den Hartogh, D. J., Gabriel, A., & Tsiani, E. (2020). Antidiabetic properties of curcumin I: Evidence from in vitro studies. Nutrients, 12(1), 1–32. doi: 10.3390/nu12010118.
  • Dhanya, R. (2022). Quercetin for managing type 2 diabetes and its complications, an insight into multitarget therapy. Biomedicine & Pharmacotherapy, 146(112560), 1–7. doi: 10.1016/j.biopha.2021.112560.
  • Dhawan, S., Dirice, E., Kulkarni, R. N., & Bhushan, A. (2016). Inhibition of TGF-β signaling promotes human pancreatic β-cell replication. Diabetes, 65(5), 1208–1218. doi: 10.2337/db15-1331.
  • Eguchi, N., Vaziri, N. D., Dafoe, D. C., & Ichii, H. (2021). The role of oxidative stress in pancreatic β cell dysfunction in diabetes. International Journal of Molecular Sciences, 22(4), 1–18. doi: 10.3390/ijms22041509.
  • El-Far, Y. M., Khodir, A. E., Emarah, Z. A., Ebrahim, M. A., & Al-Gayyar, M. M. H. (2022). Chemopreventive and hepatoprotective effects of genistein via inhibition of oxidative stress and the versican/PDGF/PKC signaling pathway in experimentally induced hepatocellular carcinoma in rats by thioacetamide. Redox Report, 27(1), 9–20. doi: 10.1080/13510002.2022.2031515.
  • Ellulu, M. S., Patimah, I., Khaza’a, H., Rahmat, A., & Abed, Y. (2017). Obesity and inflammation: The linking mechanism and the complications. Archieves of Medical Science, 13(4), 851–863. doi: 10.5114/aoms.2016.58928.
  • Escott, G. M., Da Silveira, L. G., & Silveiro, S. P. (2021). Monitoring and management of hyperglycemia in patients with advanced diabetic kidney disease. Journal of Diabetes and its Complications, 35(2), 1–24. doi: 10.1016/j.jdiacomp.2020.107774.
  • Fu, X., Song, M., & Shi, L. (2022). Hypoglycemic and hypolipidemic effects of polysaccharide isolated from Sphacelotheca sorghi in diet‐streptozotocin‐induced T2D mice. Journal of Food Science, 87(4), 1882–1894. doi: 10.1111/1750-3841.16091.
  • Galicia, U., Benito Vicente, A., & Martín, C. (2020). Pathophysiology of type 2 diabetes mellitus. International Journal of Molecular Sciences, 21(17), 1–34. doi: 10.3390/ijms21176275.
  • Goh, Y. X., Jalil, J., Lam, K. W., Husain, K., & Premakumar, C. M. (2022). Genistein: A review on its anti-inflammatory properties. Frontiers in Pharmacology, 13(820969), 1-23. doi: 10.3389/fphar.2022.820969.
  • Goyal, A., Gupta, S., Gupta, Y., & Tandon, N. (2020). Proposed guidelines for screening of hyperglycemia in patients hospitalized with COVID-19 in low resource settings. Diabetes & Metabolic Syndrome, 14(5), 753–756. doi: 10.1016/j.dsx.2020.05.039.
  • Harsch, I. A., Kaestner, R. H., & Konturek, P. C. (2018). Hypoglycemic side effects of sulfonylureas and repaglinide in ageing patients-knowledge and self-management. Journal of Physiology and Pharmacology, 69(4), 647–649. doi: 10.26402/jpp.2018.4.15.
  • Heintzman, D. R., Fisher, E. L., & Rathmell, J. C. (2022). Microenvironmental influences on T cell immunity in cancer and inflammation. Cellular & Molecular Immunology, 19(3), 316–326. doi: 10.1038/s41423-021-00833-2.
  • Hong, Y., Yu, J., & Wang, W. (2020). High-fat diet aggravates acute pancreatitis via TLR4-mediated necroptosis and inflammation in rats. Oxidative Medicine and Cellular Longevity, 2020(8172714), 1–11. doi: 10.1155/2020/8172714.
  • Hull, C. M., Peakman, M., & Tree, T. I. M. (2017). Regulatory T cell dysfunction in type 1 diabetes: what’s broken and how can we fix it? Diabetologia, 60(10), 1839–1850. doi: 10.1007/s00125-017-4377-1.
  • Hyun, K. H., Gil, K. C., Kim, S. G., Park, S., & Hwang, K. W. (2019). Delphinidin chloride and its hydrolytic metabolite gallic acid promote differentiation of regulatory T cells and have an anti-inflammatory effect on the allograft model. Journal of Food Science, 84(4), 920–930. doi: 10.1111/1750-3841.14490.
  • Jamshidi-Kia, F., Lorigooini, Z., & Amini-Khoei, H. (2018). Medicinal plants: Past history and future perspective. Journal of Herbmed Pharmacology, 7(2018), 1–7. doi: 10.15171/jhp.2018.01.
  • Jha, J. C., Banal, C., & Jandeleit-Dahm, K. (2016). Diabetes and kidney disease: Role of oxidative stress. Antioxidants & Redox Signaling, 25(12), 657–684. doi: 10.1089/ars.2016.6664.
  • De Jong, A. J., Kloppenburg, M., Toes, R. E. M., & Ioan-Facsinay, A. (2014). Fatty acids, lipid mediators, and T-cell function. Frontiers in Immunology, 5(483), 1–7. doi: 10.3389/fimmu.2014.00483
  • Kanatsuka, A., Kou, S., & Makino, H. (2018). IAPP/amylin and β-cell failure: Implication of the risk factors of type 2 diabetes. Diabetology International, 9(3), 143–157. doi: 10.1007/s13340-018-0347-1.
  • Kanazawa, L. K. S., Vecchia, D. D., & Andreati, R. (2017). Effects of acute and chronic quercetin administration on methylphenidate-induced hyperlocomotion and oxidative stress. Life Sciences, 171(2017), 1–8. doi: 10.1016/j.lfs.2017.01.007.
  • Kobori, M., Takahashi, Y., & Ippoushi, K. (2016). Quercetin suppresses immune cell accumulation and improves mitochondrial gene expression in adipose tissue of diet‐induced obese mice. Molecular Nutrition & Food Research, 60(2), 300–312. doi: 10.1002/mnfr.201500595.
  • Kochumon, S., Al Madhoun, A., & Ahmad, R. (2020). Elevated adipose tissue associated IL-2 expression in obesity correlates with metabolic inflammation and insulin resistance. Scientific Reports, 10(1), 1–23. doi: 10.1038/s41598-020-73347-y.
  • Lee, J-H., Lee, J-H., & Rane, S. G. (2021). TGF-β Signaling in pancreatic islet β cell development and function. Endocrinology, 162(3), 1–10. doi: 10.1210/endocr/bqaa233.
  • Leyva-López, N., Gutierrez-Grijalva, E. P., Ambriz-Perez, D. L., & Heredia, J. B. (2016). Flavonoids as cytokine modulators: A possible therapy for inflammation-related diseases. International Journal of Molecular Science, 17(6), 1–15. doi: 10.3390/ijms17060921.
  • Lin, F., Luo, X., & Li, B. (2015). Kaempferol enhances the suppressive function of Treg cells by inhibiting FOXP3 phosphorylation. International Immunopharmacology, 28(2), 859–865. doi: 10.1016/j.intimp.2015.03.044.
  • Longo, M., Zatterale, F., & Miele, C. (2019). Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. International Journal of Molecular Sciences, 20(9), 1–23. doi: 10.3390/ijms20092358.
  • Maffettone, A., Rinaldi, M., & Fontanella, A. (2018). Postprandial hyperglycemia: A new frontier in diabetes management? Italian Journal of Medicine, 12(2018), 108–115. doi: 10.4081/itjm.2018.961.
  • Meng, L., Jin, W., & Wang, X. (2015). RIP3-mediated necrotic cell death accelerates systematic inflammation and mortality. Proceedings of the National Academy of Sciences, 112(35), 11007–11012. doi: 10.1073/pnas.1514730112.
  • Noipha, K., & Ninla-Aesong, P. (2018). Antidiabetic activity of Zingiber officinale Roscoe rhizome extract: An in vitro study. HAYATI Journal of Biosciences, 25(4), 1-9. doi: 10.4308/hjb.25.4.160.
  • Nurcholis, W., Iqbal, T. M., Sulistiyani, S., & Liwanda, N. (2023). Profile of secondary metabolites in different parts of the butterfly pea (Clitoria ternatea) plant with antioxidant activity. Yuzuncu Yil University Journal of Agricultural Sciences, 3(2), 231-247. doi: https://doi.org/10.29133/yyutbd.1251495.
  • Ola, M. S. (2021). Does hyperglycemia cause oxidative stress in the diabetic rat retina? Cells, 10(4), 1–15. doi: 10.3390/cells10040794.
  • Ormazabal, V., Nair, S., & Zuñiga, F. 2018. Association between insulin resistance and the development of cardiovascular disease. Cardiovascular Diabetology, 17(1), 1–14. doi: 10.1186/s12933-018-0762-4.
  • Putra, W. E., & Rifa’i, M. (2019). Immunomodulatory activities of Sambucus javanica extracts in DMBA exposed BALB/c mouse. Advanced Pharmaceutical Bulletin, 9(4), 619-623. doi: https://doi.org/10.15171/apb.2019.071.
  • Putra, W. E., & Rifa’i, M. (2020). Assessing the immunomodulatory activity of ethanol extract of Sambucus javanica berries and leaf in chloramphenicol-induced aplastic anemia mouse model. Tropical Life Science Research, 31(2), 175–185. doi: 10.21315/tlsr2020.31.2.9.
  • Putra, W. E., Agusinta, A. K., Ashar, M. S. A. A., Manullang, V. A., & Rifa'i, M. (2023). Immunomodulatory and ameliorative effect of Citrus limon extract on DMBA‐induced breast cancer in mouse. Karbala International Journal of Modern Science, 9(2), 1-14. doi: 10.33640/2405-609X.3273.
  • Putra, W. E., Maulana, A. R., Ramadhan, A. T. K., & Rifa’i, M. (2020). T cells regulation modulated by Sambucus javanica extracts in DMBA-exposed mice. Journal of Herbmed Pharmacology, 9(4), 408-411. doi: https://doi.org/10.34172/jhp.2020.51.
  • Putra, W. E., Soewondo, A., & Rifa’i, M. (2016). Effect of dexamethasone administration toward hematopoietic stem cells and blood progenitor cells expression on BALB/c mice. Journal of Pure and Applied Chemistry Research, 4(3), 100-108. doi: 10.21776/ub.jpacr.2015.004.03.221.
  • Putra, W. E., Soewondo, A., & Rifa'i, M. (2015). Expression of erythroid progenitor cells and erythrocytes on dexamethasone induced-mice. Biotropika, 3(1), 42-45.
  • Putra, W. E., Waffareta, E., Ardiana, O., Januarisasi, I. D., Soewondo, A., & Rifa'i, M. (2017). Dexamethasone-administrated BALB/c mouse promotes proinflammatory cytokine expression and reduces CD4+CD25+ regulatory T cells population. Bioscience Research, 14(2), 201-213.
  • Qiao, Y., Shen, J., & Zhao, H. (2016). Changes of regulatory T cells and of proinflammatory and immunosuppressive cytokines in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Journal of Diabetes Research, 2016(694957), 1–19. doi: 10.1155/2016/3694957.
  • Rahayu, S., Rifa'i, M., Qosimah, D., Widyarti, D., Lestari, N. D., Jatmiko, Y. D., Putra, W. E., & Tsuboi, H. (2022). Benefits of Coriandrum sativum L. seed extract in maintaining immunocompetent cell homeostasis. Sains Malaysiana, 51(8), 2425-2434. doi: https://doi.org/10.17576/jsm-2022-5108.
  • Riddle, M. C., Cefalu, W. T., & Twenefour, D. (2021). Consensus report: Definition and interpretation of remission in type 2 diabetes. Diabetes Care, 44(10), 2438–2444. doi: 10.2337/dci21-0034.
  • Sakamoto, Y., Naka, A., & Iida, K. (2014). Daidzein regulates proinflammatory adipokines thereby improving obesity-related inflammation through PPARγ. Molecular Nutrition & Food Research, 58(4), 718–726. doi: 10.1002/mnfr.201300482.
  • Salehi, B., Machin, L., & Cho, W. C. (2020). Therapeutic potential of quercetin: New insights and perspectives for human health. ACS Omega, 5(20), 11849–11872. doi: 10.1021/acsomega.0c01818.
  • Salvatore, T., Pafundi, P. C., & Adinolfi, L. E. (2019). Metformin lactic acidosis: Should we still be afraid? Diabetes Research and Clinical Practice, 157(107879), 1–31. doi: 10.1016/j.diabres.2019.107879.
  • Saravanan, S., & Pari, L. (2015). Role of thymol on hyperglycemia and hyperlipidemia in high fat diet-induced type 2 diabetic C57BL/6J mice. European Journal of Pharmacology, 761(2015), 279–287. doi: 10.1016/j.ejphar.2015.05.034.
  • Sarojini, S., & Mounika, B. (2018). Muntingia calabura (Jamaica Cherry): An overview. PharmaTutor, 6(11), 1–9. doi: 10.29161/PT.v6.i11.2018.1.
  • Silver, B., Ramaiya, K., & Makhoba, A. (2018). EADSG guidelines: Insulin therapy in diabetes. Diabetes Therapy, 9(2), 449–492. doi: 10.1007/s13300-018-0384-6.
  • Tantengco, O., Condes, M., Estadilla, H., & Ragragio, E. (2018). Ethnobotanical survey of medicinal plants used by Ayta communities in Dinalupihan, Bataan, Philippines. Pharmacognosy Journal, 10(5), 859–870. doi: 10.5530/pj.2018.5.145.
  • Tao, L., Liu, H., & Gong, Y. (2019). Role and mechanism of the Th17/Treg cell balance in the development and progression of insulin resistance. Molecular and Cell Biochemistry, 459(1), 183–188. doi: 10.1007/s11010-019-03561-4.
  • Tu, Y., Li, L., & Zhu, M. (2021). Geniposide attenuates hyperglycemia-induced oxidative stress and inflammation by activating the Nrf2 signaling pathway in experimental diabetic retinopathy. Oxidative Medicine & Cellular Longevity, 2021(9247947), 1–15. doi: 10.1155/2021/9247947.
  • Umpierrez, G., Rushakoff, R., & Kulasa, K. (2020). Hospital diabetes meeting 2020. Journal of Diabetes Science and Technology, 14(5), 928–944. doi: 10.1177/1932296820939626.
  • Volpe, C. M. O., Villar-Delfino, P. H., Dos Anjos, P. M. F., & Nogueira-Machado, J. A. (2018). Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death and Disease, 9(2), 1–9. doi: 10.1038/s41419-017-0135-z.
  • Wang, W., Zhou, X., & Sun, X. 2017. Efficacy and safety of thiazolidinediones in diabetes patients with renal impairment: A systematic review and meta-analysis. Scientific Reports, 7(1), 1–11. doi: 10.1038/s41598-017-01965-0.
  • Wanrooy, B. J., Kumar, K. P., & Wong, C. H. Y. (2018). Distinct contributions of hyperglycemia and high-fat feeding in metabolic syndrome-induced neuroinflammation. Journal of Neuroinflammation, 15(1), 1–13. doi: 10.1186/s12974-018-1329-8.
  • Wondmkun, Y. T. (2020). Obesity, insulin resistance, and type 2 diabetes: Associations and therapeutic implications. Diabetes, Metabolic Syndrome and Obesity, 13(2020), 3611–3616. doi: 10.2147/DMSO.S275898.
  • Wu, P-C., Wu, V-C., & Consortium, N. K. (2017). Meglitinides increase the risk of hypoglycemia in diabetic patients with advanced chronic kidney disease: a nationwide, population-based study. Oncotarget, 8(44), 78086–78095. doi: 10.18632/oncotarget.17475.
  • Xu, Y., Tang, G., & Feng, Y. (2021). Gallic acid and diabetes mellitus: Its association with oxidative stress. Molecules, 26(23), 1–15. doi: 10.3390/molecules26237115.
  • Yang, S-Q., Chen, Y-D., & Gao, W-Y. (2018). Geniposide and gentiopicroside suppress hepatic gluconeogenesis via regulation of AKT-FOXO1 pathway. Archives Medical Research, 49(5), 314–322. doi: 10.1016/j.arcmed.2018.10.005.
  • Yung, J. H. M., & Giacca, A. 2020. Role of c-Jun N-terminal kinase (JNK) in obesity and type 2 diabetes. Cells, 9(3), 1–31. doi: 10.3390/cells9030706.
  • Zakaria, Z. A., Balan, T., & Salleh, M. Z. (2016). Mechanism(s) of action underlying the gastroprotective effect of ethyl acetate fraction obtained from the crude methanolic leaf extract of Muntingia calabura. BMC Complementary and Alternative Medicine, 16(78), 1–17.
  • Zakaria, Z. A., Mahmood, N. D., Omar, M. H., Taher, M., & Basir, R. (2019). Methanol extract of Muntingia calabura leaf attenuates CCl4-induced liver injury: Possible synergistic action of flavonoids and volatile bioactive compounds on endogenous defence system. Pharmaceutical Biology, 57(1), 335–344. doi: 10.1080/13880209.2019.1606836.
  • Zhang, X., Li, J., & Tang, J. (2021). Alleviation of liver dysfunction, oxidative stress, and inflammation underlines the protective effects of polysaccharides from Cordyceps cicadae on high sugar/high fat diet‐induced metabolic syndrome in rats. Chemistry & Biodiversity, 18(5), 1–12. doi: 10.1002/cbdv.202100065.
  • Zhen, Y., Sun, L., & Zhao, Y. (2012). Alterations of peripheral CD4+CD25+Foxp3+ T regulatory cells in mice with STZ-induced diabetes. Cellular & Molecular Immunology, 9(1), 75–85. doi: 10.1038/cmi.2011.37.
  • Zhou, L., He, X., & Chen, Y. (2021). Induced regulatory T cells suppress Tc1 cells through TGF-β signaling to ameliorate STZ-induced type 1 diabetes mellitus. Cellular & Molecular Immunology, 18(3), 698–710. doi: 10.1038/s41423-020-00623-2.
  • Zolkeflee, N. K. Z., Ramli, N. S., Azlan, A., & Abas, F. (2022). In vitro anti-diabetic activities and UHPLC-ESI-MS/MS profile of Muntingia calabura leaf extract. Molecules, 27(1), 1–12. doi: 10.3390/molecules27010287.
Year 2024, , 1 - 13, 31.03.2024
https://doi.org/10.29133/yyutbd.1331257

Abstract

References

  • Abdelkader, N. F., Eitah, H. E., Maklad, Y. A, Gamaleldin, A. A, Badawi, M. A., & Kenawy, S. A. (2020). New combination therapy of gliclazide and quercetin for protection against STZ-induced diabetic rats. Life Sciences, 247(117458), 1-9. doi: 10.1016/j.lfs.2020.117458.
  • Abideen, Z. U., Mahmud, S. N., Rasheed, A., Farooq, Q. Y., & Ali, F. (2017). Central diabetes insipidus and hyperglycemic hyperosmolar state following accidental carbon monoxide poisoning. Cureus, 9(6), 1-6. doi: 10.7759/cureus.1305.
  • Ahn, K. (2017). The worldwide trend of using botanical drugs and strategies for developing global drugs. BMB Reports, 50(3), 111–116. doi: 10.5483/bmbrep.2017.50.3.221.
  • Alam, W., Khan, H., Shah, M. A., Cauli, O., & Saso, L. (2020). Kaempferol as a dietary anti-inflammatory agent: Current therapeutic standing. Molecules, 25(18), 1–13. doi: 10.3390/molecules25184073.
  • American Diabetes Association Professional Practice Committee. (2021). Classification and diagnosis of diabetes: Standards of medical care in diabetes—2022. Diabetes Care, 45(1), 17–38. doi: 10.2337/dc22-S002.
  • Barnett, R. 2018. Type 1 diabetes. Lancet, 391(10117), 195-195. doi: 10.1016/S0140-6736(18)30024-2.
  • Basu, M., Pandit, K., Banerjee, M., Mondal, S. A., Mukhopadhyay, P., & Ghosh, S. (2020). Profile of auto-antibodies (disease related and other) in children with type 1 diabetes. Indian Journal of Endocrinology and Metabolism, 24(3), 256–259. doi: 10.4103/ijem.IJEM_63_20.
  • Budi, E. H., Muthusamy, B. P., & Derynck, R. (2015). The insulin response integrates increased TGF-β signaling through Akt-induced enhancement of cell surface delivery of TGF-β receptors. Science Signaling, 8(396), 1–37. doi: 10.1126/scisignal.aaa9432.
  • Chaudhury, A., Duvoor, C., Reddy, D. V. S., Kralet, S., Chada, A., Ravilla, R., Marco, A., Shekhawat, N. S., Montales, M. T., Kuriakose, K., Sasapu, A., Beebe, A., & Mirza, W. (2017). Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Frontiers in Endocrinology, 8(6), 1–12. doi: 10.3389/fendo.2017.00006.
  • Chen, H-Y., Ho, Y-J., & Chan, H-L. (2020). The role of transforming growth factor-beta in retinal ganglion cells with hyperglycemia and oxidative stress. International Journal of Molecular Sciences, 21(18), 1-21. doi: 10.3390/ijms21186482.
  • Chen, L., Chen, R., Wang, H., & Liang, F. (2015). Mechanisms linking inflammation to insulin resistance. International Journal of Endocrinology, 2015(508409), 1–9. doi: 10.1155/2015/508409.
  • Das, D., Sarkar, S., & Manna, P. (2018). Daidzein, its effects on impaired glucose and lipid metabolism and vascular inflammation associated with type 2 diabetes. BioFactors, 44(5), 407–417. doi: 10.1002/biof.1439.
  • Den Hartogh, D. J., Gabriel, A., & Tsiani, E. (2020). Antidiabetic properties of curcumin I: Evidence from in vitro studies. Nutrients, 12(1), 1–32. doi: 10.3390/nu12010118.
  • Dhanya, R. (2022). Quercetin for managing type 2 diabetes and its complications, an insight into multitarget therapy. Biomedicine & Pharmacotherapy, 146(112560), 1–7. doi: 10.1016/j.biopha.2021.112560.
  • Dhawan, S., Dirice, E., Kulkarni, R. N., & Bhushan, A. (2016). Inhibition of TGF-β signaling promotes human pancreatic β-cell replication. Diabetes, 65(5), 1208–1218. doi: 10.2337/db15-1331.
  • Eguchi, N., Vaziri, N. D., Dafoe, D. C., & Ichii, H. (2021). The role of oxidative stress in pancreatic β cell dysfunction in diabetes. International Journal of Molecular Sciences, 22(4), 1–18. doi: 10.3390/ijms22041509.
  • El-Far, Y. M., Khodir, A. E., Emarah, Z. A., Ebrahim, M. A., & Al-Gayyar, M. M. H. (2022). Chemopreventive and hepatoprotective effects of genistein via inhibition of oxidative stress and the versican/PDGF/PKC signaling pathway in experimentally induced hepatocellular carcinoma in rats by thioacetamide. Redox Report, 27(1), 9–20. doi: 10.1080/13510002.2022.2031515.
  • Ellulu, M. S., Patimah, I., Khaza’a, H., Rahmat, A., & Abed, Y. (2017). Obesity and inflammation: The linking mechanism and the complications. Archieves of Medical Science, 13(4), 851–863. doi: 10.5114/aoms.2016.58928.
  • Escott, G. M., Da Silveira, L. G., & Silveiro, S. P. (2021). Monitoring and management of hyperglycemia in patients with advanced diabetic kidney disease. Journal of Diabetes and its Complications, 35(2), 1–24. doi: 10.1016/j.jdiacomp.2020.107774.
  • Fu, X., Song, M., & Shi, L. (2022). Hypoglycemic and hypolipidemic effects of polysaccharide isolated from Sphacelotheca sorghi in diet‐streptozotocin‐induced T2D mice. Journal of Food Science, 87(4), 1882–1894. doi: 10.1111/1750-3841.16091.
  • Galicia, U., Benito Vicente, A., & Martín, C. (2020). Pathophysiology of type 2 diabetes mellitus. International Journal of Molecular Sciences, 21(17), 1–34. doi: 10.3390/ijms21176275.
  • Goh, Y. X., Jalil, J., Lam, K. W., Husain, K., & Premakumar, C. M. (2022). Genistein: A review on its anti-inflammatory properties. Frontiers in Pharmacology, 13(820969), 1-23. doi: 10.3389/fphar.2022.820969.
  • Goyal, A., Gupta, S., Gupta, Y., & Tandon, N. (2020). Proposed guidelines for screening of hyperglycemia in patients hospitalized with COVID-19 in low resource settings. Diabetes & Metabolic Syndrome, 14(5), 753–756. doi: 10.1016/j.dsx.2020.05.039.
  • Harsch, I. A., Kaestner, R. H., & Konturek, P. C. (2018). Hypoglycemic side effects of sulfonylureas and repaglinide in ageing patients-knowledge and self-management. Journal of Physiology and Pharmacology, 69(4), 647–649. doi: 10.26402/jpp.2018.4.15.
  • Heintzman, D. R., Fisher, E. L., & Rathmell, J. C. (2022). Microenvironmental influences on T cell immunity in cancer and inflammation. Cellular & Molecular Immunology, 19(3), 316–326. doi: 10.1038/s41423-021-00833-2.
  • Hong, Y., Yu, J., & Wang, W. (2020). High-fat diet aggravates acute pancreatitis via TLR4-mediated necroptosis and inflammation in rats. Oxidative Medicine and Cellular Longevity, 2020(8172714), 1–11. doi: 10.1155/2020/8172714.
  • Hull, C. M., Peakman, M., & Tree, T. I. M. (2017). Regulatory T cell dysfunction in type 1 diabetes: what’s broken and how can we fix it? Diabetologia, 60(10), 1839–1850. doi: 10.1007/s00125-017-4377-1.
  • Hyun, K. H., Gil, K. C., Kim, S. G., Park, S., & Hwang, K. W. (2019). Delphinidin chloride and its hydrolytic metabolite gallic acid promote differentiation of regulatory T cells and have an anti-inflammatory effect on the allograft model. Journal of Food Science, 84(4), 920–930. doi: 10.1111/1750-3841.14490.
  • Jamshidi-Kia, F., Lorigooini, Z., & Amini-Khoei, H. (2018). Medicinal plants: Past history and future perspective. Journal of Herbmed Pharmacology, 7(2018), 1–7. doi: 10.15171/jhp.2018.01.
  • Jha, J. C., Banal, C., & Jandeleit-Dahm, K. (2016). Diabetes and kidney disease: Role of oxidative stress. Antioxidants & Redox Signaling, 25(12), 657–684. doi: 10.1089/ars.2016.6664.
  • De Jong, A. J., Kloppenburg, M., Toes, R. E. M., & Ioan-Facsinay, A. (2014). Fatty acids, lipid mediators, and T-cell function. Frontiers in Immunology, 5(483), 1–7. doi: 10.3389/fimmu.2014.00483
  • Kanatsuka, A., Kou, S., & Makino, H. (2018). IAPP/amylin and β-cell failure: Implication of the risk factors of type 2 diabetes. Diabetology International, 9(3), 143–157. doi: 10.1007/s13340-018-0347-1.
  • Kanazawa, L. K. S., Vecchia, D. D., & Andreati, R. (2017). Effects of acute and chronic quercetin administration on methylphenidate-induced hyperlocomotion and oxidative stress. Life Sciences, 171(2017), 1–8. doi: 10.1016/j.lfs.2017.01.007.
  • Kobori, M., Takahashi, Y., & Ippoushi, K. (2016). Quercetin suppresses immune cell accumulation and improves mitochondrial gene expression in adipose tissue of diet‐induced obese mice. Molecular Nutrition & Food Research, 60(2), 300–312. doi: 10.1002/mnfr.201500595.
  • Kochumon, S., Al Madhoun, A., & Ahmad, R. (2020). Elevated adipose tissue associated IL-2 expression in obesity correlates with metabolic inflammation and insulin resistance. Scientific Reports, 10(1), 1–23. doi: 10.1038/s41598-020-73347-y.
  • Lee, J-H., Lee, J-H., & Rane, S. G. (2021). TGF-β Signaling in pancreatic islet β cell development and function. Endocrinology, 162(3), 1–10. doi: 10.1210/endocr/bqaa233.
  • Leyva-López, N., Gutierrez-Grijalva, E. P., Ambriz-Perez, D. L., & Heredia, J. B. (2016). Flavonoids as cytokine modulators: A possible therapy for inflammation-related diseases. International Journal of Molecular Science, 17(6), 1–15. doi: 10.3390/ijms17060921.
  • Lin, F., Luo, X., & Li, B. (2015). Kaempferol enhances the suppressive function of Treg cells by inhibiting FOXP3 phosphorylation. International Immunopharmacology, 28(2), 859–865. doi: 10.1016/j.intimp.2015.03.044.
  • Longo, M., Zatterale, F., & Miele, C. (2019). Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. International Journal of Molecular Sciences, 20(9), 1–23. doi: 10.3390/ijms20092358.
  • Maffettone, A., Rinaldi, M., & Fontanella, A. (2018). Postprandial hyperglycemia: A new frontier in diabetes management? Italian Journal of Medicine, 12(2018), 108–115. doi: 10.4081/itjm.2018.961.
  • Meng, L., Jin, W., & Wang, X. (2015). RIP3-mediated necrotic cell death accelerates systematic inflammation and mortality. Proceedings of the National Academy of Sciences, 112(35), 11007–11012. doi: 10.1073/pnas.1514730112.
  • Noipha, K., & Ninla-Aesong, P. (2018). Antidiabetic activity of Zingiber officinale Roscoe rhizome extract: An in vitro study. HAYATI Journal of Biosciences, 25(4), 1-9. doi: 10.4308/hjb.25.4.160.
  • Nurcholis, W., Iqbal, T. M., Sulistiyani, S., & Liwanda, N. (2023). Profile of secondary metabolites in different parts of the butterfly pea (Clitoria ternatea) plant with antioxidant activity. Yuzuncu Yil University Journal of Agricultural Sciences, 3(2), 231-247. doi: https://doi.org/10.29133/yyutbd.1251495.
  • Ola, M. S. (2021). Does hyperglycemia cause oxidative stress in the diabetic rat retina? Cells, 10(4), 1–15. doi: 10.3390/cells10040794.
  • Ormazabal, V., Nair, S., & Zuñiga, F. 2018. Association between insulin resistance and the development of cardiovascular disease. Cardiovascular Diabetology, 17(1), 1–14. doi: 10.1186/s12933-018-0762-4.
  • Putra, W. E., & Rifa’i, M. (2019). Immunomodulatory activities of Sambucus javanica extracts in DMBA exposed BALB/c mouse. Advanced Pharmaceutical Bulletin, 9(4), 619-623. doi: https://doi.org/10.15171/apb.2019.071.
  • Putra, W. E., & Rifa’i, M. (2020). Assessing the immunomodulatory activity of ethanol extract of Sambucus javanica berries and leaf in chloramphenicol-induced aplastic anemia mouse model. Tropical Life Science Research, 31(2), 175–185. doi: 10.21315/tlsr2020.31.2.9.
  • Putra, W. E., Agusinta, A. K., Ashar, M. S. A. A., Manullang, V. A., & Rifa'i, M. (2023). Immunomodulatory and ameliorative effect of Citrus limon extract on DMBA‐induced breast cancer in mouse. Karbala International Journal of Modern Science, 9(2), 1-14. doi: 10.33640/2405-609X.3273.
  • Putra, W. E., Maulana, A. R., Ramadhan, A. T. K., & Rifa’i, M. (2020). T cells regulation modulated by Sambucus javanica extracts in DMBA-exposed mice. Journal of Herbmed Pharmacology, 9(4), 408-411. doi: https://doi.org/10.34172/jhp.2020.51.
  • Putra, W. E., Soewondo, A., & Rifa’i, M. (2016). Effect of dexamethasone administration toward hematopoietic stem cells and blood progenitor cells expression on BALB/c mice. Journal of Pure and Applied Chemistry Research, 4(3), 100-108. doi: 10.21776/ub.jpacr.2015.004.03.221.
  • Putra, W. E., Soewondo, A., & Rifa'i, M. (2015). Expression of erythroid progenitor cells and erythrocytes on dexamethasone induced-mice. Biotropika, 3(1), 42-45.
  • Putra, W. E., Waffareta, E., Ardiana, O., Januarisasi, I. D., Soewondo, A., & Rifa'i, M. (2017). Dexamethasone-administrated BALB/c mouse promotes proinflammatory cytokine expression and reduces CD4+CD25+ regulatory T cells population. Bioscience Research, 14(2), 201-213.
  • Qiao, Y., Shen, J., & Zhao, H. (2016). Changes of regulatory T cells and of proinflammatory and immunosuppressive cytokines in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Journal of Diabetes Research, 2016(694957), 1–19. doi: 10.1155/2016/3694957.
  • Rahayu, S., Rifa'i, M., Qosimah, D., Widyarti, D., Lestari, N. D., Jatmiko, Y. D., Putra, W. E., & Tsuboi, H. (2022). Benefits of Coriandrum sativum L. seed extract in maintaining immunocompetent cell homeostasis. Sains Malaysiana, 51(8), 2425-2434. doi: https://doi.org/10.17576/jsm-2022-5108.
  • Riddle, M. C., Cefalu, W. T., & Twenefour, D. (2021). Consensus report: Definition and interpretation of remission in type 2 diabetes. Diabetes Care, 44(10), 2438–2444. doi: 10.2337/dci21-0034.
  • Sakamoto, Y., Naka, A., & Iida, K. (2014). Daidzein regulates proinflammatory adipokines thereby improving obesity-related inflammation through PPARγ. Molecular Nutrition & Food Research, 58(4), 718–726. doi: 10.1002/mnfr.201300482.
  • Salehi, B., Machin, L., & Cho, W. C. (2020). Therapeutic potential of quercetin: New insights and perspectives for human health. ACS Omega, 5(20), 11849–11872. doi: 10.1021/acsomega.0c01818.
  • Salvatore, T., Pafundi, P. C., & Adinolfi, L. E. (2019). Metformin lactic acidosis: Should we still be afraid? Diabetes Research and Clinical Practice, 157(107879), 1–31. doi: 10.1016/j.diabres.2019.107879.
  • Saravanan, S., & Pari, L. (2015). Role of thymol on hyperglycemia and hyperlipidemia in high fat diet-induced type 2 diabetic C57BL/6J mice. European Journal of Pharmacology, 761(2015), 279–287. doi: 10.1016/j.ejphar.2015.05.034.
  • Sarojini, S., & Mounika, B. (2018). Muntingia calabura (Jamaica Cherry): An overview. PharmaTutor, 6(11), 1–9. doi: 10.29161/PT.v6.i11.2018.1.
  • Silver, B., Ramaiya, K., & Makhoba, A. (2018). EADSG guidelines: Insulin therapy in diabetes. Diabetes Therapy, 9(2), 449–492. doi: 10.1007/s13300-018-0384-6.
  • Tantengco, O., Condes, M., Estadilla, H., & Ragragio, E. (2018). Ethnobotanical survey of medicinal plants used by Ayta communities in Dinalupihan, Bataan, Philippines. Pharmacognosy Journal, 10(5), 859–870. doi: 10.5530/pj.2018.5.145.
  • Tao, L., Liu, H., & Gong, Y. (2019). Role and mechanism of the Th17/Treg cell balance in the development and progression of insulin resistance. Molecular and Cell Biochemistry, 459(1), 183–188. doi: 10.1007/s11010-019-03561-4.
  • Tu, Y., Li, L., & Zhu, M. (2021). Geniposide attenuates hyperglycemia-induced oxidative stress and inflammation by activating the Nrf2 signaling pathway in experimental diabetic retinopathy. Oxidative Medicine & Cellular Longevity, 2021(9247947), 1–15. doi: 10.1155/2021/9247947.
  • Umpierrez, G., Rushakoff, R., & Kulasa, K. (2020). Hospital diabetes meeting 2020. Journal of Diabetes Science and Technology, 14(5), 928–944. doi: 10.1177/1932296820939626.
  • Volpe, C. M. O., Villar-Delfino, P. H., Dos Anjos, P. M. F., & Nogueira-Machado, J. A. (2018). Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death and Disease, 9(2), 1–9. doi: 10.1038/s41419-017-0135-z.
  • Wang, W., Zhou, X., & Sun, X. 2017. Efficacy and safety of thiazolidinediones in diabetes patients with renal impairment: A systematic review and meta-analysis. Scientific Reports, 7(1), 1–11. doi: 10.1038/s41598-017-01965-0.
  • Wanrooy, B. J., Kumar, K. P., & Wong, C. H. Y. (2018). Distinct contributions of hyperglycemia and high-fat feeding in metabolic syndrome-induced neuroinflammation. Journal of Neuroinflammation, 15(1), 1–13. doi: 10.1186/s12974-018-1329-8.
  • Wondmkun, Y. T. (2020). Obesity, insulin resistance, and type 2 diabetes: Associations and therapeutic implications. Diabetes, Metabolic Syndrome and Obesity, 13(2020), 3611–3616. doi: 10.2147/DMSO.S275898.
  • Wu, P-C., Wu, V-C., & Consortium, N. K. (2017). Meglitinides increase the risk of hypoglycemia in diabetic patients with advanced chronic kidney disease: a nationwide, population-based study. Oncotarget, 8(44), 78086–78095. doi: 10.18632/oncotarget.17475.
  • Xu, Y., Tang, G., & Feng, Y. (2021). Gallic acid and diabetes mellitus: Its association with oxidative stress. Molecules, 26(23), 1–15. doi: 10.3390/molecules26237115.
  • Yang, S-Q., Chen, Y-D., & Gao, W-Y. (2018). Geniposide and gentiopicroside suppress hepatic gluconeogenesis via regulation of AKT-FOXO1 pathway. Archives Medical Research, 49(5), 314–322. doi: 10.1016/j.arcmed.2018.10.005.
  • Yung, J. H. M., & Giacca, A. 2020. Role of c-Jun N-terminal kinase (JNK) in obesity and type 2 diabetes. Cells, 9(3), 1–31. doi: 10.3390/cells9030706.
  • Zakaria, Z. A., Balan, T., & Salleh, M. Z. (2016). Mechanism(s) of action underlying the gastroprotective effect of ethyl acetate fraction obtained from the crude methanolic leaf extract of Muntingia calabura. BMC Complementary and Alternative Medicine, 16(78), 1–17.
  • Zakaria, Z. A., Mahmood, N. D., Omar, M. H., Taher, M., & Basir, R. (2019). Methanol extract of Muntingia calabura leaf attenuates CCl4-induced liver injury: Possible synergistic action of flavonoids and volatile bioactive compounds on endogenous defence system. Pharmaceutical Biology, 57(1), 335–344. doi: 10.1080/13880209.2019.1606836.
  • Zhang, X., Li, J., & Tang, J. (2021). Alleviation of liver dysfunction, oxidative stress, and inflammation underlines the protective effects of polysaccharides from Cordyceps cicadae on high sugar/high fat diet‐induced metabolic syndrome in rats. Chemistry & Biodiversity, 18(5), 1–12. doi: 10.1002/cbdv.202100065.
  • Zhen, Y., Sun, L., & Zhao, Y. (2012). Alterations of peripheral CD4+CD25+Foxp3+ T regulatory cells in mice with STZ-induced diabetes. Cellular & Molecular Immunology, 9(1), 75–85. doi: 10.1038/cmi.2011.37.
  • Zhou, L., He, X., & Chen, Y. (2021). Induced regulatory T cells suppress Tc1 cells through TGF-β signaling to ameliorate STZ-induced type 1 diabetes mellitus. Cellular & Molecular Immunology, 18(3), 698–710. doi: 10.1038/s41423-020-00623-2.
  • Zolkeflee, N. K. Z., Ramli, N. S., Azlan, A., & Abas, F. (2022). In vitro anti-diabetic activities and UHPLC-ESI-MS/MS profile of Muntingia calabura leaf extract. Molecules, 27(1), 1–12. doi: 10.3390/molecules27010287.
There are 79 citations in total.

Details

Primary Language English
Subjects Agricultural Molecular Engineering of Nucleic Acids and Proteins
Journal Section Articles
Authors

Wira Eka Putra 0000-0003-4831-3869

Intan Nilatus Shofiyah This is me 0009-0002-6282-6150

Adelia Riezka Rahim This is me 0000-0002-4070-9255

Arief Hidayatullah 0000-0003-1929-3635

Muhaimin Rifa’i This is me 0000-0001-5731-2951

Early Pub Date March 25, 2024
Publication Date March 31, 2024
Acceptance Date October 28, 2023
Published in Issue Year 2024

Cite

APA Putra, W. E., Shofiyah, I. N., Rahim, A. R., Hidayatullah, A., et al. (2024). Ameliorative Effect of Jamaican Cherry (Muntingia calabura L.) Leaf Extract Toward Glucose Control and Immune Cells Modulation in High Fat Diet-Administrated Mice. Yuzuncu Yıl University Journal of Agricultural Sciences, 34(1), 1-13. https://doi.org/10.29133/yyutbd.1331257

Creative Commons License
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi CC BY 4.0 lisanslıdır.