Research Article
BibTex RIS Cite

Evaluating a Portable Method and Two Irrigation Drippers for Field Application of Entomopathogenic Nematodes

Year 2024, , 138 - 150, 31.03.2024
https://doi.org/10.29133/yyutbd.1389512

Abstract

Entomopathogenic nematodes (EPNs) can be applied using drip irrigation systems. However, the choice of driplines and types of drippers significantly impacts the efficacy of field applications. This study investigated the performance of EPN applications using two common dripper types (katif and cylindrical drippers) under both pot and field conditions. The primary objective of the study was to optimize EPN applications and create a modular system in which driplines and drippers can be selected based on the target pest or plant. In our modular system, driplines were connected to a battery-powered backpack sprayer rather than an irrigation system. The efficacy of EPN applications was assessed on Galleria mellonella L. (Lepidoptera: Pyralidae) larvae at a commercial dose of approximately 50 IJs cm-2. The results revealed that only 60% of the nematodes were discharged from the cylindrical drippers, with 40% becoming trapped in the irrigation system. In contrast, over 90% of the nematodes were successfully discharged from the katif dripper. As a result, the katif dripper exhibited significantly higher larval mortality compared to all other application methods. These findings emphasize the substantial impact of the dripper type on EPN discharge, while also highlighting the applicability of the modular method for EPN applications.

Supporting Institution

The Scientific and Technological Research Council of Turkey (TÜBİTAK)

Project Number

TOVAG 120O286

Thanks

This study was financially supported by The Scientific and Technological Research Council of Turkey (Project number: TOVAG - 120O286). The authors would like to thank the Biotechnology Application and Research Centre for providing the facilities for laboratory assays. The authors also thank Edwin Lewis, Glen Stevens, Lucas Ripa, and Halil Ünal.

References

  • Arrington, A. E., Kennedy, G. G., & Abney, M. R. (2016). Applying insecticides through drip irrigation to reduce wireworm (Coleoptera: Elateridae) feeding damage in sweet potato. Pest Management Science, 72(6), 1133–1140. https://doi.org/10.1002/ps.4089
  • Askar, A. G., Yüksel, E., Bozbuğa, R., Öcal, A., Kütük, H., Dinçer, D., Canhilal, R., Dababat, A. A., & İmren, M. (2023). Evaluation of Entomopathogenic Nematodes against Common Wireworm Species in Potato Cultivation. Pathogens, 12(2), Article 2. https://doi.org/10.3390/pathogens12020288
  • Beck, B., Brusselman, E., Nuyttens, D., Moens, M., Pollet, S., Temmerman, F., & Spanoghe, P. (2013). Improving foliar applications of entomopathogenic nematodes by selecting adjuvants and spray nozzles. Biocontrol Science and Technology, 23(5), 507–520. https://doi.org/10.1080/09583157.2013.777692
  • Brusselman, E., Beck, B., Pollet, S., Temmerman, F., Spanoghe, P., Moens, M., & Nuyttens, D. (2012a). Effect of spray volume on the deposition, viability and infectivity of entomopathogenic nematodes in a foliar spray on vegetables. Pest Management Science, 68(10), 1413–1418. https://doi.org/10.1002/ps.3325
  • Brusselman, E., Beck, B., Pollet, S., Temmerman, F., Spanoghe, P., Moens, M., & Nuyttens, D. (2012b). Effect of the spray application technique on the deposition of entomopathogenic nematodes in vegetables. Pest Management Science, 68(3), 444–453. https://doi.org/10.1002/ps.2290
  • Brusselman, E., Beck, B., Temmerman, F., Pollet, S., Steurbaut, W., Moens, M., & Nuyttens, D. (2011). Distribution of entomopathogenic nematodes in a biopesticide spray. Transactions of the ASABE, 54(6), 1981–1989. https://doi.org/10.13031/2013.40646
  • Cabanillas, H. E., & Raulston, J. R. (1996). Effects of furrow irrigation on the distribution and infectivity of Steinernema riobravis against corn earworm in corn. Fundamental and Applied Nematology, 19(3), 273–281.
  • Campos-Herrera, R. (2015). Nematode pathogenesis of insects and other pests: Ecology and applied technologies for sustainable plant and crop protection. In R. Campos-Herrera (Ed.), Nematode Pathogenesis of Insects and Other Pests: Ecology and Applied Technologies for Sustainable Plant and Crop Protection (pp. 231–254). Springer International Publishing. https://doi.org/10.1007/978-3-319-18266-7
  • Conner, J. M., McSorley, R., Stansly, P. A., & Pitts, D. J. (1998). Delivery of Steinernema riobravis through a drip irrigation system. Nematropica, 28(1), 95–100.
  • Curran, J., & Patel, V. (1988). Use of a trickle irrigation system to distribute entomopathogenic nematodes (Nematoda: Heterorhabditidae) for the control of weevil pests (Coleoptera: Curculionidae) of strawberries. Australian Journal of Experimental Agriculture, 28(5), 639–643. https://doi.org/10.1071/EA9880639
  • Çelik, S., Tozlu, G., & Kotan, R. (2023). The Investigation of Effect of Bacteria in Biological Control of Red Spider Mite (Tetranychus spp.) and Plant Yield Parameter in Cotton (Gossypium hirsutum L.). Yuzuncu Yil University Journal of Agricultural Sciences, 33(4), 689–699. https://doi.org/10.29133/yyutbd.1319995
  • Dede, E., Bütüner, A. K., & Susurluk, A. (2023). Biocontrol potential of Heterorhabditis bacteriophora Poinar, 1976 (Rhabditida: Heterorhabditidae) HBH hybrid strain against the beet webworm, Loxostege sticticalis L., 1761 (Lepidoptera: Pyralidae). Turkish Journal of Entomology, 46(4), Article 4. https://doi.org/10.16970/entoted.1162125
  • Devi, G. (2018). Mass production of entomopathogenic nematodes—A review. International Journal of Environment, Agriculture and Biotechnology, 3(3), 1032–1043. https://doi.org/10.22161/ijeab/3.3.41
  • Dito, D. F., Shapiro-Ilan, D. I., Dunlap, C. A., Behle, R. W., & Lewis, E. E. (2016). Enhanced biological control potential of the entomopathogenic nematode, Steinernema carpocapsae, applied with a protective gel formulation. Biocontrol Science and Technology, 26(6), 835–848. https://doi.org/10.1080/09583157.2016.1159659
  • Dunn, M. D., Belur, P. D., & Malan, A. P. (2020). In vitro liquid culture and optimization of Steinernema jeffreyense using shake flasks. BioControl, 65(2), 223–233. https://doi.org/10.1007/s10526-019-09977-7
  • Dunn, M. D., Belur, P. D., & Malan, A. P. (2021). A review of the in vitro liquid mass culture of entomopathogenic nematodes. Biocontrol Science and Technology, 31(1), 1–21. https://doi.org/10.1080/09583157.2020.1837072
  • Erdoğan, H., Ulu, T. C., & Kuşçu, H. (2020). The effect of different dripper properties on entomopathogenic nematode application in drip irrigation. KSU Journal of Agriculture and Nature, 23(1), 230–236. https://doi.org/10.18016/ksutarimdoga.vi.533723
  • Erdoğan, H., Ünal, H., & Lewis, E. E. (2021). Entomopathogenic nematode dispensing robot: NEMABOT. Expert Systems with Applications, 172(February), 114661. https://doi.org/10.1016/j.eswa.2021.114661
  • Erdoğan, H., Ünal, H., Susurluk, İ. A., & Lewis, E. E. (2023). Precision application of the entomopathogenic nematode Heterorhabditis bacteriophora as a biological control agent through the Nemabot. Crop Protection, 174, 106429. https://doi.org/10.1016/j.cropro.2023.106429
  • Garcia, L. C., Raetano, C. G., & Leite, L. G. (2008). Application technology for the entomopathogenic nematodes Heterorhabditis indica and Steinernema sp. (Rhabditida: Heterorhabditidae and Steinernematidae) to control Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) in corn. Neotropical Entomology, 37(3), 305–311. https://doi.org/10.1590/S1519-566X2008000300010
  • Gaugler, R. (2002). Entomopathogenic nematology. In R. Gaugler (Ed.), Entomopathogenic nematology. CABI. https://doi.org/10.1079/9780851995670.0000
  • Glare, T., Caradus, J., Gelernter, W., Jackson, T., Keyhani, N., Köhl, J., Marrone, P., Morin, L., & Stewart, A. (2012). Have biopesticides come of age? Trends in Biotechnology, 30(5), 250–258. https://doi.org/10.1016/j.tibtech.2012.01.003
  • Grewal, P. S. (2000). Enhanced ambient storage stability of an entomopathogenic nematode through anhydrobiosis. Pest Management Science, 56(5), 401–406. https://doi.org/10.1002/(SICI)1526-4998(200005)56:5<401::AID-PS137>3.0.CO;2-4
  • Guy, A., Gaffney, M., Kapranas, A., & Griffin, C. T. (2017). Conditioning the entomopathogenic nematodes Steinernema carpocapsae and Heterorhabditis megidis by pre-application storage improves efficacy against black vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae) at low and moderate temperatures. Biological Control, 108, 40–46. https://doi.org/10.1016/j.biocontrol.2017.02.005
  • Jaffuel, G., Imperiali, N., Shelby, K., Campos-Herrera, R., Geisert, R., Maurhofer, M., Loper, J., Keel, C., Turlings, T. C. J., & Hibbard, B. E. (2019). Protecting maize from rootworm damage with the combined application of arbuscular mycorrhizal fungi, Pseudomonas bacteria and entomopathogenic nematodes. Scientific Reports, 9(1), 3127. https://doi.org/10.1038/s41598-019-39753-7
  • Kagimu, N., & Malan, A. P. (2019). Formulation of South African entomopathogenic nematodes using alginate beads and diatomaceous earth. BioControl, 64(4), 413–422. https://doi.org/10.1007/s10526-019-09945-1
  • Kaplan, F., Perret-Gentil, A., Giurintano, J., Stevens, G., Erdogan, H., Schiller, K. C., Mirti, A., Sampson, E., Torres, C., Sun, J., Lewis, E. E., & Shapiro-Ilan, D. (2020). Conspecific and heterospecific pheromones stimulate dispersal of entomopathogenic nematodes during quiescence. Scientific Reports, 10(1), 5738. https://doi.org/10.1038/s41598-020-62817-y
  • Kapranas, A., Malone, B., Quinn, S., O’Tuama, P., Peters, A., & Griffin, C. T. (2017). Optimizing the application method of entomopathogenic nematode suspension for biological control of large pine weevil Hylobius abietis. BioControl, 62(5), 659–667. https://doi.org/10.1007/s10526-017-9824-x
  • Kaya, H. K., & Gaugler, R. (1993). Entomopathogenic nematodes. Annual Review of Entomology, 38(1), 181–206. https://doi.org/10.1146/annurev.en.38.010193.001145
  • Łaczyński, A., Dierickx, W., & De Moor, A. (2007). The effect of agitation system, temperature of the spray liquid, nematode concentration, and air injection on the viability of Heterorhabditis bacteriophora. Biocontrol Science and Technology, 17(8), 841–851. https://doi.org/10.1080/09583150701527474
  • Lara, J. C., Dolinski, C., De Sousa, E. F., & Daher, R. F. (2008). Effect of mini-sprinkler irrigation system on Heterorhabditis baujardi LPP7 (Nematoda: Heterorhabditidae) infective juvenile. Scientia Agricola, 65(4), 433–437. https://doi.org/10.1590/S0103-90162008000400017
  • Mason, J. M., Matthews, G. A., & Wright, D. J. (1998). Appraisal of spinning disc technology for the application of entomopathogenic nematodes. Crop Protection, 17(5), 453–461. https://doi.org/10.1016/S0261-2194(98)00042-8
  • Moreira, G. F., Batista, E. S. de P., Campos, H. B. N., Lemos, R. E., & Ferreira, M. da C. (2013). Spray nozzles, pressures, additives and stirring time on viability and pathogenicity of entomopathogenic nematodes (Nematoda: Rhabditida) for greenhouses. PLoS ONE, 8(6), e65759. https://doi.org/10.1371/journal.pone.0065759
  • Morton, A., & García del Pino, F. (2008). Field efficacy of the entomopathogenic nematode Steinernema feltiae against the Mediterranean flat-headed rootborer Capnodis tenebrionis. Journal of Applied Entomology, 132(8), 632–637. https://doi.org/10.1111/j.1439-0418.2008.01300.x
  • Mukuka, J., Strauch, O., Hoppe, C., & Ehlers, R. U. (2010). Improvement of heat and desiccation tolerance in Heterorhabditis bacteriophora through cross-breeding of tolerant strains and successive genetic selection. BioControl, 55(4), 511–521. https://doi.org/10.1007/s10526-010-9271-4
  • Nxitywa, A., & Malan, A. P. (2021). Formulation of entomopathogenic nematodes for the control of key pests of grapevine: A review. South African Journal of Enology and Viticulture, 42(2), 123–135. https://doi.org/10.21548/42-2-4479
  • Oliveira-Hofman, C., Kaplan, F., Stevens, G., Lewis, E., Wu, S., Alborn, H. T., Perret-Gentil, A., & Shapiro-Ilan, D. I. (2019). Pheromone extracts act as boosters for entomopathogenic nematodes efficacy. Journal of Invertebrate Pathology, 164, 38–42. https://doi.org/10.1016/j.jip.2019.04.008
  • Olson, S. (2015). An analysis of the biopesticide market now and where it is going. Outlooks on Pest Management, 26(5), 203–206. https://doi.org/10.1564/v26_oct_04
  • Platt, T., Stokwe, N. F., & Malan, A. P. (2018). Potential of local entomopathogenic nematodes for control of the vine mealybug, Planococcus ficus. South African Journal of Enology and Viticulture, 39(2), 208–215. https://doi.org/10.21548/39-2-3158
  • Platt, T., Stokwe, N. F., & Malan, A. P. (2020). A review of the potential use of entomopathogenic nematodes to control above-ground insect pests in South Africa. South African Journal of Enology and Viticulture, 41(1), 1–16. https://doi.org/10.21548/41-1-2424
  • Poinar, G. O., & Grewal, P. (2012). History of entomopathogenic nematology. Journal of Nematology, 44(2), 153–161.
  • Portman, S. L., Krishnankutty, S. M., & Reddy, G. V. P. (2016). Entomopathogenic nematodes combined with adjuvants presents a new potential biological control method for managing the wheat stem sawfly, Cephus cinctus (Hymenoptera: Cephidae). PLoS ONE, 11(12), e0169022. https://doi.org/10.1371/journal.pone.0169022
  • Raja, R. K., Hazir, C., Gümüş, A., Asan, C., Karagöz, M., & Hazir, S. (2015). Efficacy of the entomopathogenic nematode Heterorhabditis bacteriophora using different application methods in the presence or absence of a natural enemy. Turkish Journal of Agriculture and Forestry, 39(2), 277–285. https://doi.org/10.3906/tar-1410-33
  • Reding, M. E., Zhu, H., & Derksen, R. (2004). Drip irrigation as a delivery system for imidacloprid and nematodes for control of scarab grubs in nursery crops. In USDA-Agricultural Research Service (p. 44691).
  • Şahin, Y. S., Bouhari, A., Ulu, T. C., Sadıç, B., & Susurluk, İ. A. (2018). New application method for entomopathogenic nematode Heterorhabditis bacteriophora (Poinar, 1976) (Rhabditida: Heterorhabditidae) HBH strain against Locusta migratoria (Linnaeus, 1758) (Orthoptera: Acrididae). Turkish Journal of Entomology, 42(4), 305–312. https://doi.org/10.16970/ENTOTED.471095
  • Shapiro-Ilan, D. I., Han, R., & Dolinksi, C. (2012). Entomopathogenic nematode production and application technology. Journal of Nematology, 44(2), 206–217.
  • Singh, A., & Upadhyay, V. (2018). A review on entomopathogenic nematodes: Heterorhabditis and Steinernema. Advances in Bioresearch, 9(2), 214–222. https://doi.org/10.15515/abr.0976-4585.9.2.214222
  • Ulu, T. C., & Susurluk, A. (2021). Optimization of in vitro solid culture of Heterorhabditis bacteriophora Poinar, 1976 (Rhabditida: Heterorhabditidae) HBH hybrid strain. Turkish Journal of Entomology, 45(4), 441–449. https://doi.org/10.16970/entoted.1004749
  • Wang, X., Zhu, H., Reding, M. E., Locke, J. C., Leland, J. E., Derksen, R. C., Spongberg, A. L., & Krause, C. R. (2009). Delivery of chemical and microbial pesticides through drip irrigation systems. Applied Engineering in Agriculture, 25(6), 883–893. https://doi.org/10.13031/2013.29242
  • Wennemann, L., Cone, W. W., Wright, L. C., Perez, J., & Conant, M. M. (2003). Distribution patterns of entomopathogenic nematodes applied through drip irrigation systems. Journal of Economic Entomology, 96(2), 287–291. https://doi.org/10.1093/jee/96.2.287
  • Wright, D. J., Peters, A., Schroer, S., & Fife, J. (2005). Application technology. In P. S. Grewal, R. U. Ehlers, & D. I. Shapiro-Ilan (Eds.), Nematodes as Biocontrol Agents (pp. 91–106). CABI. https://doi.org/10.1079/9780851990170.0091
Year 2024, , 138 - 150, 31.03.2024
https://doi.org/10.29133/yyutbd.1389512

Abstract

Project Number

TOVAG 120O286

References

  • Arrington, A. E., Kennedy, G. G., & Abney, M. R. (2016). Applying insecticides through drip irrigation to reduce wireworm (Coleoptera: Elateridae) feeding damage in sweet potato. Pest Management Science, 72(6), 1133–1140. https://doi.org/10.1002/ps.4089
  • Askar, A. G., Yüksel, E., Bozbuğa, R., Öcal, A., Kütük, H., Dinçer, D., Canhilal, R., Dababat, A. A., & İmren, M. (2023). Evaluation of Entomopathogenic Nematodes against Common Wireworm Species in Potato Cultivation. Pathogens, 12(2), Article 2. https://doi.org/10.3390/pathogens12020288
  • Beck, B., Brusselman, E., Nuyttens, D., Moens, M., Pollet, S., Temmerman, F., & Spanoghe, P. (2013). Improving foliar applications of entomopathogenic nematodes by selecting adjuvants and spray nozzles. Biocontrol Science and Technology, 23(5), 507–520. https://doi.org/10.1080/09583157.2013.777692
  • Brusselman, E., Beck, B., Pollet, S., Temmerman, F., Spanoghe, P., Moens, M., & Nuyttens, D. (2012a). Effect of spray volume on the deposition, viability and infectivity of entomopathogenic nematodes in a foliar spray on vegetables. Pest Management Science, 68(10), 1413–1418. https://doi.org/10.1002/ps.3325
  • Brusselman, E., Beck, B., Pollet, S., Temmerman, F., Spanoghe, P., Moens, M., & Nuyttens, D. (2012b). Effect of the spray application technique on the deposition of entomopathogenic nematodes in vegetables. Pest Management Science, 68(3), 444–453. https://doi.org/10.1002/ps.2290
  • Brusselman, E., Beck, B., Temmerman, F., Pollet, S., Steurbaut, W., Moens, M., & Nuyttens, D. (2011). Distribution of entomopathogenic nematodes in a biopesticide spray. Transactions of the ASABE, 54(6), 1981–1989. https://doi.org/10.13031/2013.40646
  • Cabanillas, H. E., & Raulston, J. R. (1996). Effects of furrow irrigation on the distribution and infectivity of Steinernema riobravis against corn earworm in corn. Fundamental and Applied Nematology, 19(3), 273–281.
  • Campos-Herrera, R. (2015). Nematode pathogenesis of insects and other pests: Ecology and applied technologies for sustainable plant and crop protection. In R. Campos-Herrera (Ed.), Nematode Pathogenesis of Insects and Other Pests: Ecology and Applied Technologies for Sustainable Plant and Crop Protection (pp. 231–254). Springer International Publishing. https://doi.org/10.1007/978-3-319-18266-7
  • Conner, J. M., McSorley, R., Stansly, P. A., & Pitts, D. J. (1998). Delivery of Steinernema riobravis through a drip irrigation system. Nematropica, 28(1), 95–100.
  • Curran, J., & Patel, V. (1988). Use of a trickle irrigation system to distribute entomopathogenic nematodes (Nematoda: Heterorhabditidae) for the control of weevil pests (Coleoptera: Curculionidae) of strawberries. Australian Journal of Experimental Agriculture, 28(5), 639–643. https://doi.org/10.1071/EA9880639
  • Çelik, S., Tozlu, G., & Kotan, R. (2023). The Investigation of Effect of Bacteria in Biological Control of Red Spider Mite (Tetranychus spp.) and Plant Yield Parameter in Cotton (Gossypium hirsutum L.). Yuzuncu Yil University Journal of Agricultural Sciences, 33(4), 689–699. https://doi.org/10.29133/yyutbd.1319995
  • Dede, E., Bütüner, A. K., & Susurluk, A. (2023). Biocontrol potential of Heterorhabditis bacteriophora Poinar, 1976 (Rhabditida: Heterorhabditidae) HBH hybrid strain against the beet webworm, Loxostege sticticalis L., 1761 (Lepidoptera: Pyralidae). Turkish Journal of Entomology, 46(4), Article 4. https://doi.org/10.16970/entoted.1162125
  • Devi, G. (2018). Mass production of entomopathogenic nematodes—A review. International Journal of Environment, Agriculture and Biotechnology, 3(3), 1032–1043. https://doi.org/10.22161/ijeab/3.3.41
  • Dito, D. F., Shapiro-Ilan, D. I., Dunlap, C. A., Behle, R. W., & Lewis, E. E. (2016). Enhanced biological control potential of the entomopathogenic nematode, Steinernema carpocapsae, applied with a protective gel formulation. Biocontrol Science and Technology, 26(6), 835–848. https://doi.org/10.1080/09583157.2016.1159659
  • Dunn, M. D., Belur, P. D., & Malan, A. P. (2020). In vitro liquid culture and optimization of Steinernema jeffreyense using shake flasks. BioControl, 65(2), 223–233. https://doi.org/10.1007/s10526-019-09977-7
  • Dunn, M. D., Belur, P. D., & Malan, A. P. (2021). A review of the in vitro liquid mass culture of entomopathogenic nematodes. Biocontrol Science and Technology, 31(1), 1–21. https://doi.org/10.1080/09583157.2020.1837072
  • Erdoğan, H., Ulu, T. C., & Kuşçu, H. (2020). The effect of different dripper properties on entomopathogenic nematode application in drip irrigation. KSU Journal of Agriculture and Nature, 23(1), 230–236. https://doi.org/10.18016/ksutarimdoga.vi.533723
  • Erdoğan, H., Ünal, H., & Lewis, E. E. (2021). Entomopathogenic nematode dispensing robot: NEMABOT. Expert Systems with Applications, 172(February), 114661. https://doi.org/10.1016/j.eswa.2021.114661
  • Erdoğan, H., Ünal, H., Susurluk, İ. A., & Lewis, E. E. (2023). Precision application of the entomopathogenic nematode Heterorhabditis bacteriophora as a biological control agent through the Nemabot. Crop Protection, 174, 106429. https://doi.org/10.1016/j.cropro.2023.106429
  • Garcia, L. C., Raetano, C. G., & Leite, L. G. (2008). Application technology for the entomopathogenic nematodes Heterorhabditis indica and Steinernema sp. (Rhabditida: Heterorhabditidae and Steinernematidae) to control Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) in corn. Neotropical Entomology, 37(3), 305–311. https://doi.org/10.1590/S1519-566X2008000300010
  • Gaugler, R. (2002). Entomopathogenic nematology. In R. Gaugler (Ed.), Entomopathogenic nematology. CABI. https://doi.org/10.1079/9780851995670.0000
  • Glare, T., Caradus, J., Gelernter, W., Jackson, T., Keyhani, N., Köhl, J., Marrone, P., Morin, L., & Stewart, A. (2012). Have biopesticides come of age? Trends in Biotechnology, 30(5), 250–258. https://doi.org/10.1016/j.tibtech.2012.01.003
  • Grewal, P. S. (2000). Enhanced ambient storage stability of an entomopathogenic nematode through anhydrobiosis. Pest Management Science, 56(5), 401–406. https://doi.org/10.1002/(SICI)1526-4998(200005)56:5<401::AID-PS137>3.0.CO;2-4
  • Guy, A., Gaffney, M., Kapranas, A., & Griffin, C. T. (2017). Conditioning the entomopathogenic nematodes Steinernema carpocapsae and Heterorhabditis megidis by pre-application storage improves efficacy against black vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae) at low and moderate temperatures. Biological Control, 108, 40–46. https://doi.org/10.1016/j.biocontrol.2017.02.005
  • Jaffuel, G., Imperiali, N., Shelby, K., Campos-Herrera, R., Geisert, R., Maurhofer, M., Loper, J., Keel, C., Turlings, T. C. J., & Hibbard, B. E. (2019). Protecting maize from rootworm damage with the combined application of arbuscular mycorrhizal fungi, Pseudomonas bacteria and entomopathogenic nematodes. Scientific Reports, 9(1), 3127. https://doi.org/10.1038/s41598-019-39753-7
  • Kagimu, N., & Malan, A. P. (2019). Formulation of South African entomopathogenic nematodes using alginate beads and diatomaceous earth. BioControl, 64(4), 413–422. https://doi.org/10.1007/s10526-019-09945-1
  • Kaplan, F., Perret-Gentil, A., Giurintano, J., Stevens, G., Erdogan, H., Schiller, K. C., Mirti, A., Sampson, E., Torres, C., Sun, J., Lewis, E. E., & Shapiro-Ilan, D. (2020). Conspecific and heterospecific pheromones stimulate dispersal of entomopathogenic nematodes during quiescence. Scientific Reports, 10(1), 5738. https://doi.org/10.1038/s41598-020-62817-y
  • Kapranas, A., Malone, B., Quinn, S., O’Tuama, P., Peters, A., & Griffin, C. T. (2017). Optimizing the application method of entomopathogenic nematode suspension for biological control of large pine weevil Hylobius abietis. BioControl, 62(5), 659–667. https://doi.org/10.1007/s10526-017-9824-x
  • Kaya, H. K., & Gaugler, R. (1993). Entomopathogenic nematodes. Annual Review of Entomology, 38(1), 181–206. https://doi.org/10.1146/annurev.en.38.010193.001145
  • Łaczyński, A., Dierickx, W., & De Moor, A. (2007). The effect of agitation system, temperature of the spray liquid, nematode concentration, and air injection on the viability of Heterorhabditis bacteriophora. Biocontrol Science and Technology, 17(8), 841–851. https://doi.org/10.1080/09583150701527474
  • Lara, J. C., Dolinski, C., De Sousa, E. F., & Daher, R. F. (2008). Effect of mini-sprinkler irrigation system on Heterorhabditis baujardi LPP7 (Nematoda: Heterorhabditidae) infective juvenile. Scientia Agricola, 65(4), 433–437. https://doi.org/10.1590/S0103-90162008000400017
  • Mason, J. M., Matthews, G. A., & Wright, D. J. (1998). Appraisal of spinning disc technology for the application of entomopathogenic nematodes. Crop Protection, 17(5), 453–461. https://doi.org/10.1016/S0261-2194(98)00042-8
  • Moreira, G. F., Batista, E. S. de P., Campos, H. B. N., Lemos, R. E., & Ferreira, M. da C. (2013). Spray nozzles, pressures, additives and stirring time on viability and pathogenicity of entomopathogenic nematodes (Nematoda: Rhabditida) for greenhouses. PLoS ONE, 8(6), e65759. https://doi.org/10.1371/journal.pone.0065759
  • Morton, A., & García del Pino, F. (2008). Field efficacy of the entomopathogenic nematode Steinernema feltiae against the Mediterranean flat-headed rootborer Capnodis tenebrionis. Journal of Applied Entomology, 132(8), 632–637. https://doi.org/10.1111/j.1439-0418.2008.01300.x
  • Mukuka, J., Strauch, O., Hoppe, C., & Ehlers, R. U. (2010). Improvement of heat and desiccation tolerance in Heterorhabditis bacteriophora through cross-breeding of tolerant strains and successive genetic selection. BioControl, 55(4), 511–521. https://doi.org/10.1007/s10526-010-9271-4
  • Nxitywa, A., & Malan, A. P. (2021). Formulation of entomopathogenic nematodes for the control of key pests of grapevine: A review. South African Journal of Enology and Viticulture, 42(2), 123–135. https://doi.org/10.21548/42-2-4479
  • Oliveira-Hofman, C., Kaplan, F., Stevens, G., Lewis, E., Wu, S., Alborn, H. T., Perret-Gentil, A., & Shapiro-Ilan, D. I. (2019). Pheromone extracts act as boosters for entomopathogenic nematodes efficacy. Journal of Invertebrate Pathology, 164, 38–42. https://doi.org/10.1016/j.jip.2019.04.008
  • Olson, S. (2015). An analysis of the biopesticide market now and where it is going. Outlooks on Pest Management, 26(5), 203–206. https://doi.org/10.1564/v26_oct_04
  • Platt, T., Stokwe, N. F., & Malan, A. P. (2018). Potential of local entomopathogenic nematodes for control of the vine mealybug, Planococcus ficus. South African Journal of Enology and Viticulture, 39(2), 208–215. https://doi.org/10.21548/39-2-3158
  • Platt, T., Stokwe, N. F., & Malan, A. P. (2020). A review of the potential use of entomopathogenic nematodes to control above-ground insect pests in South Africa. South African Journal of Enology and Viticulture, 41(1), 1–16. https://doi.org/10.21548/41-1-2424
  • Poinar, G. O., & Grewal, P. (2012). History of entomopathogenic nematology. Journal of Nematology, 44(2), 153–161.
  • Portman, S. L., Krishnankutty, S. M., & Reddy, G. V. P. (2016). Entomopathogenic nematodes combined with adjuvants presents a new potential biological control method for managing the wheat stem sawfly, Cephus cinctus (Hymenoptera: Cephidae). PLoS ONE, 11(12), e0169022. https://doi.org/10.1371/journal.pone.0169022
  • Raja, R. K., Hazir, C., Gümüş, A., Asan, C., Karagöz, M., & Hazir, S. (2015). Efficacy of the entomopathogenic nematode Heterorhabditis bacteriophora using different application methods in the presence or absence of a natural enemy. Turkish Journal of Agriculture and Forestry, 39(2), 277–285. https://doi.org/10.3906/tar-1410-33
  • Reding, M. E., Zhu, H., & Derksen, R. (2004). Drip irrigation as a delivery system for imidacloprid and nematodes for control of scarab grubs in nursery crops. In USDA-Agricultural Research Service (p. 44691).
  • Şahin, Y. S., Bouhari, A., Ulu, T. C., Sadıç, B., & Susurluk, İ. A. (2018). New application method for entomopathogenic nematode Heterorhabditis bacteriophora (Poinar, 1976) (Rhabditida: Heterorhabditidae) HBH strain against Locusta migratoria (Linnaeus, 1758) (Orthoptera: Acrididae). Turkish Journal of Entomology, 42(4), 305–312. https://doi.org/10.16970/ENTOTED.471095
  • Shapiro-Ilan, D. I., Han, R., & Dolinksi, C. (2012). Entomopathogenic nematode production and application technology. Journal of Nematology, 44(2), 206–217.
  • Singh, A., & Upadhyay, V. (2018). A review on entomopathogenic nematodes: Heterorhabditis and Steinernema. Advances in Bioresearch, 9(2), 214–222. https://doi.org/10.15515/abr.0976-4585.9.2.214222
  • Ulu, T. C., & Susurluk, A. (2021). Optimization of in vitro solid culture of Heterorhabditis bacteriophora Poinar, 1976 (Rhabditida: Heterorhabditidae) HBH hybrid strain. Turkish Journal of Entomology, 45(4), 441–449. https://doi.org/10.16970/entoted.1004749
  • Wang, X., Zhu, H., Reding, M. E., Locke, J. C., Leland, J. E., Derksen, R. C., Spongberg, A. L., & Krause, C. R. (2009). Delivery of chemical and microbial pesticides through drip irrigation systems. Applied Engineering in Agriculture, 25(6), 883–893. https://doi.org/10.13031/2013.29242
  • Wennemann, L., Cone, W. W., Wright, L. C., Perez, J., & Conant, M. M. (2003). Distribution patterns of entomopathogenic nematodes applied through drip irrigation systems. Journal of Economic Entomology, 96(2), 287–291. https://doi.org/10.1093/jee/96.2.287
  • Wright, D. J., Peters, A., Schroer, S., & Fife, J. (2005). Application technology. In P. S. Grewal, R. U. Ehlers, & D. I. Shapiro-Ilan (Eds.), Nematodes as Biocontrol Agents (pp. 91–106). CABI. https://doi.org/10.1079/9780851990170.0091
There are 51 citations in total.

Details

Primary Language English
Subjects Biosystem, Irrigation Systems , Nematology
Journal Section Articles
Authors

Hilal Erdoğan 0000-0002-0387-2600

Tufan Can Ulu 0000-0003-3640-1474

Project Number TOVAG 120O286
Early Pub Date March 25, 2024
Publication Date March 31, 2024
Submission Date November 11, 2023
Acceptance Date February 1, 2024
Published in Issue Year 2024

Cite

APA Erdoğan, H., & Ulu, T. C. (2024). Evaluating a Portable Method and Two Irrigation Drippers for Field Application of Entomopathogenic Nematodes. Yuzuncu Yıl University Journal of Agricultural Sciences, 34(1), 138-150. https://doi.org/10.29133/yyutbd.1389512
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.