Research Article
BibTex RIS Cite

Morphological and Physiological Changes under NaCl Stress in Some Pyrus and Quince Rootstocks

Year 2024, , 299 - 313, 30.06.2024
https://doi.org/10.29133/yyutbd.1414651

Abstract

In this study, the aim was to determine some morphological, physiological, and biochemical changes in non-grafted plants of OHxF 97, OHxF 333, Fox 11, and BA 29 rootstocks under NaCl stress. NaCl (0 mM, 20 mM, 40 mM, and 80 mM) was applied to the rootstocks planted in 18-liter pots with irrigation water repeated over two years. Under NaCl stress, plant height, plant diameter, and leaf area decreased in all rootstocks. Additionally, Fox 11 and BA 29 rootstocks were more adversely affected by NaCl stress to leaf necrosis. The amounts of chl a, chl b, and total chl decreased in Fox 11 rootstock with moderate and severe stress treatments. Carotenoid content in the leaves, especially under severe stress conditions, showed a decrease in Pyrus rootstocks. Under NaCl stress, the leaves of Fox 11 were rich in proline. MDA content generally increased with NaCl stress compared to the control in Fox 11 and BA 29. Although significant changes in plant nutrients were generally not observed with NaCl, a significant decrease in the amount of K+ in the leaves of Fox 11 was identified. Consequently, Fox 11 and BA 29 rootstocks exhibit sensitivity to NaCl stress, whereas OHxF rootstocks demonstrate greater tolerance.

Supporting Institution

TÜBİTAK

Project Number

116O721

Thanks

TÜBİTAK

References

  • Ahmad, P., & Prasad, M. N. V. (2012). Environmental Adaptations and Stress Tolerance in Plants in the Era of Climate Change. New York, USA: Springer Science & Business Media.
  • Ahmed, I. M., Dai, H., Zheng, W., Cao, F., Zhang, G., Sun, D., & Wu, F. (2013). Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiology and Biochemistry, 63, 49-60. https://doi.org/10.1016/j.plaphy.2012.11.004
  • Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64-77. https://doi.org/10.1016/j.plaphy.2020.08.042
  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1. https://doi.org/10.1104/pp.24.1.1
  • Ashraf, M. Y., & Sarwar, G. (2002). Salt tolerance potential in some members of Brassicaceae physiological studies on water relations and mineral contents. Prospects for Saline Agriculture, 237-245.
  • Barthod, S., Cerovic, Z., & Epron, D. (2007). Can dual chlorophyll fluorescence excitation be used to assess the variation in the content of UV-absorbing phenolic compounds in leaves of temperate tree species along a light gradient? Journal of Experimental Botany, 58(7), 1753-1760. https://doi.org/10.1093/jxb/erm030
  • Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39(1), 205-207.
  • Bendaly, A., Messed, D., Smaoui, A., Ksoui, R., Bouchereau, A., & Abdelly, C. (2016). Physiological and leaf metabolome changes in the xerophyte species Atriplex halimus induced by salinity. Plant Physiology and Biochemistry, 103, 208-218. https://doi.org/10.1016/j.plaphy.2016.02.037
  • Colla, G., Rouphael, Y., Leonardi, C., & Bie, Z. (2010). Role of grafting in vegetable crops grown under saline conditions. Scientia Horticulturae, 127(2), 147-155. https://doi.org/10.1016/j.scienta.2010.08.004
  • de Azevedo Neto, A. D., Prisco, J. T., Enéas-Filho, J., de Abreu, C. E. B., & Gomes-Filho, E. (2006). Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany, 56(1), 87-94. https://doi.org/10.1016/j.envexpbot.2005.01.008
  • dos Santos, I. C., de Almeida, A. A. F., Pirovani, C. P., Costa, M. G. C., da Conceição, A. S., dos Santos Soares Filho, W., Filho, M. A. C., & Gesteira, A. S. (2019). Physiological, biochemical, and molecular responses to drought conditions in field-grown grafted and ungrafted citrus plants. Environmental and Experimental Botany, 162, 406-420. https://doi.org/10.1016/j.envexpbot.2019.03.018
  • Ghars, M. A., Parre, E., & Debez, A. (2008). Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K+/Na+ selectivity and proline accumulation. Journal of Plant Physiology, 165(6), 588-599. https://doi.org/10.1016/j.jplph.2007.05.014
  • Ghoulam, C., Foursy, A., & Fares, K. (2002). Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany, 47(1), 39-50. https://doi.org/10.1016/S0098-8472(01)00109-5
  • Girija, C., Smith, B. N., & Swamy, P. M. (2002). Interactive effects of sodium chloride and calcium chloride on the accumulation of proline and glycinebetaine in peanut (Arachis hypogaea L.). Environmental and Experimental Botany, 47(1), 1-10. https://doi.org/10.1016/S0098-8472(01)00096-X
  • Gong, B., Wen, D., Vanden Langenberg, K., Wei, M., Yang, F., Shi, Q., & Wang, X. (2013). Comparative effects of NaCl and NaHCO3 stress on photosynthetic parameters, nutrient metabolism, and the antioxidant system in tomato leaves. Scientia Horticulturae, 157, 1-12. https://doi.org/10.1016/j.scienta.2013.03.032
  • Grattan, S. R., & Grieve, C. M. (1999). Salinity-nutrient relations in horticultural crops. Scientia Horticulturae, 78(1-4), 127-157. https://doi.org/10.1016/S0304-4238(98)00192-7
  • Greenway, H., & Munns, R. (1980). Mechanisms of salt tolerance in non-halophytes. Annual Review of Plant Physiology, 31(1), 149-190.
  • Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics, 1-18. https://doi.org/10.1155/2014/701596
  • Hasegawa, P. M., Bressan, R. A., Zhu, J. K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 51(1), 463-499. https://doi.org/10.1146/annurev.arplant.51.1.463
  • Hernandez, J. A., & Almansa, M. S. (2002). Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiology of Plants, 115(2), 251-257. https://doi.org/10.1034/j.1399-3054.2002.1150211.x
  • Huang, Y., Bie, Z., Liu, P., Niu, M., Zhen, A., Liu, Z., Lei, B., Gu, D., Lu, C., & Wang, B. (2013). Reciprocal grafting between cucumber and pumpkin demonstrates the roles of the rootstock in the determination of cucumber salt tolerance and sodium accumulation. Scientia Horticulturae, 149, 47-54. https://doi.org/10.1016/j.scienta.2012.04.018
  • Jia, X. M., Wang, H., Svetla, S., Zhu, Y. F., Hu, Y., Cheng, L., Zhao, T., & Wang, Y. X. (2019). Comparative physiological responses and adaptive strategies of apple Malus halliana to salt, alkali, and saline-alkali stress. Scientia Horticulturae, 245, 154-162. https://doi.org/10.1016/j.scienta.2018.10.017
  • Kaçar, B. (1984). Plant Nutrition Practice Guide. Ankara, Türkiye: Ankara University Agricultural Faculty Publications Practice Guides .
  • Kaçar, B., & İnal, A. (2008). Bitki analizleri. Ankara, Türkiye: Nobel Academic Publisher.
  • Karimi, H. R., & Nasrolahpour-Moghadam, S. (2016). Study of sex-related differences in growth indices andeco-physiological parameters of pistachio seedlings (Pistacia vera cv.Badami-Riz-e-Zarand) under salinity stress. Scientia Horticulturae, 202, 165-172. https://doi.org/10.1016/j.scienta.2016.03.003
  • Katerji, N., Van Hoorn, J. W., Hamdy, A., & Mastrorilli, M. (2003). Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agricultural Water Management, 62(1), 37-66. https://doi.org/10.1016/S0378-3774(03)00005-2
  • Kim, J., Liu, Y., Zhang, X., Zhao, X., & Childs, K. L. (2016). Analysis of salt-induced physiological and proline changes in 46 switchgrass (Panicum virgatum) lines indicates multiple response modes. Plant Physiology and Biochemistry, 105, 203-212. https://doi.org/10.1016/j.plaphy.2016.04.020
  • Kotagiri, D., & Kolluru, V. C. (2017). Effect of salinity stress on the morphology and physiology of five different Coleus species. Biomedical and Pharmacology Journal, 10(4), 1639-1649. https://dx.doi.org/10.13005/bpj/1275
  • Kumar, J., Singh, V. P. & Prasad, S. M. (2015). NaCl-induced physiological and biochemical changes in two cyanobacteria Nostoc muscorum and Phormidium foveolarum acclimatized to different photosynthetically active radiation. The Journal of Photochemistry and Photobiology B: Biology, 151, 221-232. https://doi.org/10.1016/j.jphotobiol.2015.08.005
  • Küçükyumuk, C., Yıldız, H., Küçükyumuk, Z., & Ünlükara, A. (2015). Responses of “0900 Ziraat” sweet cherry variety grafted on different rootstocks to salt stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 43(1), 214-221. https://doi.org/10.15835/nbha4319754
  • Larher, F. R., Lugan, R., Gagneul, D., Guyot, S., Monnier, C., Lespinasse, Y., & Bouchereau, A. (2009). A reassessment of the prevalent organic solutes constitutively accumulated and potentially involved in osmotic adjustment in pear leaves. Environmental and Experimental Botany, 66(2), 230-241. https://doi.org/10.1016/j.envexpbot.2009.02.005
  • Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Paper presented at the 603rd Meeting, Liverpool, United Kingdom.
  • Maathuis, F. J. M., & Amtmann, A. (1999). K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Annals of Botany, 84(2), 123-133. https://doi.org/10.1006/anbo.1999.0912
  • Mehdi-Tounsi, H., Chelli-Chaabouni, A., Mahjoub-Boujnah, D., & Boukhris, M. (2017). Long-term field response of pistachio to irrigation water salinity. Agricultural Water Management, 185, 1-12. https://doi.org/10.1016/j.agwat.2017.02.003
  • Meloni, D. A., Oliva, M. A., Martinez, C. A., & Cambraia, J. (2003). Photosynthesis and activity of superoxide dismutase, peroxidase, and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany, 49(1), 69-76. https://doi.org/10.1016/S0098-8472(02)00058-8
  • Misra, N., & Gupta, A. K. (2005). Effect of salt stress on proline metabolism in two high yielding genotypes of green gram. Plant Science, 169(2), 331-339. https://doi.org/10.1016/j.plantsci.2005.02.013
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  • Munns, R. (2005). Genes and salt tolerance: bringing them together. New Phytologist, 167(3), 645-663. https://doi.org/10.1111/j.1469-8137.2005.01487.x
  • Munns, R., & Passioura, J. B. (1984). Effect of prolonged exposure to NaCl on the osmotic pressure of leaf xylem sap from intact, transpiring barley plants. Functional Plant Biology, 11(6), 497-507.
  • Munns, R., James, A. J., & Läuchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57(5), 1025-43. https://doi.org/10.1093/jxb/erj100
  • Musacchi, S., Quartieri, M., & Tagliavini, M. (2006). Pear (Pyrus communis) and quince (Cydonia oblonga) roots exhibit different ability to prevent sodium and chloride uptake when irrigated with saline water. European Journal of Agronomy, 24(3), 268-275. https://doi.org/10.1016/j.eja.2005.10.003
  • Nassar, R. M. A., Shanan, N. T., & Reda, F. M. (2016). Active yeast extract counteracts the harmful effects of salinity stress on the growth of Leucaena plant. Scientia Horticulturae, 201, 61-67. https://doi.org/10.1016/j.scienta.2016.01.037
  • Navada, S., Vadstein, O., Gaumet, F., Tveten, A. K., Spanu, C., Mikkelsen, Ø., & Kolarevic, J. (2020). Biofilms remember: osmotic stress priming as a microbial management strategy for improving salinity acclimation in nitrifying biofilms. Water Research, 176, 115732. https://doi.org/10.1016/j.watres.2020.115732
  • Niu, M., Xie, J., Sun, J., Hunag, Y., Kong, Q., Navaz, M. A., & Bie, Z. (2017). A shoot-based Na+ tolerance mechanism observed in pumpkin-An important consideration for screening salt tolerant rootstocks. Scientia Horticulturae, 218, 38-47. https://doi.org/10.1016/j.scienta.2017.02.020
  • Okubo, M., Furukawa, Y., & Sakuratani, T. (2000). Growth, flowering and leaf properties of pear cultivars grafted on two Asian pear rootstock seedlings under NaCl irrigation. Scientia Horticulturae, 85(1-2), 91-101. https://doi.org/10.1016/S0304-4238(99)00145-4
  • Okubo, M., & Sakuratani, T. (2000). Effects of sodium chloride on survival and stem elongation of two Asian pear rootstock seedlings. Scientia Horticulturae, 85(1-2), 85-90. https://doi.org/10.1016/S0304-4238(99)00141-7
  • Petridis, A., Therios, I., Samouris, G., & Tananaki, C. (2012). Salinity-induced changes in phenolic compounds in leaves and roots of four olive cultivars (Olea europaea L.) and their relationship to antioxidant activity. Environmental and Experimental Botany, 79, 37-43. https://doi.org/10.1016/j.envexpbot.2012.01.007
  • Ribeiro, R. V., Lyra, G. B., Santiago, A. V., Pereira, A., Machado, E. C., & Oliveira, R. F. (2006). Diurnal and seasonal patterns of leaf gas exchange in Bahia grass (Paspalum notatum Flügge) growing in a subtropical climate. Grass Forage Science, 61(3), 293-303. https://doi.org/10.1111/j.1365-2494.2006.00533.x
  • Santa-Cruz, A., Martinez-Rodrigez, M. M., Perez-Alfocea, F., Romero-Aranda, R.,& Bolarin, M. C. (2002). The rootstock effect on the tomato salinity response depends on the shoot genotype. Plant Science, 162(5), 825-831. https://doi.org/10.1016/S0168-9452(02)00030-4
  • Sarker, U., & Oba, S. (2018). Drought stress effects on growth, ROS markers, compatible solutes, phenolics, flavonoids, and antioxidant activity in Amaranthus tricolor. Applied Biochemistry and Biotechnology, 186(4), 999-1016. https://doi.org/10.1007/s12010-018-2784-5
  • Sarwat, M., Ahmad, P., Nabi, G., & Hu, X. (2013). Ca2+ signals: the versatile decoders of environmental cues. Critical Reviews in Biotechnology, 33(1), 97-109. https://doi.org/10.3109/07388551.2012.672398
  • Shabala, S., & Munns, R. (2017). Salinity stress: physiological constraints and adaptive mechanisms. In S. Shabala (Eds.), Plant stress physiology (pp. 24-63) Wallingford.
  • Singh, M., Singh, V. P., & Prasad, M. P. (2016). Responses of photosynthesis, nitrogen, and proline metabolism to salinity stress in Solanum lycopersicum under different levels of nitrogen supplementation. Plant Physiology and Biochemistry, 109, 72-83. https://doi.org/10.1016/j.plaphy.2016.08.021
  • Sivritepe, N., Erturk, U., Yerlikaya, C., Turkan, I., Bor, M., & Ozdemir, F. (2008). Response of the cherry rootstock to water stress induced in vitro. Biologia Plantarum, 52(3), 573-576. https://doi.org/10.1007/s10535-008-0114-4
  • Sofy, M. R., Elhawat, N., & Alshaal, T. (2020). Glycine betaine counters salinity stress by maintaining high K+/Na+ ratio and antioxidant defence via limiting Na+ uptake in common bean (Phaseolus vulgaris L.). Ecotoxicology and Environmental Safety, 200, 110732. https://doi.org/10.1016/j.ecoenv.2020.110732
  • Taiz, L., & Zeiger, E. (2002). Plant Physiology. Sunderland, UK: Sinauer Association.
  • Tavallali, V., & Karimi, S. (2019). Methyl jasmonate enhances salt tolerance of almond rootstocks by regulating endogenous phytohormones, antioxidant activity and gas exchange. Journal of Plant Physiology, 234, 98-105. https://doi.org/10.1016/j.jplph.2019.02.001
  • Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91(5), 503-527. https://doi.org/10.1093/aob/mcg058
  • Tuteja, N. (2007). Mechanisms of high salinity tolerance in plants. Methods in Enzymology, 428, 419-438. https://doi.org/10.1016/S0076-6879(07)28024-3
  • Wang, Y., & Nii, N. (2000). Changes in chlorophyll, ribulose bisphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis, and transpiration in Amaranthus tricolor leaves during salt stress. Journal of Horticultural Science and Biotechnology, 75(6), 623-627. https://doi.org/10.1080/14620316.2000.11511297
  • Wang, Y., Cai, S. Y., Yin, L. L., Shi, K., Xia, X. J., Zhou, Y. H., Yu, J. Q.,& Zhou, J. (2015). Tomato HsfA1a plays a critical role in plant drought tolerance by activating ATG genes and inducing autophagy. Autophagy, 11(11), 2033-2047. https://doi.org/10.1080/15548627.2015.1098798
  • Wei, D. D., Zhang, W., Wang, C. C., Meng, Q. W., Li, G., Chen, T. H. H., & Yang, X. H. (2017). Genetic engineering of the biosynthesis of glycine betaine leads to alleviate salt-induced potassium efflux and enhances salt tolerance in tomato plants. Plant Science, 257, 74-83. https://doi.org/10.1016/j.plantsci.2017.01.012
  • Wu, Q. S., & Zou, Y. N. (2009). Adaptive Responses of Birch-Leaved Pear (Pyrus betulaefolia) Seedlings to Salinity Stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37(1), 133-138. https://doi.org/10.15835/nbha3713109
  • Xu, L., Yan, D., Ren, X., Wei, Y., Zhou, J., Zhao, H., & Liang, M. (2016). Vermicompost improves the physiological and biochemical responses of blessed thistle (Silybum marianum Gaertn.) and peppermint (Mentha haplocalyx Briq) to salinity stress. Industrial Crops and Products, 94: 574-585. https://doi.org/10.1016/j.indcrop.2016.09.023
  • Zhang, J., & Kirkham, M. B. (1994). Drought stress induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant and Cell Physiology, 35(5), 785-791. https://doi.org/10.1093/oxfordjournals.pcp.a078658
  • Zrig, A., Tounekti, T., Vadel, A. M., Mohamed, H. B., Valero, D., Serrano, M., & Khemira, H. (2011). Possible involvement of polyphenols and polyamines in salt tolerance of almond rootstocks. Plant Physiology and Biochemistry, 49(11), 1313-1322. https://doi.org/10.1016/j.plaphy.2011.08.009
Year 2024, , 299 - 313, 30.06.2024
https://doi.org/10.29133/yyutbd.1414651

Abstract

Project Number

116O721

References

  • Ahmad, P., & Prasad, M. N. V. (2012). Environmental Adaptations and Stress Tolerance in Plants in the Era of Climate Change. New York, USA: Springer Science & Business Media.
  • Ahmed, I. M., Dai, H., Zheng, W., Cao, F., Zhang, G., Sun, D., & Wu, F. (2013). Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiology and Biochemistry, 63, 49-60. https://doi.org/10.1016/j.plaphy.2012.11.004
  • Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64-77. https://doi.org/10.1016/j.plaphy.2020.08.042
  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1. https://doi.org/10.1104/pp.24.1.1
  • Ashraf, M. Y., & Sarwar, G. (2002). Salt tolerance potential in some members of Brassicaceae physiological studies on water relations and mineral contents. Prospects for Saline Agriculture, 237-245.
  • Barthod, S., Cerovic, Z., & Epron, D. (2007). Can dual chlorophyll fluorescence excitation be used to assess the variation in the content of UV-absorbing phenolic compounds in leaves of temperate tree species along a light gradient? Journal of Experimental Botany, 58(7), 1753-1760. https://doi.org/10.1093/jxb/erm030
  • Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39(1), 205-207.
  • Bendaly, A., Messed, D., Smaoui, A., Ksoui, R., Bouchereau, A., & Abdelly, C. (2016). Physiological and leaf metabolome changes in the xerophyte species Atriplex halimus induced by salinity. Plant Physiology and Biochemistry, 103, 208-218. https://doi.org/10.1016/j.plaphy.2016.02.037
  • Colla, G., Rouphael, Y., Leonardi, C., & Bie, Z. (2010). Role of grafting in vegetable crops grown under saline conditions. Scientia Horticulturae, 127(2), 147-155. https://doi.org/10.1016/j.scienta.2010.08.004
  • de Azevedo Neto, A. D., Prisco, J. T., Enéas-Filho, J., de Abreu, C. E. B., & Gomes-Filho, E. (2006). Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany, 56(1), 87-94. https://doi.org/10.1016/j.envexpbot.2005.01.008
  • dos Santos, I. C., de Almeida, A. A. F., Pirovani, C. P., Costa, M. G. C., da Conceição, A. S., dos Santos Soares Filho, W., Filho, M. A. C., & Gesteira, A. S. (2019). Physiological, biochemical, and molecular responses to drought conditions in field-grown grafted and ungrafted citrus plants. Environmental and Experimental Botany, 162, 406-420. https://doi.org/10.1016/j.envexpbot.2019.03.018
  • Ghars, M. A., Parre, E., & Debez, A. (2008). Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K+/Na+ selectivity and proline accumulation. Journal of Plant Physiology, 165(6), 588-599. https://doi.org/10.1016/j.jplph.2007.05.014
  • Ghoulam, C., Foursy, A., & Fares, K. (2002). Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany, 47(1), 39-50. https://doi.org/10.1016/S0098-8472(01)00109-5
  • Girija, C., Smith, B. N., & Swamy, P. M. (2002). Interactive effects of sodium chloride and calcium chloride on the accumulation of proline and glycinebetaine in peanut (Arachis hypogaea L.). Environmental and Experimental Botany, 47(1), 1-10. https://doi.org/10.1016/S0098-8472(01)00096-X
  • Gong, B., Wen, D., Vanden Langenberg, K., Wei, M., Yang, F., Shi, Q., & Wang, X. (2013). Comparative effects of NaCl and NaHCO3 stress on photosynthetic parameters, nutrient metabolism, and the antioxidant system in tomato leaves. Scientia Horticulturae, 157, 1-12. https://doi.org/10.1016/j.scienta.2013.03.032
  • Grattan, S. R., & Grieve, C. M. (1999). Salinity-nutrient relations in horticultural crops. Scientia Horticulturae, 78(1-4), 127-157. https://doi.org/10.1016/S0304-4238(98)00192-7
  • Greenway, H., & Munns, R. (1980). Mechanisms of salt tolerance in non-halophytes. Annual Review of Plant Physiology, 31(1), 149-190.
  • Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics, 1-18. https://doi.org/10.1155/2014/701596
  • Hasegawa, P. M., Bressan, R. A., Zhu, J. K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 51(1), 463-499. https://doi.org/10.1146/annurev.arplant.51.1.463
  • Hernandez, J. A., & Almansa, M. S. (2002). Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiology of Plants, 115(2), 251-257. https://doi.org/10.1034/j.1399-3054.2002.1150211.x
  • Huang, Y., Bie, Z., Liu, P., Niu, M., Zhen, A., Liu, Z., Lei, B., Gu, D., Lu, C., & Wang, B. (2013). Reciprocal grafting between cucumber and pumpkin demonstrates the roles of the rootstock in the determination of cucumber salt tolerance and sodium accumulation. Scientia Horticulturae, 149, 47-54. https://doi.org/10.1016/j.scienta.2012.04.018
  • Jia, X. M., Wang, H., Svetla, S., Zhu, Y. F., Hu, Y., Cheng, L., Zhao, T., & Wang, Y. X. (2019). Comparative physiological responses and adaptive strategies of apple Malus halliana to salt, alkali, and saline-alkali stress. Scientia Horticulturae, 245, 154-162. https://doi.org/10.1016/j.scienta.2018.10.017
  • Kaçar, B. (1984). Plant Nutrition Practice Guide. Ankara, Türkiye: Ankara University Agricultural Faculty Publications Practice Guides .
  • Kaçar, B., & İnal, A. (2008). Bitki analizleri. Ankara, Türkiye: Nobel Academic Publisher.
  • Karimi, H. R., & Nasrolahpour-Moghadam, S. (2016). Study of sex-related differences in growth indices andeco-physiological parameters of pistachio seedlings (Pistacia vera cv.Badami-Riz-e-Zarand) under salinity stress. Scientia Horticulturae, 202, 165-172. https://doi.org/10.1016/j.scienta.2016.03.003
  • Katerji, N., Van Hoorn, J. W., Hamdy, A., & Mastrorilli, M. (2003). Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agricultural Water Management, 62(1), 37-66. https://doi.org/10.1016/S0378-3774(03)00005-2
  • Kim, J., Liu, Y., Zhang, X., Zhao, X., & Childs, K. L. (2016). Analysis of salt-induced physiological and proline changes in 46 switchgrass (Panicum virgatum) lines indicates multiple response modes. Plant Physiology and Biochemistry, 105, 203-212. https://doi.org/10.1016/j.plaphy.2016.04.020
  • Kotagiri, D., & Kolluru, V. C. (2017). Effect of salinity stress on the morphology and physiology of five different Coleus species. Biomedical and Pharmacology Journal, 10(4), 1639-1649. https://dx.doi.org/10.13005/bpj/1275
  • Kumar, J., Singh, V. P. & Prasad, S. M. (2015). NaCl-induced physiological and biochemical changes in two cyanobacteria Nostoc muscorum and Phormidium foveolarum acclimatized to different photosynthetically active radiation. The Journal of Photochemistry and Photobiology B: Biology, 151, 221-232. https://doi.org/10.1016/j.jphotobiol.2015.08.005
  • Küçükyumuk, C., Yıldız, H., Küçükyumuk, Z., & Ünlükara, A. (2015). Responses of “0900 Ziraat” sweet cherry variety grafted on different rootstocks to salt stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 43(1), 214-221. https://doi.org/10.15835/nbha4319754
  • Larher, F. R., Lugan, R., Gagneul, D., Guyot, S., Monnier, C., Lespinasse, Y., & Bouchereau, A. (2009). A reassessment of the prevalent organic solutes constitutively accumulated and potentially involved in osmotic adjustment in pear leaves. Environmental and Experimental Botany, 66(2), 230-241. https://doi.org/10.1016/j.envexpbot.2009.02.005
  • Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Paper presented at the 603rd Meeting, Liverpool, United Kingdom.
  • Maathuis, F. J. M., & Amtmann, A. (1999). K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Annals of Botany, 84(2), 123-133. https://doi.org/10.1006/anbo.1999.0912
  • Mehdi-Tounsi, H., Chelli-Chaabouni, A., Mahjoub-Boujnah, D., & Boukhris, M. (2017). Long-term field response of pistachio to irrigation water salinity. Agricultural Water Management, 185, 1-12. https://doi.org/10.1016/j.agwat.2017.02.003
  • Meloni, D. A., Oliva, M. A., Martinez, C. A., & Cambraia, J. (2003). Photosynthesis and activity of superoxide dismutase, peroxidase, and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany, 49(1), 69-76. https://doi.org/10.1016/S0098-8472(02)00058-8
  • Misra, N., & Gupta, A. K. (2005). Effect of salt stress on proline metabolism in two high yielding genotypes of green gram. Plant Science, 169(2), 331-339. https://doi.org/10.1016/j.plantsci.2005.02.013
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  • Munns, R. (2005). Genes and salt tolerance: bringing them together. New Phytologist, 167(3), 645-663. https://doi.org/10.1111/j.1469-8137.2005.01487.x
  • Munns, R., & Passioura, J. B. (1984). Effect of prolonged exposure to NaCl on the osmotic pressure of leaf xylem sap from intact, transpiring barley plants. Functional Plant Biology, 11(6), 497-507.
  • Munns, R., James, A. J., & Läuchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57(5), 1025-43. https://doi.org/10.1093/jxb/erj100
  • Musacchi, S., Quartieri, M., & Tagliavini, M. (2006). Pear (Pyrus communis) and quince (Cydonia oblonga) roots exhibit different ability to prevent sodium and chloride uptake when irrigated with saline water. European Journal of Agronomy, 24(3), 268-275. https://doi.org/10.1016/j.eja.2005.10.003
  • Nassar, R. M. A., Shanan, N. T., & Reda, F. M. (2016). Active yeast extract counteracts the harmful effects of salinity stress on the growth of Leucaena plant. Scientia Horticulturae, 201, 61-67. https://doi.org/10.1016/j.scienta.2016.01.037
  • Navada, S., Vadstein, O., Gaumet, F., Tveten, A. K., Spanu, C., Mikkelsen, Ø., & Kolarevic, J. (2020). Biofilms remember: osmotic stress priming as a microbial management strategy for improving salinity acclimation in nitrifying biofilms. Water Research, 176, 115732. https://doi.org/10.1016/j.watres.2020.115732
  • Niu, M., Xie, J., Sun, J., Hunag, Y., Kong, Q., Navaz, M. A., & Bie, Z. (2017). A shoot-based Na+ tolerance mechanism observed in pumpkin-An important consideration for screening salt tolerant rootstocks. Scientia Horticulturae, 218, 38-47. https://doi.org/10.1016/j.scienta.2017.02.020
  • Okubo, M., Furukawa, Y., & Sakuratani, T. (2000). Growth, flowering and leaf properties of pear cultivars grafted on two Asian pear rootstock seedlings under NaCl irrigation. Scientia Horticulturae, 85(1-2), 91-101. https://doi.org/10.1016/S0304-4238(99)00145-4
  • Okubo, M., & Sakuratani, T. (2000). Effects of sodium chloride on survival and stem elongation of two Asian pear rootstock seedlings. Scientia Horticulturae, 85(1-2), 85-90. https://doi.org/10.1016/S0304-4238(99)00141-7
  • Petridis, A., Therios, I., Samouris, G., & Tananaki, C. (2012). Salinity-induced changes in phenolic compounds in leaves and roots of four olive cultivars (Olea europaea L.) and their relationship to antioxidant activity. Environmental and Experimental Botany, 79, 37-43. https://doi.org/10.1016/j.envexpbot.2012.01.007
  • Ribeiro, R. V., Lyra, G. B., Santiago, A. V., Pereira, A., Machado, E. C., & Oliveira, R. F. (2006). Diurnal and seasonal patterns of leaf gas exchange in Bahia grass (Paspalum notatum Flügge) growing in a subtropical climate. Grass Forage Science, 61(3), 293-303. https://doi.org/10.1111/j.1365-2494.2006.00533.x
  • Santa-Cruz, A., Martinez-Rodrigez, M. M., Perez-Alfocea, F., Romero-Aranda, R.,& Bolarin, M. C. (2002). The rootstock effect on the tomato salinity response depends on the shoot genotype. Plant Science, 162(5), 825-831. https://doi.org/10.1016/S0168-9452(02)00030-4
  • Sarker, U., & Oba, S. (2018). Drought stress effects on growth, ROS markers, compatible solutes, phenolics, flavonoids, and antioxidant activity in Amaranthus tricolor. Applied Biochemistry and Biotechnology, 186(4), 999-1016. https://doi.org/10.1007/s12010-018-2784-5
  • Sarwat, M., Ahmad, P., Nabi, G., & Hu, X. (2013). Ca2+ signals: the versatile decoders of environmental cues. Critical Reviews in Biotechnology, 33(1), 97-109. https://doi.org/10.3109/07388551.2012.672398
  • Shabala, S., & Munns, R. (2017). Salinity stress: physiological constraints and adaptive mechanisms. In S. Shabala (Eds.), Plant stress physiology (pp. 24-63) Wallingford.
  • Singh, M., Singh, V. P., & Prasad, M. P. (2016). Responses of photosynthesis, nitrogen, and proline metabolism to salinity stress in Solanum lycopersicum under different levels of nitrogen supplementation. Plant Physiology and Biochemistry, 109, 72-83. https://doi.org/10.1016/j.plaphy.2016.08.021
  • Sivritepe, N., Erturk, U., Yerlikaya, C., Turkan, I., Bor, M., & Ozdemir, F. (2008). Response of the cherry rootstock to water stress induced in vitro. Biologia Plantarum, 52(3), 573-576. https://doi.org/10.1007/s10535-008-0114-4
  • Sofy, M. R., Elhawat, N., & Alshaal, T. (2020). Glycine betaine counters salinity stress by maintaining high K+/Na+ ratio and antioxidant defence via limiting Na+ uptake in common bean (Phaseolus vulgaris L.). Ecotoxicology and Environmental Safety, 200, 110732. https://doi.org/10.1016/j.ecoenv.2020.110732
  • Taiz, L., & Zeiger, E. (2002). Plant Physiology. Sunderland, UK: Sinauer Association.
  • Tavallali, V., & Karimi, S. (2019). Methyl jasmonate enhances salt tolerance of almond rootstocks by regulating endogenous phytohormones, antioxidant activity and gas exchange. Journal of Plant Physiology, 234, 98-105. https://doi.org/10.1016/j.jplph.2019.02.001
  • Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91(5), 503-527. https://doi.org/10.1093/aob/mcg058
  • Tuteja, N. (2007). Mechanisms of high salinity tolerance in plants. Methods in Enzymology, 428, 419-438. https://doi.org/10.1016/S0076-6879(07)28024-3
  • Wang, Y., & Nii, N. (2000). Changes in chlorophyll, ribulose bisphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis, and transpiration in Amaranthus tricolor leaves during salt stress. Journal of Horticultural Science and Biotechnology, 75(6), 623-627. https://doi.org/10.1080/14620316.2000.11511297
  • Wang, Y., Cai, S. Y., Yin, L. L., Shi, K., Xia, X. J., Zhou, Y. H., Yu, J. Q.,& Zhou, J. (2015). Tomato HsfA1a plays a critical role in plant drought tolerance by activating ATG genes and inducing autophagy. Autophagy, 11(11), 2033-2047. https://doi.org/10.1080/15548627.2015.1098798
  • Wei, D. D., Zhang, W., Wang, C. C., Meng, Q. W., Li, G., Chen, T. H. H., & Yang, X. H. (2017). Genetic engineering of the biosynthesis of glycine betaine leads to alleviate salt-induced potassium efflux and enhances salt tolerance in tomato plants. Plant Science, 257, 74-83. https://doi.org/10.1016/j.plantsci.2017.01.012
  • Wu, Q. S., & Zou, Y. N. (2009). Adaptive Responses of Birch-Leaved Pear (Pyrus betulaefolia) Seedlings to Salinity Stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37(1), 133-138. https://doi.org/10.15835/nbha3713109
  • Xu, L., Yan, D., Ren, X., Wei, Y., Zhou, J., Zhao, H., & Liang, M. (2016). Vermicompost improves the physiological and biochemical responses of blessed thistle (Silybum marianum Gaertn.) and peppermint (Mentha haplocalyx Briq) to salinity stress. Industrial Crops and Products, 94: 574-585. https://doi.org/10.1016/j.indcrop.2016.09.023
  • Zhang, J., & Kirkham, M. B. (1994). Drought stress induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant and Cell Physiology, 35(5), 785-791. https://doi.org/10.1093/oxfordjournals.pcp.a078658
  • Zrig, A., Tounekti, T., Vadel, A. M., Mohamed, H. B., Valero, D., Serrano, M., & Khemira, H. (2011). Possible involvement of polyphenols and polyamines in salt tolerance of almond rootstocks. Plant Physiology and Biochemistry, 49(11), 1313-1322. https://doi.org/10.1016/j.plaphy.2011.08.009
There are 66 citations in total.

Details

Primary Language English
Subjects Horticultural Production (Other)
Journal Section Articles
Authors

Melih Aydınlı 0000-0002-1166-5791

Fatma Yıldırım 0000-0001-7304-9647

Emel Kaçal 0000-0003-4834-5510

Mesut Altındal 0000-0002-0332-6677

Halit Yıldız 0000-0001-7922-9366

Project Number 116O721
Early Pub Date June 16, 2024
Publication Date June 30, 2024
Submission Date January 4, 2024
Acceptance Date April 5, 2024
Published in Issue Year 2024

Cite

APA Aydınlı, M., Yıldırım, F., Kaçal, E., Altındal, M., et al. (2024). Morphological and Physiological Changes under NaCl Stress in Some Pyrus and Quince Rootstocks. Yuzuncu Yıl University Journal of Agricultural Sciences, 34(2), 299-313. https://doi.org/10.29133/yyutbd.1414651
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.