The Impact of Ventilation System Type on the Microclimate of Boar's Pen and Their Clinical Triad Parameters
Year 2024,
, 417 - 431, 30.09.2024
Alexandr Deschenko
Anna Lykhach
,
Vadym Lykhach
Leonid Lenkov
Yevhen Barkar
Mykola Shpetny
Abstract
The purpose of the study was the impact of different types of ventilation systems in boar`s pen on the microclimate and their physiological parameters. The control group of boars was kept in a house with a transverse ventilation system, and the animals of the experimental group were kept in a geothermal air supply. It was found that, regardless of the season, transverse ventilation provides a significantly higher air velocity and relative humidity: in Winter - 0.15 m s–1 and 5.4%; in Spring - 0.35 m s–1 and 5.3%; in Summer - 0.41 m s–1 and 0.7%; in Autumn - 0.28 m s–1 and 8.1%. Maintaining a stable temperature by the normative values in the boar housing was due to geothermal ventilation, regardless of the season, especially the "basement effect" was observed in the summer months, where the air temperature was cooled to 4.5°C (P < 0.001), compared to the transverse ventilation system. Compared with the boars in the experimental group, under the influence of the temperature increase in Summer, the boars in the control group increased significantly the respiratory rate to 50.9 ppm (P < 0.001) and heartbeat rate of 45.7 ppm (P < 0.001). An increase in rectal temperature in boars at elevated ambient temperature under both air ventilation systems was not found. The obtained results make it possible to introduce the use of cost-effective geothermal air supply technology in pig farms to harmonize the physiological parameters of boars to meet their biological needs, even in closed housing to improve their welfare.
Ethical Statement
Conditions for feeding, watering, housing, care, prevention and treatment followed European legislation on the protection of animals and their comfort (Council Directive 2008/120 / EU «On the establishment of minimum standards for the protection of pigs» of December 18, 2008), (European Parliament and of the Council 2010/63/EU «On the protection of animals used for scientific purposes» of September 22, 2010) and the Order of the Ministry of Economy of Ukraine «On approval of the requirements for the welfare of farm animals during their housing» of February 18, 2021, were organized. The boars treatment in the experiment fully complied with the requirements bioethical standards for proper handling of animals, the Local Commission on Bioethics of the National University of Life and Environmental Sciences of Ukraine approved the experimental protocol (007/2021) of October 28, 2021.
Thanks
The authors would like to thank the owner and all employees of the commercial farm where the experimental research was conducted.
References
- Costantino, A., Fabrizio, E., & Calvet, S. (2021). The Role of Climate Control in Monogastric Animal Farming: The Effects on Animal Welfare, Air Emissions, Productivity, Health, and Energy Use. Applied Sciences; 11(20), 9549. https://doi.org/10.3390/app11209549
- Costantino, A., Comba, L., Cornale, P., Fabrizio, E. (2022). Energy impact of climate control in pig farming: Dynamic simulation and experimental validation, Applied Energy, 309, 118457. https://doi.org/10.1016/j.apenergy.2021.118457
- Council Directive 2008/120/EC of 18 December 2008 laying down minimum standards for the protection of pigs (Codified version). Official Journal оf the European Union. L 47. 18.2.2009, 5-13.
- Council Directive 2010/63/EC of 22 September 2010 on the protection of animals used for scientific purposes. Official Journal of the European Union. L 276/33. 22.09.2010, 15-47.
- Dekker, M. (2015). The effect of temperature and activity patterns on lying behaviour and space use in conventional housed fattening pigs. PhD Thesis. Wageningen University. Wageningen, 165.
- Departmental Norms for Technological Design - Agro-Industrial Complex - 02.05 «Pig-breeding enterprises (complexes, farms, small farms)» (2005). Kyiv: Ministry of Agrarian Policy of Ukraine, 98. https://lugdpss.gov.ua/images/bezpechnist_veterynariya/Svynarski-pidpryyemstva-VNTP-APK-02.05.pdf
- DSTU 3377-96. (1997). Thermochemical combustible gas and vapour alarms. General technical conditions. Kyiv, 24. (Information and documentation).
- Forcada, F., & Abecia, J. A. (2019). How pigs influence indoor air properties in intensive farming: Practical implications – A review. Annals of Animal Science, 19, 31-47. https://doi.org/10.2478/aoas-2018-0030
- Gody, D., Herbut, P., Angrecka, S., & Corrêa Vieira, F. M. (2020). Use of Different Cooling Methods in Pig Facilities to Alleviate the Effects of Heat Stress – A Review. Animals, 10(9). 1459. https://doi.org/10.3390/ani10091459
- Gourdine, J. L., Rauw, W. M., Gilbert, H., & Poullet, N. (2021). The Genetics of Thermoregulation in Pigs: A Review. Frontiers in Veterinary Science, 8, 770480. https://doi.org/10.3389/fvets.2021.770480
- Hörtenhuber, S. J., Schauberger, G., Mikovits, C., Schönhart, M., Baumgartner, J., Niebuhr, K., Piringer, M., Anders, I., Andre, K., & Hennig-Pauka, I. (2020) The Effect of Climate Change-Induced Temperature Increase on Performance and Environmental Impact of Intensive Pig Production Systems. Sustainability, 12(22), 9442. https://doi.org/10.3390/su12229442
- Hu, Z., Yang, Q., Tao, Y., Shi, L., Tu, J., & Wang, Y. (2023). A review of ventilation and cooling systems for large-scale pig farms. Sustainable Cities and Society, 89, 104372, https://doi.org/10.1016/j.scs.2022.104372.
- Islam, M. M., Mun, H. S., Bostami, A. B. M. R., Park, K. J., & Yang, C. J. (2016). Combined active solar and geothermal heating: A renewable and environmentally friendly energy source in pig houses. Environmental Progress & Sustainable Energy, 35(4), 1156-1165. https://doi.org/10.1002/ep.12295
- Jo, G., Ha, T., Jang, Y. N., Hwang, O., Seo, S., Woo, S. E., Lee, S., Kim, D., & Jung, M. (2020). Ammonia emission characteristics of a mechanically ventilated swine finishing facility in Korea. Atmosphere, 11(10), 1088. https://doi.org/10.3390/atmos11101088
- Kim, H., Lee, I., Aarnink, A., Lee, B., Jeong, D., & Jeong, H. (2023). Development and validation of an air recirculated ventilation system, Part 1: Application of system in a pig farm and evaluation of pig productivity during winter. Biosystems Engineering, 230, 106-130. https://doi.org/10.1016/j.biosystemseng.2023.04.008
- Kondracki, S., Iwanina, M., Wysokińska, A., Banaszewska, D., Kordan, W., Fraser, L., Rymuza, K., & Górski, K. (2021). The Usefulness of Sexual Behaviour Assessment at the Beginning of Service to Predict the Suitability of Boars for Artificial Insemination. Animals, 11(12), 3341. https://doi.org/10.3390/ani11123341
- Krommweh, M. S., Rösmann, P., & Büscher, W. (2014). Investigation of Heating and Cooling Potential of a Modular Housing System for Fattening Pigs with Integrated Geothermal Heat Exchanger. Biosystems Engineering, 121, 118-129. https://doi.org/10.1016/j.biosystemseng.2014.02.008
- Lacetera, N. (2019) Impact of climate change on animal health and welfare. Animal Frontiers, 9(1), 26-31. https://doi.org/10.1093/af/vfy030
- Lykhach, A., Lykhach, V., Mylostyvyi, R., Barkar, Y., Shpetny, M., & Izhboldina, O. (2022). Influence of housing air temperature on the behavioural acts, physiological parameters and performance responses of fattening pigs. Journal of Animal Behavioural and Biometeorology, 10(3), 2226. http://dx.doi.org/10.31893/jabb.22026
- Lykhach, A., Lykhach, V., Barkar, Y., Shpetny, M., & Kucher, O. (2023). Dependence between behavioural acts and sperm parameters of boars of modern and local breeds of Ukraine. Journal of Animal Behavioural and Biometeorology, 11(1), e2023008. http://dx.doi.org/10.31893/jabb.23008
- McGlone, J. J., Aviles-Rosa, O. E., Archer, C., Wilson, M. M., Jones, K. D., Matthews, E. M., Gonzalez, A. A., & Reyes, E. (2019). Understanding Sow Sexual Behavior and the Application of the Boar Pheromone to Stimulate Sow Reproduction. Animal Reproduction in Veterinary Medicine, http://dx.doi.org/10.5772/intechopen.90774.
- Michiels, A., Piepers, S., Ulens, T., Van Ransbeeck, N., Del Pozo Sacristán, R., Sierens, A., Haesebrouck, F., Demeyer, P., & Maes, D. (2015). Impact of particulate matter and ammonia on average daily weight gain, mortality and lung lesions in pigs. Preventive Veterinary Medicine, 121, 1-2, 99-107. https://doi.org/10.1016/j.prevetmed.2015.06.011.
- Mottet, A., de Haan, C., Falcucci, A., Tempio, G., Opio, C., & Gerber, P. (2017). Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Global Food Security, 14, 1-8. https://doi.org/10.1016/j.gfs.2017.01.001
- Mun, H. S., Dilawar, M. A., Rathnayake, D., Chung, I. B., Kim, C. D., Ryu, S. B., Park, K. W., Lee, S. R., & Yang, C. J. (2021). Effect of a geothermal heat pump in cooling mode on the housing environment and swine productivity traits. Applied Sciences, 11, 10778. https://doi.org/10.3390/app112210778
- Mykhalko, O., Povod, M., Korzh, O., Verbelchuk, T., Verbelchuk, S., Shcherbyna, O., Kalynychenko, H., & Onishenko, L. (2022). Annual dynamics of microclimate parameters of farrowing room in pigsty using two different ventilation systems. Agraarteadus, 33(2), 425-433. https://doi.org/10.15159/jas.22.26.
- Niu, K., Zhong, J., & Hu, X. (2024). Impacts of climate change-induced heat stress on pig productivity in China. Science of The Total Environment, 908, 168215. https://doi.org/10.1016/j.scitotenv.2023.168215
- Ofuoku, A., & Ekorhi-robinson, O. (2020). Response to Integrated Poultry-Vegetable Farming Practıce Advocacy in Delta State, Nigeria. Yuzuncu Yıl University Journal of Agricultural Sciences, 30(1), 30-43. https://doi.org/10.29133/yyutbd.595732
- Oliveira, de J. K., Polycarpo, G. V., Andretta, I., Melo, A. D. B., Marçal, D. A., Létourneau-Montminy, M. P., & Hauschild, L. (2024). Effect of constant and cyclic heat stress on growth performance, water intake, and physiological responses in pigs: A meta-analysis. Animal Feed Science and Technology, 309, 115904. https://doi.org/10.1016/j.anifeedsci.2024.115904.
- Order of the Ministry for Development of Economy, Trade and Agriculture of Ukraine No. 224 dated 08.02.2021 «On Approval of Requirements for the Welfare of Farm Animals during their Keeping». Registered on 18.02.2021 by the Ministry of Justice of Ukraine No. 206/35828. https://zakon.rada.gov.ua/laws/show/z0206-21#Text
- Rodrigo, F. de Oliveira, Rony, A. Ferreira, Lucas, H. P. Abreu, Tadayuki, Yanagi Júnior, & Dian, Lourençoni. (2018). Estimation of respiratory frequency and rectal temperature on pigs in heat stress by fuzzy logic. Engenharia Agrícola, Jaboticabal, 38, 4, 457-470. http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v38n4p457-470/2018
- Rong, L., & Aarnink, A. J. A. (2019). Development of ammonia mass transfer coefficient models for the atmosphere above two types of the slatted floors in a pig house using computational fluid dynamics. Biosystems Engineering, 183, 13-25. https://doi.org/10.1016/j.biosystemseng.2019.04.011
- Ross, J. W., Hale, B. J., Gabler, N. K., Rhoads, R. P., Keating, A. F., & Baumgard, L. H. (2015). Physiological consequences of heat stress in pigs. Animal Production Science, 55(12), 1381-1390. https://doi.org/10.1071/AN15267
- Scriba-Janulis, M., & Wechsler, B. (2021). Behavioural and physiological indicators of heat stress in fattening pigs. Agrarforschung Schweiz, 12, 181-188. https://doi.org/10.34776/afs12-181e
- Szabo, C. (2018). A timeline of hydrogen sulfide (H2S) research: From environmental toxin to biological mediator. Biochemical Pharmacology, 149, 5-19. https://doi.org/10.1016/j.bcp.2017.09.010
- Thom, E. C. (1959). The discomfort index. Weatherwise, 12, 57-61. https://doi.org/10.1080/00431672.1959.9926960
- United Nations Department of Economic and Social Affairs, Population Division. (2022). World Population Prospects: Summary of Results. UN DESA/POP/2022/TR/NO. 3. file:///C:/Users/User/Downloads/undesa_pd_2022_WPP_summary_of_results%20(1).pdf
- Wenke, C., Pospiech, J., Reutter, T., Altmann, B., Truyen, U., & Speck, S. (2018). Impact of different supply air and recirculating air filtration systems on stable climate, animal health, and performance of fattening pigs in a commercial pig farm. PLoS ONE, 13(3), e0194641. https://doi.org/10.1371/journal.pone.0194641
- Wijaya, F. M. P., Sutopo, S., Samsudewa, D., Setiyono, A., & Setiaji, A. (2023). Fresh Semen Quality of Bos taurus, Bos indicus and Bos sondaicus Bulls in the Tropical Condition. Yuzuncu Yıl University Journal of Agricultural Sciences, 33(3), 420-428. https://doi.org/10.29133/yyutbd.1244506
Year 2024,
, 417 - 431, 30.09.2024
Alexandr Deschenko
Anna Lykhach
,
Vadym Lykhach
Leonid Lenkov
Yevhen Barkar
Mykola Shpetny
References
- Costantino, A., Fabrizio, E., & Calvet, S. (2021). The Role of Climate Control in Monogastric Animal Farming: The Effects on Animal Welfare, Air Emissions, Productivity, Health, and Energy Use. Applied Sciences; 11(20), 9549. https://doi.org/10.3390/app11209549
- Costantino, A., Comba, L., Cornale, P., Fabrizio, E. (2022). Energy impact of climate control in pig farming: Dynamic simulation and experimental validation, Applied Energy, 309, 118457. https://doi.org/10.1016/j.apenergy.2021.118457
- Council Directive 2008/120/EC of 18 December 2008 laying down minimum standards for the protection of pigs (Codified version). Official Journal оf the European Union. L 47. 18.2.2009, 5-13.
- Council Directive 2010/63/EC of 22 September 2010 on the protection of animals used for scientific purposes. Official Journal of the European Union. L 276/33. 22.09.2010, 15-47.
- Dekker, M. (2015). The effect of temperature and activity patterns on lying behaviour and space use in conventional housed fattening pigs. PhD Thesis. Wageningen University. Wageningen, 165.
- Departmental Norms for Technological Design - Agro-Industrial Complex - 02.05 «Pig-breeding enterprises (complexes, farms, small farms)» (2005). Kyiv: Ministry of Agrarian Policy of Ukraine, 98. https://lugdpss.gov.ua/images/bezpechnist_veterynariya/Svynarski-pidpryyemstva-VNTP-APK-02.05.pdf
- DSTU 3377-96. (1997). Thermochemical combustible gas and vapour alarms. General technical conditions. Kyiv, 24. (Information and documentation).
- Forcada, F., & Abecia, J. A. (2019). How pigs influence indoor air properties in intensive farming: Practical implications – A review. Annals of Animal Science, 19, 31-47. https://doi.org/10.2478/aoas-2018-0030
- Gody, D., Herbut, P., Angrecka, S., & Corrêa Vieira, F. M. (2020). Use of Different Cooling Methods in Pig Facilities to Alleviate the Effects of Heat Stress – A Review. Animals, 10(9). 1459. https://doi.org/10.3390/ani10091459
- Gourdine, J. L., Rauw, W. M., Gilbert, H., & Poullet, N. (2021). The Genetics of Thermoregulation in Pigs: A Review. Frontiers in Veterinary Science, 8, 770480. https://doi.org/10.3389/fvets.2021.770480
- Hörtenhuber, S. J., Schauberger, G., Mikovits, C., Schönhart, M., Baumgartner, J., Niebuhr, K., Piringer, M., Anders, I., Andre, K., & Hennig-Pauka, I. (2020) The Effect of Climate Change-Induced Temperature Increase on Performance and Environmental Impact of Intensive Pig Production Systems. Sustainability, 12(22), 9442. https://doi.org/10.3390/su12229442
- Hu, Z., Yang, Q., Tao, Y., Shi, L., Tu, J., & Wang, Y. (2023). A review of ventilation and cooling systems for large-scale pig farms. Sustainable Cities and Society, 89, 104372, https://doi.org/10.1016/j.scs.2022.104372.
- Islam, M. M., Mun, H. S., Bostami, A. B. M. R., Park, K. J., & Yang, C. J. (2016). Combined active solar and geothermal heating: A renewable and environmentally friendly energy source in pig houses. Environmental Progress & Sustainable Energy, 35(4), 1156-1165. https://doi.org/10.1002/ep.12295
- Jo, G., Ha, T., Jang, Y. N., Hwang, O., Seo, S., Woo, S. E., Lee, S., Kim, D., & Jung, M. (2020). Ammonia emission characteristics of a mechanically ventilated swine finishing facility in Korea. Atmosphere, 11(10), 1088. https://doi.org/10.3390/atmos11101088
- Kim, H., Lee, I., Aarnink, A., Lee, B., Jeong, D., & Jeong, H. (2023). Development and validation of an air recirculated ventilation system, Part 1: Application of system in a pig farm and evaluation of pig productivity during winter. Biosystems Engineering, 230, 106-130. https://doi.org/10.1016/j.biosystemseng.2023.04.008
- Kondracki, S., Iwanina, M., Wysokińska, A., Banaszewska, D., Kordan, W., Fraser, L., Rymuza, K., & Górski, K. (2021). The Usefulness of Sexual Behaviour Assessment at the Beginning of Service to Predict the Suitability of Boars for Artificial Insemination. Animals, 11(12), 3341. https://doi.org/10.3390/ani11123341
- Krommweh, M. S., Rösmann, P., & Büscher, W. (2014). Investigation of Heating and Cooling Potential of a Modular Housing System for Fattening Pigs with Integrated Geothermal Heat Exchanger. Biosystems Engineering, 121, 118-129. https://doi.org/10.1016/j.biosystemseng.2014.02.008
- Lacetera, N. (2019) Impact of climate change on animal health and welfare. Animal Frontiers, 9(1), 26-31. https://doi.org/10.1093/af/vfy030
- Lykhach, A., Lykhach, V., Mylostyvyi, R., Barkar, Y., Shpetny, M., & Izhboldina, O. (2022). Influence of housing air temperature on the behavioural acts, physiological parameters and performance responses of fattening pigs. Journal of Animal Behavioural and Biometeorology, 10(3), 2226. http://dx.doi.org/10.31893/jabb.22026
- Lykhach, A., Lykhach, V., Barkar, Y., Shpetny, M., & Kucher, O. (2023). Dependence between behavioural acts and sperm parameters of boars of modern and local breeds of Ukraine. Journal of Animal Behavioural and Biometeorology, 11(1), e2023008. http://dx.doi.org/10.31893/jabb.23008
- McGlone, J. J., Aviles-Rosa, O. E., Archer, C., Wilson, M. M., Jones, K. D., Matthews, E. M., Gonzalez, A. A., & Reyes, E. (2019). Understanding Sow Sexual Behavior and the Application of the Boar Pheromone to Stimulate Sow Reproduction. Animal Reproduction in Veterinary Medicine, http://dx.doi.org/10.5772/intechopen.90774.
- Michiels, A., Piepers, S., Ulens, T., Van Ransbeeck, N., Del Pozo Sacristán, R., Sierens, A., Haesebrouck, F., Demeyer, P., & Maes, D. (2015). Impact of particulate matter and ammonia on average daily weight gain, mortality and lung lesions in pigs. Preventive Veterinary Medicine, 121, 1-2, 99-107. https://doi.org/10.1016/j.prevetmed.2015.06.011.
- Mottet, A., de Haan, C., Falcucci, A., Tempio, G., Opio, C., & Gerber, P. (2017). Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Global Food Security, 14, 1-8. https://doi.org/10.1016/j.gfs.2017.01.001
- Mun, H. S., Dilawar, M. A., Rathnayake, D., Chung, I. B., Kim, C. D., Ryu, S. B., Park, K. W., Lee, S. R., & Yang, C. J. (2021). Effect of a geothermal heat pump in cooling mode on the housing environment and swine productivity traits. Applied Sciences, 11, 10778. https://doi.org/10.3390/app112210778
- Mykhalko, O., Povod, M., Korzh, O., Verbelchuk, T., Verbelchuk, S., Shcherbyna, O., Kalynychenko, H., & Onishenko, L. (2022). Annual dynamics of microclimate parameters of farrowing room in pigsty using two different ventilation systems. Agraarteadus, 33(2), 425-433. https://doi.org/10.15159/jas.22.26.
- Niu, K., Zhong, J., & Hu, X. (2024). Impacts of climate change-induced heat stress on pig productivity in China. Science of The Total Environment, 908, 168215. https://doi.org/10.1016/j.scitotenv.2023.168215
- Ofuoku, A., & Ekorhi-robinson, O. (2020). Response to Integrated Poultry-Vegetable Farming Practıce Advocacy in Delta State, Nigeria. Yuzuncu Yıl University Journal of Agricultural Sciences, 30(1), 30-43. https://doi.org/10.29133/yyutbd.595732
- Oliveira, de J. K., Polycarpo, G. V., Andretta, I., Melo, A. D. B., Marçal, D. A., Létourneau-Montminy, M. P., & Hauschild, L. (2024). Effect of constant and cyclic heat stress on growth performance, water intake, and physiological responses in pigs: A meta-analysis. Animal Feed Science and Technology, 309, 115904. https://doi.org/10.1016/j.anifeedsci.2024.115904.
- Order of the Ministry for Development of Economy, Trade and Agriculture of Ukraine No. 224 dated 08.02.2021 «On Approval of Requirements for the Welfare of Farm Animals during their Keeping». Registered on 18.02.2021 by the Ministry of Justice of Ukraine No. 206/35828. https://zakon.rada.gov.ua/laws/show/z0206-21#Text
- Rodrigo, F. de Oliveira, Rony, A. Ferreira, Lucas, H. P. Abreu, Tadayuki, Yanagi Júnior, & Dian, Lourençoni. (2018). Estimation of respiratory frequency and rectal temperature on pigs in heat stress by fuzzy logic. Engenharia Agrícola, Jaboticabal, 38, 4, 457-470. http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v38n4p457-470/2018
- Rong, L., & Aarnink, A. J. A. (2019). Development of ammonia mass transfer coefficient models for the atmosphere above two types of the slatted floors in a pig house using computational fluid dynamics. Biosystems Engineering, 183, 13-25. https://doi.org/10.1016/j.biosystemseng.2019.04.011
- Ross, J. W., Hale, B. J., Gabler, N. K., Rhoads, R. P., Keating, A. F., & Baumgard, L. H. (2015). Physiological consequences of heat stress in pigs. Animal Production Science, 55(12), 1381-1390. https://doi.org/10.1071/AN15267
- Scriba-Janulis, M., & Wechsler, B. (2021). Behavioural and physiological indicators of heat stress in fattening pigs. Agrarforschung Schweiz, 12, 181-188. https://doi.org/10.34776/afs12-181e
- Szabo, C. (2018). A timeline of hydrogen sulfide (H2S) research: From environmental toxin to biological mediator. Biochemical Pharmacology, 149, 5-19. https://doi.org/10.1016/j.bcp.2017.09.010
- Thom, E. C. (1959). The discomfort index. Weatherwise, 12, 57-61. https://doi.org/10.1080/00431672.1959.9926960
- United Nations Department of Economic and Social Affairs, Population Division. (2022). World Population Prospects: Summary of Results. UN DESA/POP/2022/TR/NO. 3. file:///C:/Users/User/Downloads/undesa_pd_2022_WPP_summary_of_results%20(1).pdf
- Wenke, C., Pospiech, J., Reutter, T., Altmann, B., Truyen, U., & Speck, S. (2018). Impact of different supply air and recirculating air filtration systems on stable climate, animal health, and performance of fattening pigs in a commercial pig farm. PLoS ONE, 13(3), e0194641. https://doi.org/10.1371/journal.pone.0194641
- Wijaya, F. M. P., Sutopo, S., Samsudewa, D., Setiyono, A., & Setiaji, A. (2023). Fresh Semen Quality of Bos taurus, Bos indicus and Bos sondaicus Bulls in the Tropical Condition. Yuzuncu Yıl University Journal of Agricultural Sciences, 33(3), 420-428. https://doi.org/10.29133/yyutbd.1244506