Research Article
BibTex RIS Cite

Influence of variety, beneficial fungi, and application on the growth and production of shallot (Allium ascalonicum L.)

Year 2024, , 559 - 570, 31.12.2024
https://doi.org/10.29133/yyutbd.1483719

Abstract

One effort to increase shallot production is the use of beneficial fungi. This research aims to determine the interaction between variety, type of fungus, and application dose on the growth and yield of shallot plants. The experimental design was a split-split-plot design consisting of 3 treatment factors. The main plot of varieties consists of Maserati, Sanren F1, Lokananta, and Tuk-Tuk. The subplots are types of fungi consisting of Trichoderma asperellum, Beauveria bassiana, Metarhizium anisopliae, and Glomus sp. The sub-subplots, namely fungus application doses, consist of 0 g, 7 g, and 14 g. The interaction between the three treatment factors variety, fungus type, and application dose is only significant in the chlorophyll index parameter. This significant interaction was observed in the combination of the Maserati variety with the application of Metarhizium anisopliae at a dose of 7 g. Growth characteristics such as plant height and number of leaves were individually affected by the variety and the type of fungus used. Likewise, regarding production parameters, bulb diameter was only influenced by the interaction between the variety and the type of fungus and the variety and the application dose. Observations of the stomata opening area were only influenced individually by the variety. In contrast, the density of the stomata was influenced by the interaction between the variety and the type of fungus. Overall, the influence of varieties is highly dominant, so cultivar selection is an important aspect to consider in shallot cultivation.

Ethical Statement

Ethical approval is not required for this study.

Supporting Institution

Thanks are expressed to the Rector of Hasanuddin University through the Institute for Research and Community Service, which has funded research funding for the Collaborative Fundamental Research Scheme in 2023.

References

  • Afandhi, A., Widjayanti, T., Emi, A. A. L., Tarno, H., Afiyanti, M., & Handoko, R. N. S. (2019). Endophytic fungi Beauveria bassiana Balsamo accelerates growth of common bean (Phaseolus vulgaris L.). Chemical and Biological Technologies in Agriculture, 6(1). https://doi.org/10.1186/s40538-019-0148-1
  • Boso, S., Gago, P., Alonso-Villaverde, V., Santiago, J. L., & Martinez, M. C. (2016). Density and size of stomata in the leaves of different hybrids (Vitis sp.) and Vitis vinifera varieties. Vitis - Journal of Grapevine Research, 55(1), 17–22. https://doi.org/10.5073/vitis.2016.55.17-22
  • Devi, R., Kaur, T., Kour, D., Rana, K. L., Yadav, A., & Yadaf, A. N. 2020. Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health. Microbial Biosystem, 5(1), 21-47.
  • Dyas, A., Prayuningsih, H., & Hadi, S. 2024. Analysis of demand and supply of red onions in Indonesia. Accessed in: http://repository.unmuhjember.ac.id/16592/12/12.%20ARTIKEL.pdf
  • Espinoza, F., Vidal, S., Rautenbach, F., Lewu, F., & Nchu, F. (2019). Effects of Beauveria bassiana (Hypocreales) on plant growth and secondary metabolites of extracts of hydroponically cultivated chive (Allium schoenoprasum L. [Amaryllidaceae]). Heliyon, 5(12). https://doi.org/10.1016/j.heliyon.2019.e03038
  • Fu, J., Xiao, Y., Liu, Z., Zhang, Y., Wang, Y., & Yang, K. (2020). Trichoderma asperellum improves soil microenvironment in different growth stages and yield of maize in saline-alkaline soil of the Songnen plain. Plant, Soil and Environment, 66(12), 639–647. https://doi.org/10.17221/456/2020-PSE
  • Gonzalez-Perez E., Ortega-Amaro M. A., Bautista E., Delgado-Sanchez P. & Jimenez-Bremont J. F. (2022). The entomopathogenic fungus Metarhizium anisopliae enhances arabidopsis tomato, and maize plant growth. Plant Physiol. Biochem. 176(1), 34–43.
  • Hadian-Deljuo, M., Esna-Ashari, M. & Mirzae-Asl, A. (2020). Alleviation of salt stress and expression of stress-responsive gene through the symbiosis of arbuscular Glomus sp. l fungi with sour orange seedlings. Scientia Horticulturae, 268. https://doi.org/10.1016/j.scienta.2020.109373
  • Hazra, F., Istiqomah, F. N., & Adriani, L. (2021). Aplikasi pupuk hayati Glomus sp. terhadap tanaman bawang merah (Allium cepa var. aggregatum) pada latosol dramaga. Jurnal Ilmu Tanah Dan Lingkungan, 23(2), 61–67. https://doi.org/10.29244/jitl.23.2.61-67
  • Huang, G. M., Zou, Y. N., Wu, Q. S., Xu, Y. J., & Kuča, K. (2020). Glomus sp. roles in plant growth, gas exchange, root morphology, and nutrient uptake of walnuts. Plant, Soil and Environment, 66(6), 295–302. https://doi.org/10.17221/240/2020-PSE
  • Illescas, M., Pendrero-Mendez, A., Pitorini-Bovolini, M., Hermosa, R. & Monte, E. (2021). Phytohormone production profiles in Trichoderma species and their relationship to wheat plant responses to water stress. Pathogens, 10(8). 10.3390/pathogens10080991
  • Illescas, M., Morán-Diez, M. E., de Alba, Á. E. M., Hermosa, R., & Monte, E. (2022). Effect of Trichoderma asperellum on Wheat Plants’ Biochemical and Molecular Responses, and Yield under Different Water Stress Conditions. International Journal of Molecular Sciences, 23(12). https://doi.org/10.3390/ijms23126782
  • Junior, A. F. C., Chagas, L. F. B., Miller, L. de O., & Oliveira, J. C. de. (2019). Efficiency of Trichoderma asperellum UFT 201 as plant growth promoter in soybean. African Journal of Agricultural Research, 14(5), 263–271. https://doi.org/10.5897/ajar2018.13556
  • Liao, X., O’Brien, T. R., Fang, W., & St. Leger, R. J. (2014). The plant beneficial effects of Metarhizium species correlate with their association with roots. Applied Microbiology and Biotechnology, 98(16), 7089–7096. https://doi.org/10.1007/s00253-014-5788-2
  • Liu, S. F., Wang, G. J., Nong, X. Q., Liu, B., Wang, M. M., Li, S. L., Cao, G. C., & Zhang, Z. H. (2017). Entomopathogen Metarhizium anisopliae promotes the early development of peanut root. Plant Protection Science, 53(2), 101–107. https://doi.org/10.17221/49/2016-PPS
  • Mantzoukas, S., Daskalaki, E., Kitsiou, F., Papantzikos, V., Servis, D., Bitivanos, S., Patakioutas, G., & Eliopoulos, P. A. (2022). Dual Action of Beauveria bassiana (Hypocreales; Cordycipitaceae) endophytic stains as biocontrol agents against sucking pests and plant growth biostimulants on melon and strawberry field plants. Microorganisms, 10(11). https://doi.org/10.3390/microorganisms10112306
  • Mantzoukas, S., Lagogiannis, I., Mpousia, D., Ntoukas, A., Karmakolia, K., Eliopoulos, P. A., & Poulas, K. (2021). Beauveria bassiana endophytic strain as plant growth promoter: The case of the grape vine Vitis vinifera. Journal of Fungi, 7(2), 1–14. https://doi.org/10.3390/jof7020142
  • Mimma, A. A., Akter, T., Haque, M. A., Bhuiyan, M. A. B., Chowdhury, M. Z. H., Sultana, S., & Islam, S. M. N. (2023). Effect of Metarhizium anisopliae (MetA1) on growth enhancement and antioxidative defense mechanism against Rhizoctonia root rot in okra. Heliyon, 9(8). https://doi.org/10.1016/j.heliyon.2023.e18978
  • Ownley, B. H., Griffin, M. R., Klingeman, W. E., Gwinn, K. D., Moulton, J. K., & Pereira, R. M. (2008). Beauveria bassiana: Endophytic colonization and plant disease control. Journal of Invertebrate Pathology, 98(3), 267–270. https://doi.org/10.1016/j.jip.2008.01.010
  • Saikkonen, K., Mikola, J., & Helander, M. (2015). Endophytic phyllosphere fungi and nutrient cycling in terrestrial ecosystems. Current Science, 109(10), 121–126. https://www.researchgate.net/publication/280742553
  • Saleh, S., Anshary, A., Made, U., Mahfudz, & Basir-Cyio, M. (2021). Application of Glomus sp. and Beauveria in organic farming system effectively control leafminers and enhance shallot production. Agrivita, 43(1), 79–88. https://doi.org/10.17503/agrivita.v1i1.2831
  • Salih, S., & Abdulrraziq, A. (2024). The individual and combined effects of cystoseira compressa extracts and inoculation of arbuscular mycorrhizal on growth and yield of wheat under salinity conditions. Yuzuncu Yıl University Journal of Agricultural Sciences, 34(2), 286-298. https://doi.org/10.29133/yyutbd.1409442
  • Schober, P., & Schwarte, L. A. (2018). Correlation coefficients: Appropriate use and interpretation. Anesthesia and Analgesia, 126(5), 1763–1768. https://doi.org/10.1213/ANE.0000000000002864
  • Scudeletti, D., Crusciol, C. A. C., Bossolani, J. W., Moretti, L. G., Momesso, L., Servaz Tubaña, B., de Castro, S. G. Q., De Oliveira, E. F., & Hungria, M. (2021). Trichoderma asperellum inoculation as a tool for attenuating drought stress in sugarcane. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.645542
  • Setyaningrum, T., Indradewa, D., Priyatmojo, A., & Sulistyaningsih, E. (2019). Trichoderma asperellum inoculation on shallots productivity in coastal sand lands. IOP Conference Series: Earth and Environmental Science, 250(1). https://doi.org/10.1088/1755-1315/250/1/012094
  • Shaalan, R. S., Gerges, E., Habib, W., & Ibrahim, L. (2021). Endophytic colonization by Beauveria bassiana and Metarhizium anisopliae induces growth promotion effect and increases the resistance of cucumber plants against Aphis gossypii. Journal of Plant Protection Research, 61(4), 358. https://doi.org/10.24425/jppr.2021.139244
  • Staffa, P., Nyangiwe, N., Msalya, G., Nagagi, Y. P., & Nchu, F. (2020). The effect of Beauveria bassiana inoculation on plant growth, volatile constituents, and tick (Rhipicephalus appendiculatus) repellency of acetone extracts of Tulbaghia violacea. Veterinary World, 13(6), 1159–1166. https://doi.org/10.14202/vetworld.2020.1159-1166
  • Sun, W., Shahrajabian, M. H., & Cheng, Q. (2019). The insight and survey on medicinal properties and nutritive components of Shallot. Journal of Medicinal Plants Research, 13(18), 452–457. https://doi.org/10.5897/jmpr2019.6836
  • Yu, Z., Wang, Z., Zhang, Y., Wang, Y., & Liu, Z. (2021). Biocontrol and growth-promoting effect of Trichoderma asperellum TaspHu1 isolate from Juglans mandshurica rhizosphere soil. Microbiological Research, 242. https://doi.org/10.1016/j.micres.2020.126596
  • Yusniwati, Trizela, Nurbailis, & Saragih, M. (2023). Profile and bioactivity of bioactive compounds of Beauveria bassiana fungi entomopathogens of endophytes as plant growth boosters. AGRIUM: Jurnal Ilmu Pertanian, 26(1), 50–56. https://doi.org/10.30596/agrium.v26i1.14364
Year 2024, , 559 - 570, 31.12.2024
https://doi.org/10.29133/yyutbd.1483719

Abstract

References

  • Afandhi, A., Widjayanti, T., Emi, A. A. L., Tarno, H., Afiyanti, M., & Handoko, R. N. S. (2019). Endophytic fungi Beauveria bassiana Balsamo accelerates growth of common bean (Phaseolus vulgaris L.). Chemical and Biological Technologies in Agriculture, 6(1). https://doi.org/10.1186/s40538-019-0148-1
  • Boso, S., Gago, P., Alonso-Villaverde, V., Santiago, J. L., & Martinez, M. C. (2016). Density and size of stomata in the leaves of different hybrids (Vitis sp.) and Vitis vinifera varieties. Vitis - Journal of Grapevine Research, 55(1), 17–22. https://doi.org/10.5073/vitis.2016.55.17-22
  • Devi, R., Kaur, T., Kour, D., Rana, K. L., Yadav, A., & Yadaf, A. N. 2020. Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health. Microbial Biosystem, 5(1), 21-47.
  • Dyas, A., Prayuningsih, H., & Hadi, S. 2024. Analysis of demand and supply of red onions in Indonesia. Accessed in: http://repository.unmuhjember.ac.id/16592/12/12.%20ARTIKEL.pdf
  • Espinoza, F., Vidal, S., Rautenbach, F., Lewu, F., & Nchu, F. (2019). Effects of Beauveria bassiana (Hypocreales) on plant growth and secondary metabolites of extracts of hydroponically cultivated chive (Allium schoenoprasum L. [Amaryllidaceae]). Heliyon, 5(12). https://doi.org/10.1016/j.heliyon.2019.e03038
  • Fu, J., Xiao, Y., Liu, Z., Zhang, Y., Wang, Y., & Yang, K. (2020). Trichoderma asperellum improves soil microenvironment in different growth stages and yield of maize in saline-alkaline soil of the Songnen plain. Plant, Soil and Environment, 66(12), 639–647. https://doi.org/10.17221/456/2020-PSE
  • Gonzalez-Perez E., Ortega-Amaro M. A., Bautista E., Delgado-Sanchez P. & Jimenez-Bremont J. F. (2022). The entomopathogenic fungus Metarhizium anisopliae enhances arabidopsis tomato, and maize plant growth. Plant Physiol. Biochem. 176(1), 34–43.
  • Hadian-Deljuo, M., Esna-Ashari, M. & Mirzae-Asl, A. (2020). Alleviation of salt stress and expression of stress-responsive gene through the symbiosis of arbuscular Glomus sp. l fungi with sour orange seedlings. Scientia Horticulturae, 268. https://doi.org/10.1016/j.scienta.2020.109373
  • Hazra, F., Istiqomah, F. N., & Adriani, L. (2021). Aplikasi pupuk hayati Glomus sp. terhadap tanaman bawang merah (Allium cepa var. aggregatum) pada latosol dramaga. Jurnal Ilmu Tanah Dan Lingkungan, 23(2), 61–67. https://doi.org/10.29244/jitl.23.2.61-67
  • Huang, G. M., Zou, Y. N., Wu, Q. S., Xu, Y. J., & Kuča, K. (2020). Glomus sp. roles in plant growth, gas exchange, root morphology, and nutrient uptake of walnuts. Plant, Soil and Environment, 66(6), 295–302. https://doi.org/10.17221/240/2020-PSE
  • Illescas, M., Pendrero-Mendez, A., Pitorini-Bovolini, M., Hermosa, R. & Monte, E. (2021). Phytohormone production profiles in Trichoderma species and their relationship to wheat plant responses to water stress. Pathogens, 10(8). 10.3390/pathogens10080991
  • Illescas, M., Morán-Diez, M. E., de Alba, Á. E. M., Hermosa, R., & Monte, E. (2022). Effect of Trichoderma asperellum on Wheat Plants’ Biochemical and Molecular Responses, and Yield under Different Water Stress Conditions. International Journal of Molecular Sciences, 23(12). https://doi.org/10.3390/ijms23126782
  • Junior, A. F. C., Chagas, L. F. B., Miller, L. de O., & Oliveira, J. C. de. (2019). Efficiency of Trichoderma asperellum UFT 201 as plant growth promoter in soybean. African Journal of Agricultural Research, 14(5), 263–271. https://doi.org/10.5897/ajar2018.13556
  • Liao, X., O’Brien, T. R., Fang, W., & St. Leger, R. J. (2014). The plant beneficial effects of Metarhizium species correlate with their association with roots. Applied Microbiology and Biotechnology, 98(16), 7089–7096. https://doi.org/10.1007/s00253-014-5788-2
  • Liu, S. F., Wang, G. J., Nong, X. Q., Liu, B., Wang, M. M., Li, S. L., Cao, G. C., & Zhang, Z. H. (2017). Entomopathogen Metarhizium anisopliae promotes the early development of peanut root. Plant Protection Science, 53(2), 101–107. https://doi.org/10.17221/49/2016-PPS
  • Mantzoukas, S., Daskalaki, E., Kitsiou, F., Papantzikos, V., Servis, D., Bitivanos, S., Patakioutas, G., & Eliopoulos, P. A. (2022). Dual Action of Beauveria bassiana (Hypocreales; Cordycipitaceae) endophytic stains as biocontrol agents against sucking pests and plant growth biostimulants on melon and strawberry field plants. Microorganisms, 10(11). https://doi.org/10.3390/microorganisms10112306
  • Mantzoukas, S., Lagogiannis, I., Mpousia, D., Ntoukas, A., Karmakolia, K., Eliopoulos, P. A., & Poulas, K. (2021). Beauveria bassiana endophytic strain as plant growth promoter: The case of the grape vine Vitis vinifera. Journal of Fungi, 7(2), 1–14. https://doi.org/10.3390/jof7020142
  • Mimma, A. A., Akter, T., Haque, M. A., Bhuiyan, M. A. B., Chowdhury, M. Z. H., Sultana, S., & Islam, S. M. N. (2023). Effect of Metarhizium anisopliae (MetA1) on growth enhancement and antioxidative defense mechanism against Rhizoctonia root rot in okra. Heliyon, 9(8). https://doi.org/10.1016/j.heliyon.2023.e18978
  • Ownley, B. H., Griffin, M. R., Klingeman, W. E., Gwinn, K. D., Moulton, J. K., & Pereira, R. M. (2008). Beauveria bassiana: Endophytic colonization and plant disease control. Journal of Invertebrate Pathology, 98(3), 267–270. https://doi.org/10.1016/j.jip.2008.01.010
  • Saikkonen, K., Mikola, J., & Helander, M. (2015). Endophytic phyllosphere fungi and nutrient cycling in terrestrial ecosystems. Current Science, 109(10), 121–126. https://www.researchgate.net/publication/280742553
  • Saleh, S., Anshary, A., Made, U., Mahfudz, & Basir-Cyio, M. (2021). Application of Glomus sp. and Beauveria in organic farming system effectively control leafminers and enhance shallot production. Agrivita, 43(1), 79–88. https://doi.org/10.17503/agrivita.v1i1.2831
  • Salih, S., & Abdulrraziq, A. (2024). The individual and combined effects of cystoseira compressa extracts and inoculation of arbuscular mycorrhizal on growth and yield of wheat under salinity conditions. Yuzuncu Yıl University Journal of Agricultural Sciences, 34(2), 286-298. https://doi.org/10.29133/yyutbd.1409442
  • Schober, P., & Schwarte, L. A. (2018). Correlation coefficients: Appropriate use and interpretation. Anesthesia and Analgesia, 126(5), 1763–1768. https://doi.org/10.1213/ANE.0000000000002864
  • Scudeletti, D., Crusciol, C. A. C., Bossolani, J. W., Moretti, L. G., Momesso, L., Servaz Tubaña, B., de Castro, S. G. Q., De Oliveira, E. F., & Hungria, M. (2021). Trichoderma asperellum inoculation as a tool for attenuating drought stress in sugarcane. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.645542
  • Setyaningrum, T., Indradewa, D., Priyatmojo, A., & Sulistyaningsih, E. (2019). Trichoderma asperellum inoculation on shallots productivity in coastal sand lands. IOP Conference Series: Earth and Environmental Science, 250(1). https://doi.org/10.1088/1755-1315/250/1/012094
  • Shaalan, R. S., Gerges, E., Habib, W., & Ibrahim, L. (2021). Endophytic colonization by Beauveria bassiana and Metarhizium anisopliae induces growth promotion effect and increases the resistance of cucumber plants against Aphis gossypii. Journal of Plant Protection Research, 61(4), 358. https://doi.org/10.24425/jppr.2021.139244
  • Staffa, P., Nyangiwe, N., Msalya, G., Nagagi, Y. P., & Nchu, F. (2020). The effect of Beauveria bassiana inoculation on plant growth, volatile constituents, and tick (Rhipicephalus appendiculatus) repellency of acetone extracts of Tulbaghia violacea. Veterinary World, 13(6), 1159–1166. https://doi.org/10.14202/vetworld.2020.1159-1166
  • Sun, W., Shahrajabian, M. H., & Cheng, Q. (2019). The insight and survey on medicinal properties and nutritive components of Shallot. Journal of Medicinal Plants Research, 13(18), 452–457. https://doi.org/10.5897/jmpr2019.6836
  • Yu, Z., Wang, Z., Zhang, Y., Wang, Y., & Liu, Z. (2021). Biocontrol and growth-promoting effect of Trichoderma asperellum TaspHu1 isolate from Juglans mandshurica rhizosphere soil. Microbiological Research, 242. https://doi.org/10.1016/j.micres.2020.126596
  • Yusniwati, Trizela, Nurbailis, & Saragih, M. (2023). Profile and bioactivity of bioactive compounds of Beauveria bassiana fungi entomopathogens of endophytes as plant growth boosters. AGRIUM: Jurnal Ilmu Pertanian, 26(1), 50–56. https://doi.org/10.30596/agrium.v26i1.14364
There are 30 citations in total.

Details

Primary Language English
Subjects Horticultural Production (Other)
Journal Section Articles
Authors

Elkawakib Syam'un 0000-0001-5875-118X

Katriani Mantja This is me 0000-0001-6522-1689

Fachirah Ulfa This is me 0000-0002-1736-9563

Muhammad Junaid This is me 0000-0002-7116-5887

Muhammad Jayadi This is me 0000-0002-0765-9743

Sylvia Sjam This is me 0000-0002-2881-1871

Muhammad Irfan Said This is me 0000-0002-8824-4944

Suhardi Suhardi This is me 0000-0002-2596-6763

Syamsia Syamsia This is me 0000-0001-8047-0405

Early Pub Date December 15, 2024
Publication Date December 31, 2024
Submission Date May 19, 2024
Acceptance Date August 16, 2024
Published in Issue Year 2024

Cite

APA Syam’un, E., Mantja, K., Ulfa, F., Junaid, M., et al. (2024). Influence of variety, beneficial fungi, and application on the growth and production of shallot (Allium ascalonicum L.). Yuzuncu Yıl University Journal of Agricultural Sciences, 34(4), 559-570. https://doi.org/10.29133/yyutbd.1483719
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.