Research Article
BibTex RIS Cite

Revealing the Influences of Exogenous Chitosan Supplements on Yield, Nutritional Values and Enzyme Activities in Taşköprü Garlic

Year 2024, , 712 - 726, 31.12.2024
https://doi.org/10.29133/yyutbd.1522504

Abstract

Garlic (Allium sativum L.) Taşköprü garlic is a valuable source of antioxidative molecules, including phenolic compounds, flavonoids, phenolic acids, enzymes, and minerals. A two-year study was conducted in an open field to compare the potential influence of exogenous chitosan (CHT) supplements on garlic yield, ash content, secondary metabolite generations, antioxidant enzyme activity, and mineral status of Taşköprü garlic in comparison to the untreated groups. The applications were arranged as control (0), CHT (CHT-1:0.5 Mm, CHT-2: 1 mM, and CHT-3:2 mM), and NPK. The influences of the applications were measured by monitoring bulb and plot yield, total phenolic, flavonoid, phenolic acids, ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) activity, and K, P, S, Ca, Mn, Fe, Ni, Cu, Zn, and Se accumulations. Results revealed that CHT-1 application improved bulb yield; benzoic acid and rosmarinic acid; Cl, K, Ca, and Se accumulation in garlic samples, but CHT-2 application increased total phenol content, POD and SOD enzyme activity, and the Mn, Fe, Ni, Cu, and Zn concentrations. The CHT-3 application enhanced the flavonoid generation in the garlic tissues. In summary, exogenous chitosan supply improved bulb growth by inducing flavonoids, total phenolics, benzoic acid, K, Na, Cl, and Ca accumulation and by activating POD and SOD. Moderate levels of chitosan (CHT-1 and CHT-2) could be offered to garlic cultivation, and data obtained can also provide potential knowledge about pre-harvest traits of garlic bulbs for further investigation.

Ethical Statement

Ethics approval is not required for the study because there is no need for a permit for the investigation of the experimental plant variety.

Supporting Institution

The chemical analyses and mineral analysis of this study were funded by the KÜ-BAP01/2020-21, and KÜ-HIZDA/2023-2/23 budget from Kastamonu University.

Thanks

We would like to thank the Head of BAP coordinator of Kastamonu University and Kastamonu University Central Research Laboratory for supporting this investigation so that the research can be completed and run well.

References

  • Abdelaal K., Attia K. A., Niedbała G., Wojciechowski T., Hafez Y., Alamery S., Alateeq T. K., & Arafa S. A. (2021). Mitigation of drought damages by exogenous chitosan and yeast extract with modulating the photosynthetic pigments, antioxidant defense system and improving the productivity of garlic plants. Horticulturae, 7(11), 510. https://doi.org/10.3390/horticulturae7110510.
  • Adamuchio-Oliveira, L. G., Mazaro, S. M., Mógor, G., Santanna-Santos, B. F., & Mógor, Á. F. (2020). Chitosan associated with chelated copper applied on tomatoes: Enzymatic and anatomical changes related to plant defense responses. Scientific Horticulture, 271, 109431. https:// doi.org/10.1016/j.scienta.2020.109431.
  • Agbar, Z. A., Shakya, A. K., Khalaf, N., & Haroon, M. (2008). Comparative antioxidant activity of some edible plants. Turkish Journal of Biology, 32, 193-196.
  • Alide, T., Wangila, P., & Kiprop, A. (2020). Effect of cooking temperature and time on total phenolic content, total flavonoid content and total in vitro antioxidant activity of garlic. BMC Research Notes, 13, 564.
  • Arista, R. A., Priosoeryanto, B. P., & Nurcholis, W. (2023). Total phenolic, flavonoids contents, and antioxidant activities in the stems and rhizomes of java cardamom as affected by shading and N fertilizer dosages. Yuzuncu Yıl University Journal of Agricultural Sciences, 33(1), 29-39. https://doi.org/10.29133/yyutbd.1193221.
  • Attia, M. S., Osman, M. S., Mohamed, A. S., Mahgoub, H. A., Garada, M. O., Abdelmouty, E. S., & Abdel Latef, A. A. H. (2021). Impact of foliar application of chitosan dissolved in different organic acids on isozymes, protein patterns and physio-biochemical characteristics of tomato grown under salinity stress. Plants, 10, 388. https://doi.org/10.3390/plants10020388.
  • Badal, D. S., Dwivedi, A. K., Kumar, V., Singh, S., Prakash, A., Verma, S., & Kumar, J. E. (2019). Effect of organic manures and inorganic fertilizers on growth, yield and its attributing traits in garlic (Allium sativum L). Journal of Pharmacognosy and Phytochemistry, 8, 587-590.
  • Beato, V, Orgaz, F, Mansilla, F, & Montano, A. (2011). Changes in phenolic compounds in garlic (Allium sativum l.) owing to the cultivar and location of growth. Plant Foods for Human Nutrition, 66(3), 218-223.
  • Cemeroğlu, B. (2007). Food analyses. Gida Teknolojisi Derneği Yayinlari, 34, 168-171.
  • Chakraborty, M., Karun, A., & Mitra, A. (2009). Accumulation of phenylpropanoid derivatives in chitosan-induced cell suspension culture of Cocos nucifera. Journal of Plant Physiology, 166, 63-71.
  • Diretto, G., Rubio-Moraga, A., Argandoña, J., Castillo, P., Gomez-Gomez, L., & Ahrazem, O. (2017). Tissue-specific accumulation of sulfur compounds and saponins in different parts of garlic cloves from purple and white ecotypes. Molecules, 22, 1359.
  • El Amerany, F., Rhazi, M., Balcke, G., Wahbi, S., Meddich, A., Taourirte, M., & Hause, B. (2022). The effect of chitosan on plant physiology, wound response, and fruit quality of tomato. Polymers, 14, 5006.
  • El Sagan, M. A. M., & El Dsouky, G. A. (2015). Effect of ırrigation systems and chitosan on productivity of garlic under siwa conditions. Zagazig Journal of Agricultural Research, 42 (6), 427- 439.
  • Elshamly, A. M., & Nassar, S. M. (2023). The impacts of applying cobalt and chitosan with various water irrigation schemes with different growth stages of corn on macronutrient uptake, yield, and water use efficiency. Journal of Soil Science and Plant Nutrition, 23, 2770-2785. https://doi.org/10.1007/ s42729-023-01233-3.
  • Falcon, A., Costales, D., Gonzalez, D., Morales, D., Mederos., Y, Jerez ,E., & Cabrera, J. (2017). Chitosans of different molecular weights enhance potato (Solanum tuberosum L.) yield in a field trial. Spanish Journal of Agricultural Research, 15(1), e0902. https://doi.org/10.5424/sjar/2017151-9288.
  • Fooladi vanda, G., Shabani, L. & Razavizadeh, R. (2019). Chitosan enhances rosmarinic acid production in shoot cultures of Melissa officinalis L. through the induction of methyl jasmonate. Botanical Studies, 60, 26. https://doi.org/10.1186/s40529-019-0274-x.
  • Geng, W., Li, Z., Hassan, M. J., & Peng, Y. (2020). Chitosan regulates metabolic balance, polyamine accumulation, and na+ transport contributing to salt tolerance in creeping bentgrass. BMC Plant Biology, 20(1), 1-15.
  • Geries, L. S. M., Omnia, H. S., & Marey, R. A. (2020). Soaking and foliar application with chitosan and nano chitosan to enhancing growth, productivity and quality of onion crop. Plant Archives, 2(2), 3584-3591.
  • Gmaa, S.S. (2016). Improving yield, quality and storageability of garlic (Allium Sativum L.) by pre-harvest foliar application. Journal of Plant Production, 7(1),7-12.
  • Golkar, P., Taghizadeh, M., & Yousefian, Z. (2019). The effects of chitosan and salicylic acid on elicitation of secondary metabolites and antioxidant activity of safflower under in vitro salinity stress. Plant Cell Tissue and Organ Culture, 137(3), 575-585. https://doi.org/10.1007/s11240-019-01592-9.
  • Gürsoy, M. (2022). Effect of foliar aminopolysaccharide chitosan applications under saline conditions on seedling growth characteristics antioxidant enzyme activity, chlorophyll and carotenoid contents of safflower (Carthamus tinctorius L.), Pakistan Journal of Botany, 54(5), 1605-1612. hhttp://Dx.Doi.org/10.30848/PJB2022-5(15).
  • Handayani, R., & Dinoto, A.(2022). Chitosan application for maintainingt the growth of lettuce (Lactuca sativa) under drought condition. Earth and Environmental Science, 980, 012013. https://doi:10.1088/1755-1315/980/1/012013.
  • Hassan, F. A. S., Ali, E., Gaber, A., Fetouh, M. I., & Mazrou, R. (2021). Chitosan nanoparticles effectively combat salinity stress by enhancing antioxidant activity and alkaloid biosynthesis in Catharanthus roseus (L.) G. Don. Plant Physiology and Biochemistry, 162, 291-300. https://doi.org.10.1016/j.plaphy.2021.03.004.
  • Jabber, M. D. (2021). Effect of Nitrogen and Chitosan Raw Material Powder on the Performance on Yield of Garlic (Allium sativum L.). (Master Thesis). Sher-E-Bangla Agricultural University, Department Of Soil Science, Dhaka, Bangladesh.
  • Khaled, A., Kotb, A. A., Gniewko, N., Tomasz, W., Yaser, H., Salman, A., Talal, K. A., & Arafa, S. A. (2021). Mitigation of drought damages by exogenous chitosan and yeast extract with modulating the photosynthetic pigments, antioxidant defense system and ımproving the productivity of garlic plants. Horticulturae, 7, 510.
  • Krupa-Małkiewicz, M., & Ochmian, I. (2024). Sustainable approaches to alleviate heavy metal stress in tomatoes: exploring the role of chitosan and nanosilver. Agronomy, 14, 2477. https://doi.org/ 10.3390/agronomy14112477.
  • Kumaran, A., & Karunakaran, R.J. (2006). Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chemistry, 97, 109-114. https://doi.org/10.1016/j.foodchem.2005.03.032.
  • Macit, M., Aras, A., Capanoglu Guven, E., & Bakir, S. (2023). Investigating the content and bioaccessibility of phenolic compounds in roots of Rosa canina L. and Rosa pimpinellifolia L. Yuzuncu Yil University Journal of Agricultural Sciences, 33(2), 163-173. https://doi.org/10.29133/yyutbd.1231881.
  • Marshall, M. R. (2010). Ash Analysis. Food Analysis. Boston, MA, Springer US: 105-115.
  • Mohamed, I. H., Abdelrasheed, K. G., Abbas, H. A., & Shehata, M. N.(2023). Effect of foliar application by chitosan on five garlic genotypes in aswan the Southern Egypt. Aswan University Journal of Science and Technology,3(3), 68-90. https://doi.org/10.21608/AUJST.2023.325643.
  • Moradkhani, S., & Jabbari, H. (2023). The effects of foliar spray of chitosan nanoparticles on tomato resistance against of Cuscuta campestris yunck. The Open Medicinal Chemistry Journal, 17(1). https://doi.org/10.2174/18741045-v17-230223-2022-7.
  • Nagella, P., Thiruvengadam, M., Ahmad, A., Yoon, J. Y., & Chung, I. M. (2014). Composition of polyphenols and antioxidant activity of garlic bulbs collected from different locations of Korea. Asian Journal of Chemistry, 26, 97-902. https://doi: 10.14233/ajchem.2014.16143A.
  • Nurcolis, W., Iqbal, T. M., Sulistiyani, S., & Liwanda, N. (2023). Profile of secondary metabolites in different parts of the butterfly pea (Clitoria ternatea) plant with antioxidant activity. Yuzuncu Yil University Journal of Agricultural Sciences, 33(2), 231-247. https://doi.org/10.29133/yyutbd.1251495.
  • Park, C. H., Yeo, H. J., Park, Y. E., Chun, S. W., Chung, Y. S., Lee, S. Y., & Park, S. U. (2019). Influence of chitosan, salicylic acid and jasmonic acid on phenylpropanoid accumulation in germinated buckwheat (Fagopyrum esculentum Moench). Foods, 8(5), 153. https://doi.org/10.3390/foods8050153
  • Pirbalouti, A. G., Malekpoor, F., Salimi, A., & Golparvar, A. (2017a). Exogenous application of chitosan on biochemical and physiological characteristics, phenolic content and antioxidant activity of two species of basil (Ocimum ciliatum and Ocimum basilicum) under reduced irrigation. Scientia Horticulturae, 217, 114-22. https://doi.org/10.1016/j.scienta.2017.01.031
  • Pirbalouti, A. G., Malekpoor, F., Salimi, A., Golparvar, A., & Hamedi, B. (2017b). Effects of foliar of the application chitosan and reduced ırrigation on essential oil yield, total phenol content and antioxidant activity of extracts from green and purple basil. Acta Sci. Pol. Hortorum Cultus, 16(6), 177-186. 10.24326/asphc.2017.6.16
  • Rahman, M. A., Jannat, R., Akanda, A. M., Khan, M. A. R., & Rubayet, M. T. (2021). Role of chitosan in disease suppression, growth and yield of carrot. European Journal of Agriculture and Food Sciences, 3(3), 34-40.
  • Ramadan, M. E. & El Mesairy M. M. A. (2015). Effect of humic acid and chitosan on growth and yield of okra (Abelmoschus Esculentus L.) under saline conditions. Egyptian Journal of Desert Research, 65(1), 47-60.
  • Rameshjan, Y., Asgari, A., & Abdollahi, F. (2024). Evaluation the Effects of ırrigation periods and chitosan as a biological elicitor on onion (Allium cepa L.) growth and yield. Iranian Journal of Field Crops Research, 22(3), 291-309. https://doi.org/10.22067/jcesc.2024.86155.1293
  • Rodriguez-Delgado, M. A., Malovana, S., Perez, J. P., Borges, T., & Garcia-Montelong, F. J. (2001). Separation phenolic compounds by high-performance liquid chromatography with absorbance and fluorimetric detection. Journal of Chromatography A, 912, 249-257. https://doi.org/10.1016/S0021-9673(01)00598–2.
  • Sarker, U., Oba, S., Alsanie, W. F., & Gaber, A. (2022). Characterization of phytochemicals, nutrients, and antiradical potential in slim amaranth. Antioxidants, 11, 1089.
  • Shang, A., Cao, S. Y., Xu, X. Y., Gan, R. Y., Tang, G. Y., Corke, H., Mavumengwana, V., Li, H. B. (2019). Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods, 8, 246.
  • Sultana, S., Islam, M., Khatun, M. A., Hassain, M. A., & Huque, R. (2017). Effect of foliar application of oligo-chitosan on growth, yield and quality of tomato and eggplant. Asian Journal of Agricultural Research, 11(2), 36-42. https://doi.org/ 10.3923/ajar.2017.36.42
  • Tahmas Kahyaoğlu, D. (2021). Comparison of the antioxidant activity of garlic cloves with garlic husk and stem: Determination of utilization potential of garlic agricultural wastes. Turkish Journal of Agricultural and Natural Sciences, 8(2), 463-469.
  • Takim, K., Koyuncu, M. & Sayaslan, A. (2020). Comparison of amount of phenolic compounds by using LC-MS / MS in Tunceli mountain garlic (Allium tuncelianum) different extracts. Harran Journal of Agricultural and Food Science, 24(1), 44-52. https://doi.org/10.29050/harranziraat.591171.
  • Taş, A., Kuru Berk, S., Kibar, H., & Gündoğdu, M. (2022). An in-depth study on post-harvest storage conditions depending on putrescine treatments of kiwifruit. Journal of Food Composition and Analysis, 111, 104605. https:// doi. org/ 10. 1016/j. jfca. 2022. 104605
  • Turfan, N. (2022). Comparison of bulb yield, some bioactive compounds and elemental profile of Taşköprü garlic (Allium sativum L.) grown in greenhouse and open field conditions. Journal of Tekirdag Agricultural Faculty, 19(2), 248-261.
  • Turfan, N., & Turan, B. (2023). Effects of glutamic acid applications on the yield and growth parameters in garlic (Allium sativum L.) cultivation. Harran Journal of Agricultural and Food Science, 27(1), 1-14. https://doi.org/10.29050/harranziraat.1176239.
  • Turfan, N., Kibar, B., & Kibar, H. (2024). Role of storage on quality, nutritional and biochemical properties of garlic bulbs grown depending on different fertilizer applications. Vegetos, 37(5), 2095-2121. https://doi.org/10.1007/s42535-023-00668-4.
  • Ünal, H. G. (2024a). Kastamonu garlic processing facilities situation analysis, problems and expectations. Turkish Journal of Agriculture-Food Science and Technology, 12(9), 1600-1607.
  • Ünal, H. G. (2024b). Production habits and problems in Taşköprü garlic. Turkish Journal of Agriculture-Food Science and Technology, 12(7), 1156-1161.
  • Vural, H., Eşiyok, D., & Duman, I. (2000). Culture Vegetables, 440 p. ISBN: 975-90790-0-2.
  • Yoldas, F., Ceylan, Ş., & Saatçi Mordogan, N. (2024). Assessment of residual impacts of poultry manure on nutrient, sucrose, fructose and glucose content of second crop onion (Allium cepa L.). Yuzuncu Yil University Journal of Agricultural Sciences, 34(2), 235-245. https://doi.org/10.29133/yyutbd.1394395.
  • Zeroual, S., Gaouaoui, R., & Deghima, A. (2024). Polyphenolic content and in vitro antioxidant activity of three algerian date (Phoenix dactylifera) varieties. Yuzuncu Yil University Journal of Agricultural Sciences, 34(2), 211-223. https://doi.org/10.29133/yyutbd.1392549
  • Zhang, L. L., Han, S.C., Li, Z. G., Liu, N., & Li, L. Y. (2006). Effects of the ınfestation by actinote thalia pyrrha (fabricius) on the physiological ındexes of mikania micrantha leaves. Acta Ecologica Sinica, 26(5), 1330-1336.
  • Zhang, G., Wang, Y., Wu, K., Zhang, Q., Feng, Y., Miao, Y. (2021). Exogenous application of chitosan alleviate salinity stress in lettuce (Lactuca sativa L.). Horticulturae, 7(10), 342. https://doi.org/10.3390/horticulturae7100342.
Year 2024, , 712 - 726, 31.12.2024
https://doi.org/10.29133/yyutbd.1522504

Abstract

References

  • Abdelaal K., Attia K. A., Niedbała G., Wojciechowski T., Hafez Y., Alamery S., Alateeq T. K., & Arafa S. A. (2021). Mitigation of drought damages by exogenous chitosan and yeast extract with modulating the photosynthetic pigments, antioxidant defense system and improving the productivity of garlic plants. Horticulturae, 7(11), 510. https://doi.org/10.3390/horticulturae7110510.
  • Adamuchio-Oliveira, L. G., Mazaro, S. M., Mógor, G., Santanna-Santos, B. F., & Mógor, Á. F. (2020). Chitosan associated with chelated copper applied on tomatoes: Enzymatic and anatomical changes related to plant defense responses. Scientific Horticulture, 271, 109431. https:// doi.org/10.1016/j.scienta.2020.109431.
  • Agbar, Z. A., Shakya, A. K., Khalaf, N., & Haroon, M. (2008). Comparative antioxidant activity of some edible plants. Turkish Journal of Biology, 32, 193-196.
  • Alide, T., Wangila, P., & Kiprop, A. (2020). Effect of cooking temperature and time on total phenolic content, total flavonoid content and total in vitro antioxidant activity of garlic. BMC Research Notes, 13, 564.
  • Arista, R. A., Priosoeryanto, B. P., & Nurcholis, W. (2023). Total phenolic, flavonoids contents, and antioxidant activities in the stems and rhizomes of java cardamom as affected by shading and N fertilizer dosages. Yuzuncu Yıl University Journal of Agricultural Sciences, 33(1), 29-39. https://doi.org/10.29133/yyutbd.1193221.
  • Attia, M. S., Osman, M. S., Mohamed, A. S., Mahgoub, H. A., Garada, M. O., Abdelmouty, E. S., & Abdel Latef, A. A. H. (2021). Impact of foliar application of chitosan dissolved in different organic acids on isozymes, protein patterns and physio-biochemical characteristics of tomato grown under salinity stress. Plants, 10, 388. https://doi.org/10.3390/plants10020388.
  • Badal, D. S., Dwivedi, A. K., Kumar, V., Singh, S., Prakash, A., Verma, S., & Kumar, J. E. (2019). Effect of organic manures and inorganic fertilizers on growth, yield and its attributing traits in garlic (Allium sativum L). Journal of Pharmacognosy and Phytochemistry, 8, 587-590.
  • Beato, V, Orgaz, F, Mansilla, F, & Montano, A. (2011). Changes in phenolic compounds in garlic (Allium sativum l.) owing to the cultivar and location of growth. Plant Foods for Human Nutrition, 66(3), 218-223.
  • Cemeroğlu, B. (2007). Food analyses. Gida Teknolojisi Derneği Yayinlari, 34, 168-171.
  • Chakraborty, M., Karun, A., & Mitra, A. (2009). Accumulation of phenylpropanoid derivatives in chitosan-induced cell suspension culture of Cocos nucifera. Journal of Plant Physiology, 166, 63-71.
  • Diretto, G., Rubio-Moraga, A., Argandoña, J., Castillo, P., Gomez-Gomez, L., & Ahrazem, O. (2017). Tissue-specific accumulation of sulfur compounds and saponins in different parts of garlic cloves from purple and white ecotypes. Molecules, 22, 1359.
  • El Amerany, F., Rhazi, M., Balcke, G., Wahbi, S., Meddich, A., Taourirte, M., & Hause, B. (2022). The effect of chitosan on plant physiology, wound response, and fruit quality of tomato. Polymers, 14, 5006.
  • El Sagan, M. A. M., & El Dsouky, G. A. (2015). Effect of ırrigation systems and chitosan on productivity of garlic under siwa conditions. Zagazig Journal of Agricultural Research, 42 (6), 427- 439.
  • Elshamly, A. M., & Nassar, S. M. (2023). The impacts of applying cobalt and chitosan with various water irrigation schemes with different growth stages of corn on macronutrient uptake, yield, and water use efficiency. Journal of Soil Science and Plant Nutrition, 23, 2770-2785. https://doi.org/10.1007/ s42729-023-01233-3.
  • Falcon, A., Costales, D., Gonzalez, D., Morales, D., Mederos., Y, Jerez ,E., & Cabrera, J. (2017). Chitosans of different molecular weights enhance potato (Solanum tuberosum L.) yield in a field trial. Spanish Journal of Agricultural Research, 15(1), e0902. https://doi.org/10.5424/sjar/2017151-9288.
  • Fooladi vanda, G., Shabani, L. & Razavizadeh, R. (2019). Chitosan enhances rosmarinic acid production in shoot cultures of Melissa officinalis L. through the induction of methyl jasmonate. Botanical Studies, 60, 26. https://doi.org/10.1186/s40529-019-0274-x.
  • Geng, W., Li, Z., Hassan, M. J., & Peng, Y. (2020). Chitosan regulates metabolic balance, polyamine accumulation, and na+ transport contributing to salt tolerance in creeping bentgrass. BMC Plant Biology, 20(1), 1-15.
  • Geries, L. S. M., Omnia, H. S., & Marey, R. A. (2020). Soaking and foliar application with chitosan and nano chitosan to enhancing growth, productivity and quality of onion crop. Plant Archives, 2(2), 3584-3591.
  • Gmaa, S.S. (2016). Improving yield, quality and storageability of garlic (Allium Sativum L.) by pre-harvest foliar application. Journal of Plant Production, 7(1),7-12.
  • Golkar, P., Taghizadeh, M., & Yousefian, Z. (2019). The effects of chitosan and salicylic acid on elicitation of secondary metabolites and antioxidant activity of safflower under in vitro salinity stress. Plant Cell Tissue and Organ Culture, 137(3), 575-585. https://doi.org/10.1007/s11240-019-01592-9.
  • Gürsoy, M. (2022). Effect of foliar aminopolysaccharide chitosan applications under saline conditions on seedling growth characteristics antioxidant enzyme activity, chlorophyll and carotenoid contents of safflower (Carthamus tinctorius L.), Pakistan Journal of Botany, 54(5), 1605-1612. hhttp://Dx.Doi.org/10.30848/PJB2022-5(15).
  • Handayani, R., & Dinoto, A.(2022). Chitosan application for maintainingt the growth of lettuce (Lactuca sativa) under drought condition. Earth and Environmental Science, 980, 012013. https://doi:10.1088/1755-1315/980/1/012013.
  • Hassan, F. A. S., Ali, E., Gaber, A., Fetouh, M. I., & Mazrou, R. (2021). Chitosan nanoparticles effectively combat salinity stress by enhancing antioxidant activity and alkaloid biosynthesis in Catharanthus roseus (L.) G. Don. Plant Physiology and Biochemistry, 162, 291-300. https://doi.org.10.1016/j.plaphy.2021.03.004.
  • Jabber, M. D. (2021). Effect of Nitrogen and Chitosan Raw Material Powder on the Performance on Yield of Garlic (Allium sativum L.). (Master Thesis). Sher-E-Bangla Agricultural University, Department Of Soil Science, Dhaka, Bangladesh.
  • Khaled, A., Kotb, A. A., Gniewko, N., Tomasz, W., Yaser, H., Salman, A., Talal, K. A., & Arafa, S. A. (2021). Mitigation of drought damages by exogenous chitosan and yeast extract with modulating the photosynthetic pigments, antioxidant defense system and ımproving the productivity of garlic plants. Horticulturae, 7, 510.
  • Krupa-Małkiewicz, M., & Ochmian, I. (2024). Sustainable approaches to alleviate heavy metal stress in tomatoes: exploring the role of chitosan and nanosilver. Agronomy, 14, 2477. https://doi.org/ 10.3390/agronomy14112477.
  • Kumaran, A., & Karunakaran, R.J. (2006). Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chemistry, 97, 109-114. https://doi.org/10.1016/j.foodchem.2005.03.032.
  • Macit, M., Aras, A., Capanoglu Guven, E., & Bakir, S. (2023). Investigating the content and bioaccessibility of phenolic compounds in roots of Rosa canina L. and Rosa pimpinellifolia L. Yuzuncu Yil University Journal of Agricultural Sciences, 33(2), 163-173. https://doi.org/10.29133/yyutbd.1231881.
  • Marshall, M. R. (2010). Ash Analysis. Food Analysis. Boston, MA, Springer US: 105-115.
  • Mohamed, I. H., Abdelrasheed, K. G., Abbas, H. A., & Shehata, M. N.(2023). Effect of foliar application by chitosan on five garlic genotypes in aswan the Southern Egypt. Aswan University Journal of Science and Technology,3(3), 68-90. https://doi.org/10.21608/AUJST.2023.325643.
  • Moradkhani, S., & Jabbari, H. (2023). The effects of foliar spray of chitosan nanoparticles on tomato resistance against of Cuscuta campestris yunck. The Open Medicinal Chemistry Journal, 17(1). https://doi.org/10.2174/18741045-v17-230223-2022-7.
  • Nagella, P., Thiruvengadam, M., Ahmad, A., Yoon, J. Y., & Chung, I. M. (2014). Composition of polyphenols and antioxidant activity of garlic bulbs collected from different locations of Korea. Asian Journal of Chemistry, 26, 97-902. https://doi: 10.14233/ajchem.2014.16143A.
  • Nurcolis, W., Iqbal, T. M., Sulistiyani, S., & Liwanda, N. (2023). Profile of secondary metabolites in different parts of the butterfly pea (Clitoria ternatea) plant with antioxidant activity. Yuzuncu Yil University Journal of Agricultural Sciences, 33(2), 231-247. https://doi.org/10.29133/yyutbd.1251495.
  • Park, C. H., Yeo, H. J., Park, Y. E., Chun, S. W., Chung, Y. S., Lee, S. Y., & Park, S. U. (2019). Influence of chitosan, salicylic acid and jasmonic acid on phenylpropanoid accumulation in germinated buckwheat (Fagopyrum esculentum Moench). Foods, 8(5), 153. https://doi.org/10.3390/foods8050153
  • Pirbalouti, A. G., Malekpoor, F., Salimi, A., & Golparvar, A. (2017a). Exogenous application of chitosan on biochemical and physiological characteristics, phenolic content and antioxidant activity of two species of basil (Ocimum ciliatum and Ocimum basilicum) under reduced irrigation. Scientia Horticulturae, 217, 114-22. https://doi.org/10.1016/j.scienta.2017.01.031
  • Pirbalouti, A. G., Malekpoor, F., Salimi, A., Golparvar, A., & Hamedi, B. (2017b). Effects of foliar of the application chitosan and reduced ırrigation on essential oil yield, total phenol content and antioxidant activity of extracts from green and purple basil. Acta Sci. Pol. Hortorum Cultus, 16(6), 177-186. 10.24326/asphc.2017.6.16
  • Rahman, M. A., Jannat, R., Akanda, A. M., Khan, M. A. R., & Rubayet, M. T. (2021). Role of chitosan in disease suppression, growth and yield of carrot. European Journal of Agriculture and Food Sciences, 3(3), 34-40.
  • Ramadan, M. E. & El Mesairy M. M. A. (2015). Effect of humic acid and chitosan on growth and yield of okra (Abelmoschus Esculentus L.) under saline conditions. Egyptian Journal of Desert Research, 65(1), 47-60.
  • Rameshjan, Y., Asgari, A., & Abdollahi, F. (2024). Evaluation the Effects of ırrigation periods and chitosan as a biological elicitor on onion (Allium cepa L.) growth and yield. Iranian Journal of Field Crops Research, 22(3), 291-309. https://doi.org/10.22067/jcesc.2024.86155.1293
  • Rodriguez-Delgado, M. A., Malovana, S., Perez, J. P., Borges, T., & Garcia-Montelong, F. J. (2001). Separation phenolic compounds by high-performance liquid chromatography with absorbance and fluorimetric detection. Journal of Chromatography A, 912, 249-257. https://doi.org/10.1016/S0021-9673(01)00598–2.
  • Sarker, U., Oba, S., Alsanie, W. F., & Gaber, A. (2022). Characterization of phytochemicals, nutrients, and antiradical potential in slim amaranth. Antioxidants, 11, 1089.
  • Shang, A., Cao, S. Y., Xu, X. Y., Gan, R. Y., Tang, G. Y., Corke, H., Mavumengwana, V., Li, H. B. (2019). Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods, 8, 246.
  • Sultana, S., Islam, M., Khatun, M. A., Hassain, M. A., & Huque, R. (2017). Effect of foliar application of oligo-chitosan on growth, yield and quality of tomato and eggplant. Asian Journal of Agricultural Research, 11(2), 36-42. https://doi.org/ 10.3923/ajar.2017.36.42
  • Tahmas Kahyaoğlu, D. (2021). Comparison of the antioxidant activity of garlic cloves with garlic husk and stem: Determination of utilization potential of garlic agricultural wastes. Turkish Journal of Agricultural and Natural Sciences, 8(2), 463-469.
  • Takim, K., Koyuncu, M. & Sayaslan, A. (2020). Comparison of amount of phenolic compounds by using LC-MS / MS in Tunceli mountain garlic (Allium tuncelianum) different extracts. Harran Journal of Agricultural and Food Science, 24(1), 44-52. https://doi.org/10.29050/harranziraat.591171.
  • Taş, A., Kuru Berk, S., Kibar, H., & Gündoğdu, M. (2022). An in-depth study on post-harvest storage conditions depending on putrescine treatments of kiwifruit. Journal of Food Composition and Analysis, 111, 104605. https:// doi. org/ 10. 1016/j. jfca. 2022. 104605
  • Turfan, N. (2022). Comparison of bulb yield, some bioactive compounds and elemental profile of Taşköprü garlic (Allium sativum L.) grown in greenhouse and open field conditions. Journal of Tekirdag Agricultural Faculty, 19(2), 248-261.
  • Turfan, N., & Turan, B. (2023). Effects of glutamic acid applications on the yield and growth parameters in garlic (Allium sativum L.) cultivation. Harran Journal of Agricultural and Food Science, 27(1), 1-14. https://doi.org/10.29050/harranziraat.1176239.
  • Turfan, N., Kibar, B., & Kibar, H. (2024). Role of storage on quality, nutritional and biochemical properties of garlic bulbs grown depending on different fertilizer applications. Vegetos, 37(5), 2095-2121. https://doi.org/10.1007/s42535-023-00668-4.
  • Ünal, H. G. (2024a). Kastamonu garlic processing facilities situation analysis, problems and expectations. Turkish Journal of Agriculture-Food Science and Technology, 12(9), 1600-1607.
  • Ünal, H. G. (2024b). Production habits and problems in Taşköprü garlic. Turkish Journal of Agriculture-Food Science and Technology, 12(7), 1156-1161.
  • Vural, H., Eşiyok, D., & Duman, I. (2000). Culture Vegetables, 440 p. ISBN: 975-90790-0-2.
  • Yoldas, F., Ceylan, Ş., & Saatçi Mordogan, N. (2024). Assessment of residual impacts of poultry manure on nutrient, sucrose, fructose and glucose content of second crop onion (Allium cepa L.). Yuzuncu Yil University Journal of Agricultural Sciences, 34(2), 235-245. https://doi.org/10.29133/yyutbd.1394395.
  • Zeroual, S., Gaouaoui, R., & Deghima, A. (2024). Polyphenolic content and in vitro antioxidant activity of three algerian date (Phoenix dactylifera) varieties. Yuzuncu Yil University Journal of Agricultural Sciences, 34(2), 211-223. https://doi.org/10.29133/yyutbd.1392549
  • Zhang, L. L., Han, S.C., Li, Z. G., Liu, N., & Li, L. Y. (2006). Effects of the ınfestation by actinote thalia pyrrha (fabricius) on the physiological ındexes of mikania micrantha leaves. Acta Ecologica Sinica, 26(5), 1330-1336.
  • Zhang, G., Wang, Y., Wu, K., Zhang, Q., Feng, Y., Miao, Y. (2021). Exogenous application of chitosan alleviate salinity stress in lettuce (Lactuca sativa L.). Horticulturae, 7(10), 342. https://doi.org/10.3390/horticulturae7100342.
There are 56 citations in total.

Details

Primary Language English
Subjects Ecology (Other), Post Harvest Horticultural Technologies (Incl. Transportation and Storage)
Journal Section Articles
Authors

Nezahat Turfan 0000-0002-5753-0390

Asuman Çiçek Aksoy This is me 0000-0002-8594-5606

Early Pub Date December 15, 2024
Publication Date December 31, 2024
Submission Date July 25, 2024
Acceptance Date November 12, 2024
Published in Issue Year 2024

Cite

APA Turfan, N., & Çiçek Aksoy, A. (2024). Revealing the Influences of Exogenous Chitosan Supplements on Yield, Nutritional Values and Enzyme Activities in Taşköprü Garlic. Yuzuncu Yıl University Journal of Agricultural Sciences, 34(4), 712-726. https://doi.org/10.29133/yyutbd.1522504
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.