BibTex RIS Cite

Effects of Gibberellic Acid (GA3) Applied on Fruit Set in Processing Tomato Grown at Different Irrigation Levels and under High Temperature Conditions

Year 2014, , 270 - 279, 30.09.2014
https://doi.org/10.29133/yyutbd.236280

Abstract

High-temperature and drought stresses frequently occur in the field simultaneously and usually adversely affect plants growth and development. In this study, irrigation was applied in three-day intervals, at ratios of 133 % (T133), 100 % (T100) and 66 % (T66), as determined from the amount of total irrigation (IW)/total evaporation (CPE) under high temperature conditions. GA3 was applied to flower at 0, 25 and 50 ppm doses. Total amount of irrigation volumes supplied for T133, T100 and T66 were recorded as 1 651, 1 321 and 961 mm, respectively. Fruit set rate (FSR) was determined as 2.86 % under high temperature and low irrigation level (T66) without GA3 application. FSR has increased to 57.36 % ratio by T133 irrigation and 50 ppm GA3 application. Fruit yield, which was recorded as 34.7 tons ha-1 for treatment of T66- 0 ppm GA3 increased to 113.5 tons ha-1 in T133- 50 ppm GA3 treatment. Experimental results showed that both GA3 applications and irrigation levels would be compensated with substantially the inhibition of fruit set and decrease in yield caused by high temperature and drought. GA3 application led to significant increase in the yield even at the highest level of irrigation.

References

  • Abdelmageed AH, Gruda, N, Geyer, B (2003). Effect of High Temperature and Heat Shock on Tomato (Lycopersicon esculentum Mill.) Genotypes Under Controlled Conditions. Conference on International Agricultural Research for Development. Deutscher Tropentag Göttingen, October 8-10, 2003.
  • Abdul-Baki AA (1991). Tolerance of Tomato Cultivars and Selected Germplasm to Heat Stres. J. Amer. Soc. Hort. Sci., 116(6):1113-1116.
  • Açıkgöz N, Ilker E, Gokcol A (2004). Biyolojik araştırmaların bilgisayarda değerlendirilmeleri. Ege Uni. Tohum Teknoloji Uygulama ve Araştırma Merkezi Yay, Izmir.
  • Barringer RK, Lazerte DE, Leeper PW (1981). High temperature fruit set of tomatoes. Hort.Science, 16:289-293.
  • Baselga Yrisarry JJ, Prieto Losada M, Rodríguez del Rincón HA (1993). Response of Processıng Tomato to Three Different Levels of Water And Nitrogen Applications Acta Horticulturae 335: Int. Symposium on Irrigation of Horticultural Crops.
  • Camejo D, Rodriguez P, Morales, AM, Amico, JM, Torrecillas A, Alarcon JJ (2005). High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. Journal of Plant Physiology. 162: 281-289.
  • Cuartero J, Yeo AR, Flowers TJ (1992). Selection of donors for salt-tolerance in tomato using physiological traits. New Phytol. (1992), 121, 63-69.
  • Çömlekçioğlu N, Soylu MK (2010). Determination of High Temperature Tolerance via Screening of Flower and Fruit Formation in Tomato YYÜ Tar Bil Derg (YYU J Agr Sci) 2010, 20(2): 1231
  • Dalal M, Dani RG, Kumar PA (2006). Review Current trends in the genetic engineering of vegetable crops. Sci. Horticulturae Vol. 107, Issue 3, 6 p. 215-225.
  • De Jong M, Mariani C, Vriezen WH (2009). The role of auxin and gibberellin in tomato fruit set. Journal of Experimental Botany, Vol. 60, No. 5, pp. 1523–1532.
  • Düzgüneş O, Kesici T, Kavuncu O, Gürbüz F (1987). Araştırma ve Deneme Metotları (İstatistik Metotları-II), Ankara Üniv. Ziraat Fak. Yayınları:1291; ders kitabı: 295
  • Favati F, Lovelli S, Galgano F, Miccolis V,Tommaso T, Candido V (2009). Processing tomato quality as affected by irrigation scheduling Sci. Hort. 122 (2009) 562–571.
  • Firon N, Shaked R, Peet MM, Phari DM, Zamskı E, Rosenfeld K, Althan L, Pressman, NE (2006). Pollen Grains of Heat Tolerant Tomato Cultivars Retain Higher Carbohydrate Concentration Under Heat Stress Conditions. Sci. Horticulturae: 109:212-217.
  • Fos M, Nuez F, Garcia-Martinez JL (2000). The Gene pat-2, Which Induces Natural Parthenocarpy, Alters the Gibberellin Content in Unpollinated Tomato Ovaries Plant Physiology, Vol. 122, pp. 471-4
  • Gelmesa D, Abebie B, Desalegn L (2010). Effects of Gibberellic acid and 2,4 dichlorophenoxyacetic acid spray on fruit yield and quality of tomato (Lycopersicon esculentum Mill.) J. of Plant Breeding and Crop Science Vol. 2(10). pp. 316-324.
  • Gelmesa D, Abebie B, Desalegn L (2012). Regulation of tomato (Lycopersicon esculentum Mill.) fruit setting and earliness by gibberellic acid and 2,4-dichlorophenoxy acetic acid application African J. of Biotechnology Vol. 11(51), pp. 11200-11206, 26 June, 2012.
  • George W, Scott J, Spllttstoesser W (1984). Parthenocarp in tomato. Hort. Rev. 6, 65-84.
  • Hanson B, May D (2004). Effect of subsurface drip irrigation on processing tomato yield, water table depth, soil salinity, and profitability. Agricultural Water Management 68, 1–17, Hazra P, Dutta AK (2010). Expression of Parthenocarpy in Tomato Due to Temperature and Pollination Treatment International Journal of Vegetable Science, 16:222–232.
  • Henriques da Silva DJ (2008). Tomatoes: Orijin, Cultivation Tech. and Germplasm Reseourses. In Tomato and Tomato Products. Nutritional, Medicinal and Therapeutic Properties. Science Publishers. ISBN 978-1-57808-534-7.
  • Heuvelink E, Dorais M (2005). ‘’Crop Growth and Yield’’ in Tomatoes, Edited by Heuvelink E. ISBN 0851993966.Ho, L.C., and Hewit, J.D., 1986. Fruit Development. In: Atherton J.G., Rudich, J (Eds). The Tomato Crop. Chomen and Hall, London, pp.201-239.
  • Ho LC, Hewitt JD (1986). Fruit development. In: Atherton JG, Rudich J, eds. The tomato crop. Cambridge: Cambridge University Press,Chapman and Hall Ltd, 201-240.
  • Hopkins WG (1988). Introduction to Plant Physiology, p 464. John Wiley&Sons, Inc. Jones J. Benton. 19 Tomato Plant Culture in the Field, Greenhouse, and Home Garden CRC Press. Boca Raton London NY. Washington, D.C. ISBN 0-8493-2025-9.
  • Jensen CR, Battilani, Plauborg F, Psarras G, Chartzoulakis K, Janowiak F, Stikic R, Jovanovic Z, Li G, Qi X, Liu F, Jacobsen SE, Andersen MN (2010). Deficit irrigation based on drought tolerance and root signaling in potatoes and tomatoes Agricultural Water Management 98 (2010) 403–413. Jones JB Jr. (1999), Tomato plant culture : in the field, greenhouse, and home garden by CRC Press LLC. ISBN 0-8493-2025-9
  • Kalefetoğlu, Ekmekçi Y (2005). The Effects Of Drought On Plants And Tolerance Mechanisms. (Review) .G.U. Journal of Science 18(4): 723-740.
  • Khan MMA, Gautam AC, Mohammad F, Siddiqui MH, Naeem M, Khan MN (2006). Effect of gibberellic acid spray on performance of tomato.Turk. J. Biol. 30: 11-16.
  • Kinet, J.M., and Peet , M.M., 1997. Tomato :In:Wien , H.C.(Ed), The Physiology of Vegetable Crops. CAB, International. New York, pp.207-258.
  • Mahajan G, Singh KG (2006). Response of Greenhouse tomato to irrigation and fertigation. Agricultural Water Management, 84, 202-206.
  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics 444 (2005) 139–158
  • Mapelli S, Frova C, Torti G, Soressi GP (1978). Relationship between set, development and activities of growth regulators in tomato fruits Plant & Cell Physiol. 19(7): 1281-1288.
  • Miller P, Lanier W, Brandt S (2001). Using Growing Degree Days to Predict Plant Stages. Ag/Extension Communications Coordinator, Communications Services, Montana State University-Bozeman, Bozeman, MO, 2001.
  • Mitchell JP, Shennan C, Grattan SR, May DM (1991). Tomato Fruit Yields and Quality under Water Deficit and Salinity. J.l of the American Society for Hort Sci. 116, 215-221.
  • Mitler R (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science Vol.11 No.1 January 2006.
  • Moffat AS (2002). Finding new ways to protect drought-stricken plants. Science 296, 1226–1229.
  • Mukherjee A, Kundu M, Sarkar S (2010). Role of irrigation and mulch on yield, evapotranspiration rate and water use pattern of tomato (Lycopersicon esculentum L.) Agricultural Water Management. 98 :182-189.
  • Nachmias A, Kaufman Z, Livescu L, Tsror L, Meiri A, Caligari PDS (1993). Effects of salinty and its interactions with disease incidence on potatoes grown in hot climates. Phytoparasitica 21 (3): 245-2
  • Naeem N, Ishtiaq M, Khan P, Mohammad N, Khan J, Jamiher B (2001).Effect of gibberellic acid on growth and yield of tomato Cv. Roma. J. Biol. Sci. 1(6): 448-450.
  • Özbahçe A, Tarı AF (2006). Sulama suyundaki kısıntının salçalık domatesin verim ve kalitesine etkileri. VI. Sebze Tarımı Semp. 19-22 Eylül 2006. K.Maraş. S. 116-120.
  • Patane C, Tringali S, Sortino O (2011). Effects of deficit irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions. Sci. Horticulturae 129: 590-596.
  • Peet MM, Willits DH, Gardner R (1997). Response of ovule development and post-pollen production Processes in male-sterile tomatoes to chronic, subacute high temperature stress. J. Exp. Bot., 48,101–111.
  • Prasad PVV, Craufurd PQ, Summerfıeld RJ (1999). Fruit Number in Relation to Pollen Production and Viability in Groundnut Exposed to short episodes of heat stress. Annals of Botany; Sep; 84, 3; ProQuest Agriculture Journals pg. 381-386.
  • Pressman E, Peet M., Phar DM (2002). The Effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in developing anters. Annals of Botany, 90:631-636.
  • Rivero RM, Ruiz JM, Garcya PC, Lopez-Lefebre LR, Sanchez E, Romero L (2001). Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants .Plant Science 160 (2001) 315–321.
  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S Mittler R (2004). When Defense Pathways Collide. The Response of Arabidopsis to a Combination of Drought and Heat Stress Plant Physiology, April 2004, Vol. 134, pp. 1683–1696.
  • Sasaki H, Yano T, Yamasaki A (2005). Reduction of high temperature inhibition in tomato fruit set by plant growth regulators. Japan Agric. Research Quarterly. 39 (2): 135 – 138.
  • Sato S, Kamiyama M, Iwata T, Makıta N, Furukawa H, Ikeda H, (2006). Moderate Increase of Mean Daily Temperature Adversely Affects Fruit Set of Lycopersicon esculentum by Disrupting Specific Physiological Process in Male Reproductive Development. Annals of Botany, 10:109310
  • Sato S, Peet MM, Thomas JF (2000). Physiological Factors Limit Fruit Set of Tomato (Lycopersicon esculentum Mill.) Under Chronic, Mild Heat Stres. Plant, Cell and Environment, 23:719-726.
  • Savic S, Stikic R, Radovic BV, Bogicevic B, Jovanovic Z, Hadz V, Sukalovic VHT (2008). Comparative effects of regulated deficit irrigation (RDI) and partial root-zone drying (PRD) on growth and cell wall peroxidase activity in tomato fruits. Sci. Horticulturae 117 15–20.
  • Soylu MK, Çömlekçioğlu N (2009). The effects of high temperature on pollen grain characteristics in tomato (Lycopersicon esculentum M). J. the Fac. of Agri. Univ. Harran. 13(2): 35-42.
  • Taiz L, Zeiger E (2008). Bitki Fizyolojisi. (Çev: Türkan İ) Palme Yayıncılık, Ankara. ISBN: 0-87893823-0.
  • Thomas JMG, Prasad PVV (2003). Plants and the Environment /Global Warming Effects, University of Florida, Gainesville, FL, USA.
  • Topcu S, Kirda C, Dasgan Y, Kaman H, Cetin M, Yazici A, Bacon MA (2007). Yield response and Nfertiliser recovery of tomato grown under deficit irrigation Europ. J. Agronomy 26: 64–70.
  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany. 61: 199-223.

Yüksek Sıcaklık Koşullarında ve Farklı Su Seviyesinde Gibberellik Asidin (GA3) Sanayi Domatesinde Meyve Tutumuna Etkisi

Year 2014, , 270 - 279, 30.09.2014
https://doi.org/10.29133/yyutbd.236280

Abstract

 Açık tarla koşullarında yüksek sıcaklık ve kuraklık stresleri eş zamanlı olarak sıklıkla karşılaşılan ve genellikle bitki büyüme ve gelişimini olumsuz etkileyen çevre koşullarıdır. Bu çalışmada, yüksek sıcaklık koşulları altında, class-A sınıfı pan buharlaşma kabından 3 günde oluşan toplam buharlaşmanın % 133 (T133), % 100 (T100) ve % 66 (T66)’sının uygulandığı üç sulama düzeyi çalışılmıştır. Çiçeklere 0, 25, ve 50 ppm GA3 uygulamaları yapılmıştır. Uygulanan toplam sulama suyu miktarı T133, T100 ve T66 için sırasıyla 1 651, 1 321 ve 961 mm olarak gerçekleşmiştir. Yüksek sıcaklık koşullarında ve en düşük sulama seviyesinde (T66) GA3 uygulanmayan bitkilerde meyve tutum oranı (MTO) % 2.86 olarak belirlenmiştir. MTO T133 sulama seviyesi ve 50 ppm GA3 uygulamasıyla % 57.36 oranına yükselmiştir. T66 sulama seviyesi ve GA3 uygulanmayan bitkilerin 3.47 ton/da olan meyve verimi, T133 sulama seviyesinde 50 ppm GA3 uygulamasıyla 11.35 ton/da seviyesine yükselmiştir. Deneme sonuçları, yüksek sıcaklık ve kuraklık nedeniyle engellenen meyve tutumları ve düşen verim değerlerinin hem sulama seviyeleri hem de GA3 uygulamalarıyla önemli oranda telafi edilebildiğini, en yüksek sulama seviyesinde dahi GA3 uygulamalarının verimde önemli artışlara neden olduğunu göstermiştir.

References

  • Abdelmageed AH, Gruda, N, Geyer, B (2003). Effect of High Temperature and Heat Shock on Tomato (Lycopersicon esculentum Mill.) Genotypes Under Controlled Conditions. Conference on International Agricultural Research for Development. Deutscher Tropentag Göttingen, October 8-10, 2003.
  • Abdul-Baki AA (1991). Tolerance of Tomato Cultivars and Selected Germplasm to Heat Stres. J. Amer. Soc. Hort. Sci., 116(6):1113-1116.
  • Açıkgöz N, Ilker E, Gokcol A (2004). Biyolojik araştırmaların bilgisayarda değerlendirilmeleri. Ege Uni. Tohum Teknoloji Uygulama ve Araştırma Merkezi Yay, Izmir.
  • Barringer RK, Lazerte DE, Leeper PW (1981). High temperature fruit set of tomatoes. Hort.Science, 16:289-293.
  • Baselga Yrisarry JJ, Prieto Losada M, Rodríguez del Rincón HA (1993). Response of Processıng Tomato to Three Different Levels of Water And Nitrogen Applications Acta Horticulturae 335: Int. Symposium on Irrigation of Horticultural Crops.
  • Camejo D, Rodriguez P, Morales, AM, Amico, JM, Torrecillas A, Alarcon JJ (2005). High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. Journal of Plant Physiology. 162: 281-289.
  • Cuartero J, Yeo AR, Flowers TJ (1992). Selection of donors for salt-tolerance in tomato using physiological traits. New Phytol. (1992), 121, 63-69.
  • Çömlekçioğlu N, Soylu MK (2010). Determination of High Temperature Tolerance via Screening of Flower and Fruit Formation in Tomato YYÜ Tar Bil Derg (YYU J Agr Sci) 2010, 20(2): 1231
  • Dalal M, Dani RG, Kumar PA (2006). Review Current trends in the genetic engineering of vegetable crops. Sci. Horticulturae Vol. 107, Issue 3, 6 p. 215-225.
  • De Jong M, Mariani C, Vriezen WH (2009). The role of auxin and gibberellin in tomato fruit set. Journal of Experimental Botany, Vol. 60, No. 5, pp. 1523–1532.
  • Düzgüneş O, Kesici T, Kavuncu O, Gürbüz F (1987). Araştırma ve Deneme Metotları (İstatistik Metotları-II), Ankara Üniv. Ziraat Fak. Yayınları:1291; ders kitabı: 295
  • Favati F, Lovelli S, Galgano F, Miccolis V,Tommaso T, Candido V (2009). Processing tomato quality as affected by irrigation scheduling Sci. Hort. 122 (2009) 562–571.
  • Firon N, Shaked R, Peet MM, Phari DM, Zamskı E, Rosenfeld K, Althan L, Pressman, NE (2006). Pollen Grains of Heat Tolerant Tomato Cultivars Retain Higher Carbohydrate Concentration Under Heat Stress Conditions. Sci. Horticulturae: 109:212-217.
  • Fos M, Nuez F, Garcia-Martinez JL (2000). The Gene pat-2, Which Induces Natural Parthenocarpy, Alters the Gibberellin Content in Unpollinated Tomato Ovaries Plant Physiology, Vol. 122, pp. 471-4
  • Gelmesa D, Abebie B, Desalegn L (2010). Effects of Gibberellic acid and 2,4 dichlorophenoxyacetic acid spray on fruit yield and quality of tomato (Lycopersicon esculentum Mill.) J. of Plant Breeding and Crop Science Vol. 2(10). pp. 316-324.
  • Gelmesa D, Abebie B, Desalegn L (2012). Regulation of tomato (Lycopersicon esculentum Mill.) fruit setting and earliness by gibberellic acid and 2,4-dichlorophenoxy acetic acid application African J. of Biotechnology Vol. 11(51), pp. 11200-11206, 26 June, 2012.
  • George W, Scott J, Spllttstoesser W (1984). Parthenocarp in tomato. Hort. Rev. 6, 65-84.
  • Hanson B, May D (2004). Effect of subsurface drip irrigation on processing tomato yield, water table depth, soil salinity, and profitability. Agricultural Water Management 68, 1–17, Hazra P, Dutta AK (2010). Expression of Parthenocarpy in Tomato Due to Temperature and Pollination Treatment International Journal of Vegetable Science, 16:222–232.
  • Henriques da Silva DJ (2008). Tomatoes: Orijin, Cultivation Tech. and Germplasm Reseourses. In Tomato and Tomato Products. Nutritional, Medicinal and Therapeutic Properties. Science Publishers. ISBN 978-1-57808-534-7.
  • Heuvelink E, Dorais M (2005). ‘’Crop Growth and Yield’’ in Tomatoes, Edited by Heuvelink E. ISBN 0851993966.Ho, L.C., and Hewit, J.D., 1986. Fruit Development. In: Atherton J.G., Rudich, J (Eds). The Tomato Crop. Chomen and Hall, London, pp.201-239.
  • Ho LC, Hewitt JD (1986). Fruit development. In: Atherton JG, Rudich J, eds. The tomato crop. Cambridge: Cambridge University Press,Chapman and Hall Ltd, 201-240.
  • Hopkins WG (1988). Introduction to Plant Physiology, p 464. John Wiley&Sons, Inc. Jones J. Benton. 19 Tomato Plant Culture in the Field, Greenhouse, and Home Garden CRC Press. Boca Raton London NY. Washington, D.C. ISBN 0-8493-2025-9.
  • Jensen CR, Battilani, Plauborg F, Psarras G, Chartzoulakis K, Janowiak F, Stikic R, Jovanovic Z, Li G, Qi X, Liu F, Jacobsen SE, Andersen MN (2010). Deficit irrigation based on drought tolerance and root signaling in potatoes and tomatoes Agricultural Water Management 98 (2010) 403–413. Jones JB Jr. (1999), Tomato plant culture : in the field, greenhouse, and home garden by CRC Press LLC. ISBN 0-8493-2025-9
  • Kalefetoğlu, Ekmekçi Y (2005). The Effects Of Drought On Plants And Tolerance Mechanisms. (Review) .G.U. Journal of Science 18(4): 723-740.
  • Khan MMA, Gautam AC, Mohammad F, Siddiqui MH, Naeem M, Khan MN (2006). Effect of gibberellic acid spray on performance of tomato.Turk. J. Biol. 30: 11-16.
  • Kinet, J.M., and Peet , M.M., 1997. Tomato :In:Wien , H.C.(Ed), The Physiology of Vegetable Crops. CAB, International. New York, pp.207-258.
  • Mahajan G, Singh KG (2006). Response of Greenhouse tomato to irrigation and fertigation. Agricultural Water Management, 84, 202-206.
  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics 444 (2005) 139–158
  • Mapelli S, Frova C, Torti G, Soressi GP (1978). Relationship between set, development and activities of growth regulators in tomato fruits Plant & Cell Physiol. 19(7): 1281-1288.
  • Miller P, Lanier W, Brandt S (2001). Using Growing Degree Days to Predict Plant Stages. Ag/Extension Communications Coordinator, Communications Services, Montana State University-Bozeman, Bozeman, MO, 2001.
  • Mitchell JP, Shennan C, Grattan SR, May DM (1991). Tomato Fruit Yields and Quality under Water Deficit and Salinity. J.l of the American Society for Hort Sci. 116, 215-221.
  • Mitler R (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science Vol.11 No.1 January 2006.
  • Moffat AS (2002). Finding new ways to protect drought-stricken plants. Science 296, 1226–1229.
  • Mukherjee A, Kundu M, Sarkar S (2010). Role of irrigation and mulch on yield, evapotranspiration rate and water use pattern of tomato (Lycopersicon esculentum L.) Agricultural Water Management. 98 :182-189.
  • Nachmias A, Kaufman Z, Livescu L, Tsror L, Meiri A, Caligari PDS (1993). Effects of salinty and its interactions with disease incidence on potatoes grown in hot climates. Phytoparasitica 21 (3): 245-2
  • Naeem N, Ishtiaq M, Khan P, Mohammad N, Khan J, Jamiher B (2001).Effect of gibberellic acid on growth and yield of tomato Cv. Roma. J. Biol. Sci. 1(6): 448-450.
  • Özbahçe A, Tarı AF (2006). Sulama suyundaki kısıntının salçalık domatesin verim ve kalitesine etkileri. VI. Sebze Tarımı Semp. 19-22 Eylül 2006. K.Maraş. S. 116-120.
  • Patane C, Tringali S, Sortino O (2011). Effects of deficit irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions. Sci. Horticulturae 129: 590-596.
  • Peet MM, Willits DH, Gardner R (1997). Response of ovule development and post-pollen production Processes in male-sterile tomatoes to chronic, subacute high temperature stress. J. Exp. Bot., 48,101–111.
  • Prasad PVV, Craufurd PQ, Summerfıeld RJ (1999). Fruit Number in Relation to Pollen Production and Viability in Groundnut Exposed to short episodes of heat stress. Annals of Botany; Sep; 84, 3; ProQuest Agriculture Journals pg. 381-386.
  • Pressman E, Peet M., Phar DM (2002). The Effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in developing anters. Annals of Botany, 90:631-636.
  • Rivero RM, Ruiz JM, Garcya PC, Lopez-Lefebre LR, Sanchez E, Romero L (2001). Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants .Plant Science 160 (2001) 315–321.
  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S Mittler R (2004). When Defense Pathways Collide. The Response of Arabidopsis to a Combination of Drought and Heat Stress Plant Physiology, April 2004, Vol. 134, pp. 1683–1696.
  • Sasaki H, Yano T, Yamasaki A (2005). Reduction of high temperature inhibition in tomato fruit set by plant growth regulators. Japan Agric. Research Quarterly. 39 (2): 135 – 138.
  • Sato S, Kamiyama M, Iwata T, Makıta N, Furukawa H, Ikeda H, (2006). Moderate Increase of Mean Daily Temperature Adversely Affects Fruit Set of Lycopersicon esculentum by Disrupting Specific Physiological Process in Male Reproductive Development. Annals of Botany, 10:109310
  • Sato S, Peet MM, Thomas JF (2000). Physiological Factors Limit Fruit Set of Tomato (Lycopersicon esculentum Mill.) Under Chronic, Mild Heat Stres. Plant, Cell and Environment, 23:719-726.
  • Savic S, Stikic R, Radovic BV, Bogicevic B, Jovanovic Z, Hadz V, Sukalovic VHT (2008). Comparative effects of regulated deficit irrigation (RDI) and partial root-zone drying (PRD) on growth and cell wall peroxidase activity in tomato fruits. Sci. Horticulturae 117 15–20.
  • Soylu MK, Çömlekçioğlu N (2009). The effects of high temperature on pollen grain characteristics in tomato (Lycopersicon esculentum M). J. the Fac. of Agri. Univ. Harran. 13(2): 35-42.
  • Taiz L, Zeiger E (2008). Bitki Fizyolojisi. (Çev: Türkan İ) Palme Yayıncılık, Ankara. ISBN: 0-87893823-0.
  • Thomas JMG, Prasad PVV (2003). Plants and the Environment /Global Warming Effects, University of Florida, Gainesville, FL, USA.
  • Topcu S, Kirda C, Dasgan Y, Kaman H, Cetin M, Yazici A, Bacon MA (2007). Yield response and Nfertiliser recovery of tomato grown under deficit irrigation Europ. J. Agronomy 26: 64–70.
  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany. 61: 199-223.
There are 52 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Nuray Çömlekçioğlu

Mehmet Şimşek This is me

Publication Date September 30, 2014
Published in Issue Year 2014

Cite

APA Çömlekçioğlu, N., & Şimşek, M. (2014). Yüksek Sıcaklık Koşullarında ve Farklı Su Seviyesinde Gibberellik Asidin (GA3) Sanayi Domatesinde Meyve Tutumuna Etkisi. Yuzuncu Yıl University Journal of Agricultural Sciences, 24(3), 270-279. https://doi.org/10.29133/yyutbd.236280
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.