Research Article
BibTex RIS Cite

Uzun Gün Şartlarında Patates (Solanum tuberosum L.)’in Mikroçoğaltımında Jasmonik Asidin Etkisi

Year 2016, , 79 - 88, 31.01.2016
https://doi.org/10.29133/yyutbd.236446

Abstract

Çalışmada in vitro şartlarda meristemden geliştirilen Pasinler, Granola ve Caspar çeşitlerinin tek-boğum kesimleri agarla katılaştırılmış MS ortamında farklı jasmonik asit (JA) konsantrasyonlarında mikroçoğaltıma tabi tutulmuşlardır. Araştırma sonuçları 1.0 µM JA konsantrasyonunun incelenen çoğu bitki özellikleri üzerine önemli oranda bir artışa sebep olduğunu ve bu konsantrasyonun etkisinin kontrol ve diğer bütün JA konsantrasyonlarından daha belirgin olduğunu göstermiştir. En yüksek sürgün (8.00), boğum (19.00), yaprak (19.00) ve kök (15.75) sayıları Caspar çeşidinden ve en uzun sürgün uzunluğu (15.13 cm) ise Granola çeşidinden 1.0 µM JA konsantrasyonundan elde edilmiştir. Bu JA konsantrasyonu Pasinler çeşidinde en uzun kökler (14.95 cm) meydana getirmiştir. En yüksek bitki yaş ağırlığı Pasinler (649.38 mg) ve Caspar (630.18 mg) çeşitlerinden, en fazla bitki kuru ağırlığı ise Pasinler (98.58 mg),  Caspar (93.89 mg) ve Granola (79.03 mg) çeşitlerinden ve 1.0 µM JA konsantrasyonundan elde edilmiştir. JA uygulaması mevsime bağlı kalmaksızın bütün yıl boyunca genç bitkiciklerin çoğaltımını teşvik ettiğinden, yeni ticari patates çeşitlerinin ticari olarak hızlı bir şekilde çoğaltımına imkan sağlar. Bu sonuçlar, ayrıca, ekonomik öneme sahip patates çeşitlerinin in vitro şartlarda mikroçoğaltımı ve mikro yumruların kütlesel üretim çalışmalarına da temel teşkil edebilir.   

References

  • REFERENCES
  • Ahmad MZ, Hussain I, Roomi S, Zia MA, Zaman MS, Abbas Z, Shah SH (2012). In vitro response of cytokinin and auxin to multiple shoot regeneration in Solanum tuberosum L. Am-Euro J. Agric. Environ. Sci. 12 (11): 1522–1526.
  • Cenzano A, Vigliocco A, Kraus T, Abdala G (2003). Exogenously applied jasmonic acid induces changes in apical meristem morphology of potato stolons. Ann. Bot. 91: 915–919.
  • Dermastia M, Ravnikar M, Vilhar B, Kovac M (1994). Increased level of cytokinin ribosides in jasmonic acid-treated potato (Solanum tuberosum L.) stem node cultures. Physiol. Plant. 92 (2): 241–246.
  • Dermastia M, Ravnikar M, Kovac M (1996). Morphology of potato (Solanum tuberosum L. cv. Sante) stem node cultures in relation to the level of endogenous cytokinins. J. Plant Growth Regul. 15: 105–108.
  • Hussain I, Muhammad A, Chaudhry Z, Asghar R, Naqvi SMS, Rashid H (2005). Morphogenetic potential of three potato (Solanum tuberosum) cultivars from diverse explants, a prerequisite in genetic manipulation. Pak. J. Bot. 37 (4): 889–898.
  • Koda Y, Kikuta Y, Tazaki H, Tsujino Y, Sakamura S, Yoshihara T (1991). Potato tuber-inducing activities of jasmonic acid related compounds. Phytochemistry, 30: 1435–1438.
  • Koda Y, Kikuta Y (2001). Effects of jasmonates on in vitro tuberization in several potato cultivars that differ greatly in maturity. Plant Prod. Sci. 4 (1): 66–70.
  • Kovac M, Ravnikar M (1994). The effect of jasmonic acid on the photosynthetic pigments of potato plants grown in vitro. Plant Sci. 103 (1): 11–17.
  • Kumlay A (2014). Combination of the auxins NAA, IBA, and IAA with GA3 improves the commercial seed-tuber production of potato (Solanum tuberosum L.) under in vitro conditions. BioMed Res. Int. Volume 2014, Article ID 439259, 7 pages.
  • Kumlay A, Ercisli S (2015). Callus induction, shoot proliferation and root regeneration of potato (Solanum tuberosum L.) stem node and leaf explants under long-day conditions. Biotechnology & Biotechnological Equipment.
  • http://dx.doi.org/10.1080/13102818.2015.1077685
  • Martin-Closas LI, Pelacho AM (1997). Increase in potato tuberization and growth by jasmonic acid under photoperiod and at high temperatures. Hort. Biotech. In vitro Culture and Breeding (Eds. A. Altman and M. Ziv), ISHS Acta Horticulturae, 447: 165–166.
  • Martin-Closas LI, Sol S, Pelacho AM (2000). Potential application of jasmonic acid for Solanum tuberosum micropropagation. XXV International Horticultural Congress, Part 10: Application of Biotechnology and Molecular Biology and Breeding-In vitro Culture, Brussels, Belgium (Eds. L. H. W. van der Plas & G. J. de Klerk). ISHS Acta Horticulturae, 520: 127–134.
  • Murashige T, Skoog F (1962). A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant. 15: 473–494.
  • Pelacho AM, Perez-Katalan J, Martin-Closas LI (1997). Root development in vitro potato explants as affected by jasmonic acid. Biology of Root Formation and Development Basic Life Sciences (Ed. A. Altman and Y. Waisel), 65: 141–145.
  • Pruski K, Astatkie T, Nowak J (2002). Jasmonate on in vitro tuberization and tuber bulking in two potato cultivars (Solanum tuberosum L.) under different media photoperiod conditions. In vitro Cell Dev. Biol. Plant. 38: 203–209.
  • Pruski K (2007). The canon of potato science: in vitro multiplication through nodal cuttings. Potato Res. 50: 293–296.
  • Ravnikar M, Gogala N (1990). Regulation of potato meristem development by jasmonic acid in vitro. J. Plant Growth Regul. 9: 233–236.
  • Ravnikar M, Rode J, Gogala N, Benedicic D (1990). Regulation of organogenesis with jasmonic acid. I. International Symposium on In Vitro Culture and Horticultural Breeding, Bologna, Italy (Eds. J. Janick, R.H. Zimmerman ISHS), Acta Horticulturae, 280: 169–172.
  • Ravnikar M, Vilhar B, Gogala N (1992). Stimulatory effects of jasmonic acid on potato stem node and protoplast culture. J. Plant Growth Regul. 11 (1): 29–33.
  • Rohwer CL, Erwin JE (2008). Horticultural applications of jasmonates: A review. J. Hort. Sci. Biotech. 83 (3): 283–304.
  • Saker MM, Moussa TAA, Heikal NZ, AboEllil AHA, Abdel-Rahman RMH (2012). Selection of an efficient in vitro micropropagation and regeneration system for potato (Solanum tuberosum L.) cultivar Desiree. Afr. J. Biotech. 11 (98): 16388–16404.
  • Shan X, Li C, Peng W, Gao B (2011). New perspective of jasmonate function in leaf senescence. Plant Signal Behav. 6 (4): 575–577.
  • Takahashi K, Fujino K, Kikuta Y, Koda Y (1994). Expansion of potato cells in response to jasmonic acid. Plant Sci. 100 (1): 3–8.
  • Ulloa RM, Raices M, MacIntosh GC, Maldonado S, Tellez-Inon MT (2002). Jasmonic acid affects plant morphology and calcium-dependent protein kinase expression and activity in Solanum tuberosum. Physiol Plant. 115: 417–427.
  • van den Berg JH, Ewing EE (1991). Jasmonates and their role in plant growth and development, with special reference to the control of potato tuberization: A review. Am. Potato J. 68 (11): 781–794.
  • Vilhar B, Ravnikar M, Francis D (1997). Jasmonic acid affects cell division in meristems of cultured potato roots. Biology of Root Formation and Development Basic Life Sciences, (Ed. A. Altman and Y. Waisel), 65: 105–110.
  • Vinterhalter D, Vinterhalter B, Calovic M, Jevtic S (1997). The relationship between sucrose and cytokinins in the regulation of growth and branching in potato cv. Desiree shoot cultures. Proc. 1st Balkan Symp. Vegetables and Potatoes (Eds. S. Jevtic and B. Lasic). Acta Horticulturae, 462: 319–323.
  • Zhang Z, Cheng ZM (1996). The effect of jasmonic acid on in vitro nodal culture of three potato cultivars. HortScience, 31: 631.
  • Zhang ZJ, Zhou WJ, Li HZ, Zhang GQ, Subrahmaniyan K, Yu JQ (2006). Effect of jasmonic acid on in vitro explant growth and microtuberization in potato. Biologia Plantarum, 50 (3): 453–456.

The Effect of Jasmonic Acid on the Micropropagation of Potato (Solanum tuberosum L.) under Long Days Conditions

Year 2016, , 79 - 88, 31.01.2016
https://doi.org/10.29133/yyutbd.236446

Abstract

Meristem derived in vitro plantlets of potato (Solanum tuberosum L.) cultivars Pasinler, Granola, and Caspar were micropropagated on agar-solidified MS medium containing different concentrations of jasmonic acid (JA)using single-node stem cuttings. The results of the study showed that inclusion of 1.0 µM JA in the MS medium provided a substantial and visible increase in most of the plantlet characteristics studied and the effect of this concentration was more pronounced compared to the control and all other JA concentrations. The highest number of shoots (8.00), nodes (19.00), leaves (19.00), and roots (15.75) on cv. Caspar and a maximum shoot length (15.13 cm) was observed on cv. Granola from 1.0 µM JA concentration. This concentration of JA also helped to induce longest roots (14.95 cm) on cv. Pasinler. The highest plantlet fresh weight from cv. Pasinler (649.38 mg), and cv. Caspar (630.18 mg), and maximum dry weight of plantlets from cv. Pasinler (98.58 mg), cv. Caspar (93.89 mg) and cv. Granola (79.03 mg) were noted on MS medium containing 1.0 µM of JA. Since the application of JA accelerates the multiplication of young plantlets throughout the year without depending on the season, this allows fast commercial propagation of new potato cultivars. These results may also serve as basis for the mass production of these economically important potato cultivars through in vitro micropropagation techniques and microtuberization studies

References

  • REFERENCES
  • Ahmad MZ, Hussain I, Roomi S, Zia MA, Zaman MS, Abbas Z, Shah SH (2012). In vitro response of cytokinin and auxin to multiple shoot regeneration in Solanum tuberosum L. Am-Euro J. Agric. Environ. Sci. 12 (11): 1522–1526.
  • Cenzano A, Vigliocco A, Kraus T, Abdala G (2003). Exogenously applied jasmonic acid induces changes in apical meristem morphology of potato stolons. Ann. Bot. 91: 915–919.
  • Dermastia M, Ravnikar M, Vilhar B, Kovac M (1994). Increased level of cytokinin ribosides in jasmonic acid-treated potato (Solanum tuberosum L.) stem node cultures. Physiol. Plant. 92 (2): 241–246.
  • Dermastia M, Ravnikar M, Kovac M (1996). Morphology of potato (Solanum tuberosum L. cv. Sante) stem node cultures in relation to the level of endogenous cytokinins. J. Plant Growth Regul. 15: 105–108.
  • Hussain I, Muhammad A, Chaudhry Z, Asghar R, Naqvi SMS, Rashid H (2005). Morphogenetic potential of three potato (Solanum tuberosum) cultivars from diverse explants, a prerequisite in genetic manipulation. Pak. J. Bot. 37 (4): 889–898.
  • Koda Y, Kikuta Y, Tazaki H, Tsujino Y, Sakamura S, Yoshihara T (1991). Potato tuber-inducing activities of jasmonic acid related compounds. Phytochemistry, 30: 1435–1438.
  • Koda Y, Kikuta Y (2001). Effects of jasmonates on in vitro tuberization in several potato cultivars that differ greatly in maturity. Plant Prod. Sci. 4 (1): 66–70.
  • Kovac M, Ravnikar M (1994). The effect of jasmonic acid on the photosynthetic pigments of potato plants grown in vitro. Plant Sci. 103 (1): 11–17.
  • Kumlay A (2014). Combination of the auxins NAA, IBA, and IAA with GA3 improves the commercial seed-tuber production of potato (Solanum tuberosum L.) under in vitro conditions. BioMed Res. Int. Volume 2014, Article ID 439259, 7 pages.
  • Kumlay A, Ercisli S (2015). Callus induction, shoot proliferation and root regeneration of potato (Solanum tuberosum L.) stem node and leaf explants under long-day conditions. Biotechnology & Biotechnological Equipment.
  • http://dx.doi.org/10.1080/13102818.2015.1077685
  • Martin-Closas LI, Pelacho AM (1997). Increase in potato tuberization and growth by jasmonic acid under photoperiod and at high temperatures. Hort. Biotech. In vitro Culture and Breeding (Eds. A. Altman and M. Ziv), ISHS Acta Horticulturae, 447: 165–166.
  • Martin-Closas LI, Sol S, Pelacho AM (2000). Potential application of jasmonic acid for Solanum tuberosum micropropagation. XXV International Horticultural Congress, Part 10: Application of Biotechnology and Molecular Biology and Breeding-In vitro Culture, Brussels, Belgium (Eds. L. H. W. van der Plas & G. J. de Klerk). ISHS Acta Horticulturae, 520: 127–134.
  • Murashige T, Skoog F (1962). A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant. 15: 473–494.
  • Pelacho AM, Perez-Katalan J, Martin-Closas LI (1997). Root development in vitro potato explants as affected by jasmonic acid. Biology of Root Formation and Development Basic Life Sciences (Ed. A. Altman and Y. Waisel), 65: 141–145.
  • Pruski K, Astatkie T, Nowak J (2002). Jasmonate on in vitro tuberization and tuber bulking in two potato cultivars (Solanum tuberosum L.) under different media photoperiod conditions. In vitro Cell Dev. Biol. Plant. 38: 203–209.
  • Pruski K (2007). The canon of potato science: in vitro multiplication through nodal cuttings. Potato Res. 50: 293–296.
  • Ravnikar M, Gogala N (1990). Regulation of potato meristem development by jasmonic acid in vitro. J. Plant Growth Regul. 9: 233–236.
  • Ravnikar M, Rode J, Gogala N, Benedicic D (1990). Regulation of organogenesis with jasmonic acid. I. International Symposium on In Vitro Culture and Horticultural Breeding, Bologna, Italy (Eds. J. Janick, R.H. Zimmerman ISHS), Acta Horticulturae, 280: 169–172.
  • Ravnikar M, Vilhar B, Gogala N (1992). Stimulatory effects of jasmonic acid on potato stem node and protoplast culture. J. Plant Growth Regul. 11 (1): 29–33.
  • Rohwer CL, Erwin JE (2008). Horticultural applications of jasmonates: A review. J. Hort. Sci. Biotech. 83 (3): 283–304.
  • Saker MM, Moussa TAA, Heikal NZ, AboEllil AHA, Abdel-Rahman RMH (2012). Selection of an efficient in vitro micropropagation and regeneration system for potato (Solanum tuberosum L.) cultivar Desiree. Afr. J. Biotech. 11 (98): 16388–16404.
  • Shan X, Li C, Peng W, Gao B (2011). New perspective of jasmonate function in leaf senescence. Plant Signal Behav. 6 (4): 575–577.
  • Takahashi K, Fujino K, Kikuta Y, Koda Y (1994). Expansion of potato cells in response to jasmonic acid. Plant Sci. 100 (1): 3–8.
  • Ulloa RM, Raices M, MacIntosh GC, Maldonado S, Tellez-Inon MT (2002). Jasmonic acid affects plant morphology and calcium-dependent protein kinase expression and activity in Solanum tuberosum. Physiol Plant. 115: 417–427.
  • van den Berg JH, Ewing EE (1991). Jasmonates and their role in plant growth and development, with special reference to the control of potato tuberization: A review. Am. Potato J. 68 (11): 781–794.
  • Vilhar B, Ravnikar M, Francis D (1997). Jasmonic acid affects cell division in meristems of cultured potato roots. Biology of Root Formation and Development Basic Life Sciences, (Ed. A. Altman and Y. Waisel), 65: 105–110.
  • Vinterhalter D, Vinterhalter B, Calovic M, Jevtic S (1997). The relationship between sucrose and cytokinins in the regulation of growth and branching in potato cv. Desiree shoot cultures. Proc. 1st Balkan Symp. Vegetables and Potatoes (Eds. S. Jevtic and B. Lasic). Acta Horticulturae, 462: 319–323.
  • Zhang Z, Cheng ZM (1996). The effect of jasmonic acid on in vitro nodal culture of three potato cultivars. HortScience, 31: 631.
  • Zhang ZJ, Zhou WJ, Li HZ, Zhang GQ, Subrahmaniyan K, Yu JQ (2006). Effect of jasmonic acid on in vitro explant growth and microtuberization in potato. Biologia Plantarum, 50 (3): 453–456.
There are 31 citations in total.

Details

Primary Language English
Subjects Water Resources and Water Structures
Journal Section Articles
Authors

Ahmet Kumlay

Publication Date January 31, 2016
Published in Issue Year 2016

Cite

APA Kumlay, A. (2016). The Effect of Jasmonic Acid on the Micropropagation of Potato (Solanum tuberosum L.) under Long Days Conditions. Yuzuncu Yıl University Journal of Agricultural Sciences, 26(1), 79-88. https://doi.org/10.29133/yyutbd.236446

Creative Commons License
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi CC BY 4.0 lisanslıdır.