Research Article
BibTex RIS Cite

Asma Yaprak Alanın Belirlenmesinde Farklı İki Yöntemin Karşılaştırılması

Year 2018, , 289 - 294, 28.09.2018
https://doi.org/10.29133/yyutbd.354346

Abstract

Bitkilerde fotosentez, transpirasyon, solunum gibi birçok hayati
mekanizmayı kontrol eden yapraklar, bilimsel çalışmalarda tür ya da çeşit
tespitinin yapıldığı, bitkinin çeşitli stres şartlarına olan tepkisinin
ölçüldüğü temel organlardır.  Yaprakların
yüzey alanının tespiti de birçok çalışmaya ışık tutmaktadır. Bu çalışmada
yaprak alanını belirlemede iki farklı yöntemin karşılaştırılması amaçlanmıştır.
Kullanılan birinci yöntemle görüntü işleme programı Photoshop CS6 kullanılarak
piksel değerleri üzerinden piksel-alan hesaplaması ile yaprak alanını tespit
edilmiştir. Bir diğer yöntem ise ağırlık-alan ilişkisinden yararlanılarak,
yaprak alanı belirlenmeye çalışılmıştır. Ele alınan 28 farklı yerel üzüm
çeşidinin yapraklarında iki yöntem arasındaki alanının-12.93-9.2 cm2
arasında değişim gösterdiği belirlenmiştir. Çalışmada iki yöntem
karşılaştırılarak her çeşit için yaprak alan katsayısı saptanmıştır.
Bilgisayarda taranan ve
Adobe Photoshop 6.0 programı ile belirlenen alan ile ağırlık alan ilişkisi
yöntemi kullanılarak belirlenen alan arasındaki regresyon katsayısı R2=0.908
(p<0.0l) olarak bulunmuştur. İki yöntem arasındaki bu ilişkinin istatistik
olarak önemli olması, bilgisayarla tespitin mümkün olmadığı durumlarda
ağırlık-alan ilişkisinden yararlanılarak yaprak alanlarının hesaplanabileceğini
göstermektedir.

References

  • Caldas, L. S. C., Bravo, H. Piccolo, and C. R. Faria, “Measurement of leaf area with a hand-scanner linked to a microcomputer,” Revista Brasileira de Fisiologia Vegetal, vol. 4, no. 1, pp. 17–20, 1992. Çelik, S., Kök, D., 2011. Asma Yaprağında Ağırlık-Alan GliGkisinden Gerçek Alanın Bulunması. Türkiye VI. Ulusal Bahçe Bitkileri Kongresi, 4-8 Ekim 2011, Şanlıurfa. S:117-120
  • Diao, J., X. Lei, L. Hong, J. Rong, and Q. Shi, “Estimating single leaf area of Eucalyptus (Eucalyptus grandis × Eucalyptus urophylla) using leaf length and width,” in Proceedings of the 3rd International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA '09), pp. 53–57, November 2009. View at Publisher • View at Google Scholar • View at Scopus
  • Giuffrida, F., Y. Rouphael, S. Toscano et al., “A simple model for nondestructive leaf area estimation in bedding plants,” Photosynthetica, vol. 49, no. 3, pp. 380–388, 2011.
  • Igathinathane, C., V. S. S. Prakash, U. Padma, G. R. Babu, and A. R. Womac, “Interactive computer software development for leaf area measurement,” Computers and Electronics in Agriculture, vol. 51, no. 1-2, pp. 1–16, 2006.
  • Kabas Ö, Özmerzi A (2010) “Balo” tipi dolmalık biberin bazı fiziksel özelliklerinin görüntü işleme yöntemiyle belirlenmesi. Tarımsal Mekanizasyon 26. Ulusal Kongresi. Hatay.
  • Kaçar, B., Katkat, V. ve Öztürk, Ş., 2006. Bitki Fizyolojisi. Nobel Yayınlan, Fen Bilimleri Dizini: 28, 2. Basım, 563 s.
  • Keefe PD (1992) A dedicated wheat grain image analyzer. PlantVarieties and Seeds.5: 27-33.
  • Kliewer, W.M., 1970. Effects of Time on Severity of Defoliations and Growth and Composition of Thompson Seedless Grapes. American Journal of Enology and Viticulture 21:37-47.
  • Kliewer, W.M. ve Weaver, R.J., 1971. Effect of Crop Level and Leaf Area on Growth, Composition and Coloration of Tokay Grapes. American Journal of Enology and Viticulture 22:172- 177.
  • Kliewer, W.M., 1981. Grapevine Pyhsiology. Division of Agricultural Sciences, University of California, 21231, California, USA.
  • Matthew, E.O., Landis, D.A., ve Isaacs, R., 2002. An Expensive, Accurate Method for Measuring Leaf Area and Defoliation through Digital Image Analysis. Journal of Economic Entomology 95(6): 1190-1194
  • Mendoza-de Gyves, E., V. Cristofori, C. Fallovo, Y. Rouphael, and C. Bignami, 2008. “Accurate and rapid technique for leaf area measurement in medlar (Mespilus germanica L.),” Advances in Horticultural Science, vol. 22, no. 3, pp. 223–226.
  • Mohsenin, N. N. 1980. Physiscal Properties of Plant and Animal Materials, p.78-81, Gordon and Beach Science Publishers, New York.
  • Neuman, M. R., H. D. Sapirstein, E. Shwedyk and W. Bushuk. 1989. Wheat grain colour analysis by digital image processing. II. Wheat class discrimination. Journal of Cereal Science 10: 183-188.
  • Pandey, S. and H. Singh, “A simple cost-effective method for leaf area estimation,” Journal of Botany, vol. 2011, Article ID 658240, 6 pages, 2011. Tosun, O., Şenol, R.,“Görüntü İşleme Metotlarıyla Yaprak Alanı Tayini İle Bitki Gelişiminin Gözlenmesi” El-Cezerî Fen ve Mühendislik Dergisi 2016, 3(1); 154-166.
  • Trooien, T. P. and Heermann, D. F., 1992. Measurement and Simulation of Potato Leaf AreaUsing Image Processing. I. Model Development, Transaction of ASAE, 35: 1709-1712.
  • Williams L, Martinson TE (2003) . Nondestructive Leaf Area Estimation of ‘’ Niagara’’ and ‘’Dechaunac’’ Grapevines. USDA-ARS, Southern İnsect Management Researehes Unet, P.O. Box 346, stoneville, M.S 38776-0346, USA.
  • Matthew EO, Landis DA and Isaacs R (2002). An Expensive, Accurate Method for Measuring Leaf Area and Defoliation Through Digitale İmage Analysis. Y.Econ. Entomd. 95(6):1190-1194.
  • Wulfsohn, D., M. Sciortino, J. M. Aaslyng, and M. García-Fiñana, “Nondestructive, stereological estimation of canopy surface area,” Biometrics, vol. 66, no. 1, pp. 159–168, 2010.

Comparison of Two Different Methods in Determination of Grapevine Leaf Area

Year 2018, , 289 - 294, 28.09.2018
https://doi.org/10.29133/yyutbd.354346

Abstract

Leaves are the basic organs that control many
vital mechanisms such as photosynthesis, transpiration and respiration in
plants; the species or variety is determined based on them in scientific
studies; and the response of the plant to various stress conditions is measured
on them. The determination of the surface area of leaves also sheds light on
many studies. The present study aimed to compare two different methods for
determining leaf area. With the first method used, the leaf area was determined
from the pixel-area calculation using pixel values using the image processing
program Photoshop CS6. The other method has been tried to determine the leaf
area by using the weight-area relation. It was determined that the area found
between the two methods varied between -12.93 cm2 to 9.2 cm2
on the leaves of 28 different grapevine varieties. By comparing these two
methods, leaf area coefficient was determined for each variety. The regression
coefficient was found as R2 = 0.908 (p <0.01) between the area
scanned on the computer and then determined by the Adobe Photoshop 6.0 program
and the area by the weighted relational method. This statistically significant
relationship between the two methods shows that the determination of leaf areas
by using the weight-area relationship can be used in the condition where it is
not possible to determine it by computer.

References

  • Caldas, L. S. C., Bravo, H. Piccolo, and C. R. Faria, “Measurement of leaf area with a hand-scanner linked to a microcomputer,” Revista Brasileira de Fisiologia Vegetal, vol. 4, no. 1, pp. 17–20, 1992. Çelik, S., Kök, D., 2011. Asma Yaprağında Ağırlık-Alan GliGkisinden Gerçek Alanın Bulunması. Türkiye VI. Ulusal Bahçe Bitkileri Kongresi, 4-8 Ekim 2011, Şanlıurfa. S:117-120
  • Diao, J., X. Lei, L. Hong, J. Rong, and Q. Shi, “Estimating single leaf area of Eucalyptus (Eucalyptus grandis × Eucalyptus urophylla) using leaf length and width,” in Proceedings of the 3rd International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA '09), pp. 53–57, November 2009. View at Publisher • View at Google Scholar • View at Scopus
  • Giuffrida, F., Y. Rouphael, S. Toscano et al., “A simple model for nondestructive leaf area estimation in bedding plants,” Photosynthetica, vol. 49, no. 3, pp. 380–388, 2011.
  • Igathinathane, C., V. S. S. Prakash, U. Padma, G. R. Babu, and A. R. Womac, “Interactive computer software development for leaf area measurement,” Computers and Electronics in Agriculture, vol. 51, no. 1-2, pp. 1–16, 2006.
  • Kabas Ö, Özmerzi A (2010) “Balo” tipi dolmalık biberin bazı fiziksel özelliklerinin görüntü işleme yöntemiyle belirlenmesi. Tarımsal Mekanizasyon 26. Ulusal Kongresi. Hatay.
  • Kaçar, B., Katkat, V. ve Öztürk, Ş., 2006. Bitki Fizyolojisi. Nobel Yayınlan, Fen Bilimleri Dizini: 28, 2. Basım, 563 s.
  • Keefe PD (1992) A dedicated wheat grain image analyzer. PlantVarieties and Seeds.5: 27-33.
  • Kliewer, W.M., 1970. Effects of Time on Severity of Defoliations and Growth and Composition of Thompson Seedless Grapes. American Journal of Enology and Viticulture 21:37-47.
  • Kliewer, W.M. ve Weaver, R.J., 1971. Effect of Crop Level and Leaf Area on Growth, Composition and Coloration of Tokay Grapes. American Journal of Enology and Viticulture 22:172- 177.
  • Kliewer, W.M., 1981. Grapevine Pyhsiology. Division of Agricultural Sciences, University of California, 21231, California, USA.
  • Matthew, E.O., Landis, D.A., ve Isaacs, R., 2002. An Expensive, Accurate Method for Measuring Leaf Area and Defoliation through Digital Image Analysis. Journal of Economic Entomology 95(6): 1190-1194
  • Mendoza-de Gyves, E., V. Cristofori, C. Fallovo, Y. Rouphael, and C. Bignami, 2008. “Accurate and rapid technique for leaf area measurement in medlar (Mespilus germanica L.),” Advances in Horticultural Science, vol. 22, no. 3, pp. 223–226.
  • Mohsenin, N. N. 1980. Physiscal Properties of Plant and Animal Materials, p.78-81, Gordon and Beach Science Publishers, New York.
  • Neuman, M. R., H. D. Sapirstein, E. Shwedyk and W. Bushuk. 1989. Wheat grain colour analysis by digital image processing. II. Wheat class discrimination. Journal of Cereal Science 10: 183-188.
  • Pandey, S. and H. Singh, “A simple cost-effective method for leaf area estimation,” Journal of Botany, vol. 2011, Article ID 658240, 6 pages, 2011. Tosun, O., Şenol, R.,“Görüntü İşleme Metotlarıyla Yaprak Alanı Tayini İle Bitki Gelişiminin Gözlenmesi” El-Cezerî Fen ve Mühendislik Dergisi 2016, 3(1); 154-166.
  • Trooien, T. P. and Heermann, D. F., 1992. Measurement and Simulation of Potato Leaf AreaUsing Image Processing. I. Model Development, Transaction of ASAE, 35: 1709-1712.
  • Williams L, Martinson TE (2003) . Nondestructive Leaf Area Estimation of ‘’ Niagara’’ and ‘’Dechaunac’’ Grapevines. USDA-ARS, Southern İnsect Management Researehes Unet, P.O. Box 346, stoneville, M.S 38776-0346, USA.
  • Matthew EO, Landis DA and Isaacs R (2002). An Expensive, Accurate Method for Measuring Leaf Area and Defoliation Through Digitale İmage Analysis. Y.Econ. Entomd. 95(6):1190-1194.
  • Wulfsohn, D., M. Sciortino, J. M. Aaslyng, and M. García-Fiñana, “Nondestructive, stereological estimation of canopy surface area,” Biometrics, vol. 66, no. 1, pp. 159–168, 2010.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Adnan Doğan

Cüneyt Uyak This is me

Ruhan İlknur Gazioğlu Şensoy

Nurhan Keskin

Publication Date September 28, 2018
Acceptance Date March 26, 2018
Published in Issue Year 2018

Cite

APA Doğan, A., Uyak, C., Gazioğlu Şensoy, R. İ., Keskin, N. (2018). Asma Yaprak Alanın Belirlenmesinde Farklı İki Yöntemin Karşılaştırılması. Yuzuncu Yıl University Journal of Agricultural Sciences, 28(3), 289-294. https://doi.org/10.29133/yyutbd.354346
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.