Research Article
BibTex RIS Cite

Determining the Yield and Morpho-Physiological Responses of 'Fortuna' Strawberry cv. of Using Different Irrigation Levels with Bio-stimulant Application

Year 2018, , 368 - 374, 31.12.2018
https://doi.org/10.29133/yyutbd.426079

Abstract

 In the current study, the response of cv. Fortuna grown under high tunnel
conditions to water deficiency and bio-stimulant application were inspected by
evaluating the morphological (crown number, whole crown diameter and leaf area)
and physiological (stomatal conductance and leaf water potential) parameters
along with the yield. The amounts of
applied irrigation water were 1.00 (control) and 0.50 times water
evaporation from surface measured by a standard Class A pan. In current study,
when compare to drought conditions, application of bio-stimulant resulted in
the increase of crown number (25%), yield (13%), mean fruit weight (11%), leaf
area (9%), stomatal conductance (8%), leaf water potential (6%), whole crown
diameter (% 5) and fruit number (3%). Moreover; it could be stated that cv. Fortuna responded to water
deficiency, besides stomatal closure, by reduction of leaf area, fruit number,
crown number, whole crown diameter, leaf water potential (Lwp), mean fruit
weight and yield. When the interactions between bio-stimulant applications and limited-watered
conditions (IR50) are examined in terms of their
morpho-physiological responses, it has been found there are clearly abundant
variation for stomatal conductance (12%), leaf area (4%), Lwp (5%) and mean
fruit weight (8%). All these results show that bio-stimulant applications should
be combined with optimal irrigation water, besides, obtaining information about
plant morpho-physiological responses under drought conditions can contribute to
improving of plant adaptations under multiple stress conditions for strawberry.

References

  • Battacharyya D, Badgohari MZ, Rathor P, Prithiviraj B (2015). Seaweed extracts as biostimulants in horticulture, Scientia Horticulturae 196: 39-48.
  • Blanke MM, Cooke DT (2006). Water channels in strawberry, and their role in the plant’s response to water stress. Acta Horticulturae 708: 65-68.
  • Boyer JS (1970). Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials. Plant Physiol. 46: 233-235.
  • Bulgari R, Cocetta G, Trivellini A, Vernieri P, Ferrante A (2015). Biostimulants and crop responses: a review. Biological Agriculture & Horticulture. 31: 1–17. DOI:10.1080/01448765.2014.964649.
  • European Environment Agency (2004). Impactacs of Europe’s Changing Climate. EEA report no. 2/2004. EEA, Cpenhagen, Denmark.
  • Ferrato J, Muguiro A, Tineo F, Grasso R, Longo A, Mondino MC, Carrancio L, Duarte V (2003). Experiencias sobre nuevas tecnologías hortícolas en cultivos bajo cubierta. Ministerio de Educación, Ciencias y Tecnología; Instituto Nacional de Educación Tecnológica, Buenos Aires.
  • Ghaderi N, Siosemardeh A (2011). Response to drought stress of two strawberry cultivars (cv. Kurdistan and Selva). Hort. Environ. Biotechnol. 52: 6–12.
  • Ghaderi N, Normohammadi S, Javadi T (2015). Morpho-physiological Responses of Strawberry (Fragaria×ananassa) to Exogenous Salicylic Acid Application under Drought Stress. J. Agr. Sci. Tech. 17: 167-178.
  • Grant OM, Davies MJ, James CM, Johnson AW, Leinonen I, Simpson DW (2012). Thermal imaging and carbon isotope composition indicate variation amongst strawberry (Fragaria x ananassa) cultivars in stomatal conductance and water use effiency. Environmental and Experimental Botany. 76:7-15.
  • Hetherington AM, Woodward FI (2003). The role of stomata in sensing and driving environmental changes. Nature. 424: 901-908.
  • Houghton JT, Ding Y, Grigs DJ, Noguer M, Van der Linden PJ, Dai X, Maskell K, Johnson CA (2001). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assesment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
  • Hsiao TC (1973). Plant responses to water stress. Ann. Rev. Plant Physiol. 24: 519-570.
  • Kapur B, Çeliktopuz E, Sarıdaş MA, Paydaş S (2018). Irrigation Regimes and Bio-stimulant Application Effects on Yield and Morpho-Physiological Responses of Strawberry. Hortic. Sci. Technol. In press. Kanber R, Eylen M, Tok A (1986). The yield of strawberry under drip and furrow irrigation in Cukurova region of Turkey. The report of Agriculture, Forestry and Village Affairs Ministry. 135(77), 39. (In Turkish).
  • Kanber R (2006). Irrigation. The publication of Cukurova University, Agricultural Faculty. 174(A-52). p530. (In Turkish)
  • Klamkowski K, Treder W (2006). Morphological and Physiological responses of Strawberry plants to water stress. Agric. Conspec. Sci. 71(4): 159-165.
  • Klamkowski K, Treder W, (2008). Response to drought stress of three strawberry cultivars grown under greenhouse conditions. Journal of Fruit and Ornamental Plant Research. 16: 179–188.
  • Klamkowski K, Treder W, Wojcik K (2015). Effects of lon-term water stress on leaf gas exhange, growth and yield of three strawberry cultivars. Acta Sci. Pol. Hortorum Cultus. 14(6): 55-65.
  • Krüger E, Schmidt G, Bruckner U (1999). Scheduling strawberry irrigation based upon tensiometer measurement and a climatic water balance model. Scientia Horticulturae. 81:409–424.
  • Kumar S, Dey P (2011). Effect of different mulches and irrigation methods on root growth, nutrient uptake, water use efficiency and yield of strawberry. Sci Hort. 127(3):318-324.
  • Kunicki E, Grabowska A, Sekara A, Wojciechowska R (2010). The effect of cultivar type, time of cultivation, and biostimulant treatment on the yield of spinach (Spinacia oleracea L.). Folia Hortic. 22:9–13.
  • Li H, Li T, Gordon RJ, Asiedu SK, Hu K (2010). Strawberry plant fruiting efficienc and its correlation with solar irridiance, temperature and reflectance water index variation. Environmental and Experimental Botany. 68: 165-174.
  • Liu F, Savic S, Jensen CR, Shahnazari A, Jacobsen SE, Stikic R, Anderson MN (2007). Water relations and yield of lysimeter-grown strawberries under limited irrigation. Scientia Horticulturae. 111: 128-132.
  • Lozano D, Ruiz N, Gavilan P (2016). Consumptive water use and irrigation performance of strawberries. Agricultural water management. 169: 44-51.
  • Nautiyal S, Badola HK, Negi DS (1994). Plant responses to water stress: changes in growth, dry matter production, stomatal frequency and leaf anatomy. Biol. Plant. 36: 91–97.
  • Palliotti A, Cartechini A, Nasini L (2001). Grapevine adaptation to continuous water limitation during the season. Adv. Hort. Sci. 15: 39–45.
  • Rennquist RP, Breen J, Martin LW (1982a). Vegetative growth response of ‘Olympus’ strawberry to polyethylene much and drip irrigation regimes. Journal of the American Society for Horticultural Science. 107: 369–372.
  • Rennquist RP, Breen J, Martin LW (1982b). Effect of polyethylene much and summer irrigation on subsequent flowering and fruiting of ‘Olympus’ strawberry. Journal of the American Society for Horticultural Science. 107: 373–376.
  • Save R, Penuclas J, Maria O, Serrano L (1993). Changes in leaf osmotic and elastic properties and canopy structure of strawberry under mild water stress. HortScience. 28(9): 925–927.
  • Spinelli F, Fiori G, Noferini M, Sprocatti M, Costa G (2010). A novel type of seaweed extract as a natural alternative to the use of iron chelates in strawberry production. Sci Hortic. 125:63–269.
  • Starck Z (1995). Współzależ ność pomiędzy fotosynteząi dystrybucją asymilatów a tolerancjąroślin na niekorzystne warunki środowiska. POST. NAUK ROLN. 3: 19-35.
  • Strand LL (2008). Integrated Pest Management for Strawberries, vol. 3351. UCANR Publications.
  • Tiwari N, Purohit M, Sharma G, Nautiyal AR (2013). Changes in Morpho-Physiology of grown under different water regimes. Nat Sci.11(9):76-83. Trout TJ, Gartung J (2004). Irrigation water requirements of strawberries. ActaHortic. (ISHS) 664: 665–671.
  • TUIK (2018). Agricultural data. Turkish sttatistical institute. http://www.tuik.gov.tr/PreTablo.do?alt_id=1001 (accessed: May, 2018). Vernieri P, Ferrante A, Borghesi E, Mugnai S (2006). Biostimulants: a tool for improving quality and yield. Fertilitas Agrorum. 1:17–22. [In Italian].
  • Yuan BZ, Sun J, Nishiyama S (2004). Effect of drip irrigation on strawberry growth and yield inside a plastic greenhouse. Biosyst. Eng. 87, 237–245.

Farklı Sulama Seviyeleri ve Biyo-uyarıcı Uygulamalarına Fortuna Çilek Çeşidinin Verim Morfo- Fizyolojik Tepkilerinin Belirlenmesi

Year 2018, , 368 - 374, 31.12.2018
https://doi.org/10.29133/yyutbd.426079

Abstract

Mevcut çalışmada; yüksel
tünel koşullarına altında Fortuna
çilek çeşidinin su eksikliğine ve biostimulant uygulamasına verdiği tepkiler
verim, morfolojik (yaprak alanı, gövde sayısı ve tüm gövde kalınlığı) ve
fizyolojik (stoma iletkenliği ve yaprak su potansiyeli) parametreler
incelenerek değerlendirilmiştir. Uygulanan sulama suyu miktarları, standart bir
Class A panın yüzeyinden buharlaşan suyun 1.00 ve 0.50 katı olarak
belirlenmiştir. Mevcut çalışmada, su eksikliği koşulları kıyaslandığında,
biostimulant uygulamaları gövde sayısını (% 25), verimi (% 13), ortalama meyve
ağırlığını (% 11), yaprak alanını (% 9), stoma iletkenliğinin (% 8), yaprak su
potansiyelini (% 6), tüm gövde kalınlığını (% 5) ve meyve sayısını (% 3)
arttırmıştır. Ek olarak; Fortuna
çeşidinin su eksikliği koşullarına verdiği tepkiler: stomalarını kapatmasının
yanı sıra, yaprak alanında, meyve sayısında, gövde sayısında, tüm gövde
kalınlığında, yaprak su potansiyelinde, ortalama meyve ağırlığında ve verimde
düşüşler meydana getirmesi olarak belirtilebilir. Biostimulant uygulamaları ve
su kısıntısı uygulanan koşullar (Ir50) arasındaki etkileşimler,
morfo-fizyolojik tepkileri açısından incelendiğinde, stoma iletkenliği (% 12),
yaprak alanı (% 4), yaprak su potansiyeli (% 5) ve ortalama meyve ağırlığı (%
8) için önemli miktarlarda farklılıklar olduğu belirlenmiştir. Tüm bu sonuçlar;
biostimulant uygulamalarının en uygun miktarda sulama suyuyla birleştirilmesi
gerektiğini ve ayrıca kuraklık koşulları altında bitki morfo-fizyolojik
tepkileri hakkında bilgi elde edilmesinin, çilek bitkisine yönelik çoklu stres
koşulları altında bitki adaptasyonlarının geliştirilmesine katkıda
bulunabileceğini göstermektedir.

References

  • Battacharyya D, Badgohari MZ, Rathor P, Prithiviraj B (2015). Seaweed extracts as biostimulants in horticulture, Scientia Horticulturae 196: 39-48.
  • Blanke MM, Cooke DT (2006). Water channels in strawberry, and their role in the plant’s response to water stress. Acta Horticulturae 708: 65-68.
  • Boyer JS (1970). Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials. Plant Physiol. 46: 233-235.
  • Bulgari R, Cocetta G, Trivellini A, Vernieri P, Ferrante A (2015). Biostimulants and crop responses: a review. Biological Agriculture & Horticulture. 31: 1–17. DOI:10.1080/01448765.2014.964649.
  • European Environment Agency (2004). Impactacs of Europe’s Changing Climate. EEA report no. 2/2004. EEA, Cpenhagen, Denmark.
  • Ferrato J, Muguiro A, Tineo F, Grasso R, Longo A, Mondino MC, Carrancio L, Duarte V (2003). Experiencias sobre nuevas tecnologías hortícolas en cultivos bajo cubierta. Ministerio de Educación, Ciencias y Tecnología; Instituto Nacional de Educación Tecnológica, Buenos Aires.
  • Ghaderi N, Siosemardeh A (2011). Response to drought stress of two strawberry cultivars (cv. Kurdistan and Selva). Hort. Environ. Biotechnol. 52: 6–12.
  • Ghaderi N, Normohammadi S, Javadi T (2015). Morpho-physiological Responses of Strawberry (Fragaria×ananassa) to Exogenous Salicylic Acid Application under Drought Stress. J. Agr. Sci. Tech. 17: 167-178.
  • Grant OM, Davies MJ, James CM, Johnson AW, Leinonen I, Simpson DW (2012). Thermal imaging and carbon isotope composition indicate variation amongst strawberry (Fragaria x ananassa) cultivars in stomatal conductance and water use effiency. Environmental and Experimental Botany. 76:7-15.
  • Hetherington AM, Woodward FI (2003). The role of stomata in sensing and driving environmental changes. Nature. 424: 901-908.
  • Houghton JT, Ding Y, Grigs DJ, Noguer M, Van der Linden PJ, Dai X, Maskell K, Johnson CA (2001). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assesment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
  • Hsiao TC (1973). Plant responses to water stress. Ann. Rev. Plant Physiol. 24: 519-570.
  • Kapur B, Çeliktopuz E, Sarıdaş MA, Paydaş S (2018). Irrigation Regimes and Bio-stimulant Application Effects on Yield and Morpho-Physiological Responses of Strawberry. Hortic. Sci. Technol. In press. Kanber R, Eylen M, Tok A (1986). The yield of strawberry under drip and furrow irrigation in Cukurova region of Turkey. The report of Agriculture, Forestry and Village Affairs Ministry. 135(77), 39. (In Turkish).
  • Kanber R (2006). Irrigation. The publication of Cukurova University, Agricultural Faculty. 174(A-52). p530. (In Turkish)
  • Klamkowski K, Treder W (2006). Morphological and Physiological responses of Strawberry plants to water stress. Agric. Conspec. Sci. 71(4): 159-165.
  • Klamkowski K, Treder W, (2008). Response to drought stress of three strawberry cultivars grown under greenhouse conditions. Journal of Fruit and Ornamental Plant Research. 16: 179–188.
  • Klamkowski K, Treder W, Wojcik K (2015). Effects of lon-term water stress on leaf gas exhange, growth and yield of three strawberry cultivars. Acta Sci. Pol. Hortorum Cultus. 14(6): 55-65.
  • Krüger E, Schmidt G, Bruckner U (1999). Scheduling strawberry irrigation based upon tensiometer measurement and a climatic water balance model. Scientia Horticulturae. 81:409–424.
  • Kumar S, Dey P (2011). Effect of different mulches and irrigation methods on root growth, nutrient uptake, water use efficiency and yield of strawberry. Sci Hort. 127(3):318-324.
  • Kunicki E, Grabowska A, Sekara A, Wojciechowska R (2010). The effect of cultivar type, time of cultivation, and biostimulant treatment on the yield of spinach (Spinacia oleracea L.). Folia Hortic. 22:9–13.
  • Li H, Li T, Gordon RJ, Asiedu SK, Hu K (2010). Strawberry plant fruiting efficienc and its correlation with solar irridiance, temperature and reflectance water index variation. Environmental and Experimental Botany. 68: 165-174.
  • Liu F, Savic S, Jensen CR, Shahnazari A, Jacobsen SE, Stikic R, Anderson MN (2007). Water relations and yield of lysimeter-grown strawberries under limited irrigation. Scientia Horticulturae. 111: 128-132.
  • Lozano D, Ruiz N, Gavilan P (2016). Consumptive water use and irrigation performance of strawberries. Agricultural water management. 169: 44-51.
  • Nautiyal S, Badola HK, Negi DS (1994). Plant responses to water stress: changes in growth, dry matter production, stomatal frequency and leaf anatomy. Biol. Plant. 36: 91–97.
  • Palliotti A, Cartechini A, Nasini L (2001). Grapevine adaptation to continuous water limitation during the season. Adv. Hort. Sci. 15: 39–45.
  • Rennquist RP, Breen J, Martin LW (1982a). Vegetative growth response of ‘Olympus’ strawberry to polyethylene much and drip irrigation regimes. Journal of the American Society for Horticultural Science. 107: 369–372.
  • Rennquist RP, Breen J, Martin LW (1982b). Effect of polyethylene much and summer irrigation on subsequent flowering and fruiting of ‘Olympus’ strawberry. Journal of the American Society for Horticultural Science. 107: 373–376.
  • Save R, Penuclas J, Maria O, Serrano L (1993). Changes in leaf osmotic and elastic properties and canopy structure of strawberry under mild water stress. HortScience. 28(9): 925–927.
  • Spinelli F, Fiori G, Noferini M, Sprocatti M, Costa G (2010). A novel type of seaweed extract as a natural alternative to the use of iron chelates in strawberry production. Sci Hortic. 125:63–269.
  • Starck Z (1995). Współzależ ność pomiędzy fotosynteząi dystrybucją asymilatów a tolerancjąroślin na niekorzystne warunki środowiska. POST. NAUK ROLN. 3: 19-35.
  • Strand LL (2008). Integrated Pest Management for Strawberries, vol. 3351. UCANR Publications.
  • Tiwari N, Purohit M, Sharma G, Nautiyal AR (2013). Changes in Morpho-Physiology of grown under different water regimes. Nat Sci.11(9):76-83. Trout TJ, Gartung J (2004). Irrigation water requirements of strawberries. ActaHortic. (ISHS) 664: 665–671.
  • TUIK (2018). Agricultural data. Turkish sttatistical institute. http://www.tuik.gov.tr/PreTablo.do?alt_id=1001 (accessed: May, 2018). Vernieri P, Ferrante A, Borghesi E, Mugnai S (2006). Biostimulants: a tool for improving quality and yield. Fertilitas Agrorum. 1:17–22. [In Italian].
  • Yuan BZ, Sun J, Nishiyama S (2004). Effect of drip irrigation on strawberry growth and yield inside a plastic greenhouse. Biosyst. Eng. 87, 237–245.
There are 34 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Eser Çeliktopuz

Burçak Kapur

Mehmet Ali Sarıdaş

Sevgi Paydaş Kargı

Publication Date December 31, 2018
Acceptance Date November 22, 2018
Published in Issue Year 2018

Cite

APA Çeliktopuz, E., Kapur, B., Sarıdaş, M. A., Paydaş Kargı, S. (2018). Determining the Yield and Morpho-Physiological Responses of ’Fortuna’ Strawberry cv. of Using Different Irrigation Levels with Bio-stimulant Application. Yuzuncu Yıl University Journal of Agricultural Sciences, 28(4), 368-374. https://doi.org/10.29133/yyutbd.426079

Creative Commons License
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi CC BY 4.0 lisanslıdır.