Research Article
BibTex RIS Cite

Modeling the Effects of Narrow Blade Geometry on Soil Failure Draught and Vertical Forces Using Discrete Element Method

Year 2019, , 24 - 33, 29.03.2019
https://doi.org/10.29133/yyutbd.429950

Abstract

In
most earth moving machinery, such as bulldozers or tillage tools, the working
tool is a tine. Thus, for tillage systems, accurate predicting of the forces
acting on the tine is of prime importance to enhance their productivity. The
initial conditions (i.e., blade geometry or soil type) and operating conditions
(i.e., cutting speed and cutting depth) have been shown experimentally a great
effect on machinery efficiency. Although experimental studies provide valuable
information, they are expensive, time-consuming, and limited to certain cutting
speeds and depths. Results obtained from experimental studies are also highly
dependent on the accuracy of the measuring devices. However, with the increasing
computational power and the development of more sophisticated mathematical
models, numerical methods and in particular discrete element method (DEM) have
shown great potential in analyzing the factors affecting soil-blade
interaction. In this study, the effects of different rake angles, forward
speed, working depth, and depth/width (d/w) ratio were investigated on a tine
draught and vertical force using DEM modeling. Simulation results were also
compared with the test results. It was found from the results that increasing
travel velocity, tine rake angle, d/w ratio, and working depth increased
draught and vertical force. Overall, based on the results of this study, DEM is
able to predict soil reaction forces with an accuracy of more than 90%.

References

  • Cundall P A. & Strack O D L (1979). A discrete numerical model for granular assemblies. J. of Geotech. 29 (1): 47–65.
  • Dransfield P, Willat S T, Willis A H (1964). Soil-implement reaction experienced with simple tines at various angles of attack. J. of Agric. Eng. Res. 9(3):220-224.
  • Fielke J M (1996). Interactions of the cutting edge of tillage implements with soil. J. of Agri. Eng. Res. 63, 61-72.
  • Fielke J M (1999). Finite element modeling of the interaction of the cutting edge of tillage implements with soil. J. of Agri. Eng. Res. 74: 91-101.
  • Freitag D R (1988). Principles of soil cutting and excavation: A review of Russian literature. Trans. ASAE Technical Paper 880812. Society of Automotive Engineers, Inc. NY, USA. 13p.
  • Gill W R, Vanden Berg G E (1968). Assessment of the dynamic Properties of soils. Chapter 3 in soil dynamics in tillage and traction. Agriculture Handbook No. 316, pp. 55-116.Washington, D.C.:U.S. Government Printing Office.
  • Godwin R J (200). A review of the effect of implement geometry on soil failure and implement forces. Soil and Tillage Res. 97:331-340.
  • Khot L R, Salokhe V M, Jayasuriya H P W, Nakashima H (2007). Experimental validation of distinct element simulation for dynamic wheel-soil interaction. J. of Terramech. 44(6): 429-437.
  • McKeys E & Ali O S (197). The cutting of soil by narrow baldes. J. of Terramech. 14(2): 43-58.
  • Owen G T (1989). Subsoiling forces and tool speed in compact soils. Can. Agric. Eng. 31: 15-20.
  • Payne P C J & Tanner D W (1989). The relationship between rake angle and the performance of simple cultivation implements. J. of Agric. Eng. Res. 4: 312-32510.
  • Shmulevich I, Asaf Z, Rubinstein D (2007). Interaction between soil and a wide cutting blade using the discrete element method. Soil and Tillage Res. 97: 37-50.
  • Summers J O, Khalilian A, Batchelder D G (1986). Draft relationships for primary tillage in Oklahoma soils. Trans. ASAE. 29 (1). 37 - 39.
  • Söhne W (1956). Some basic considerations of soil mechanics applied to agricultural engineering [Einige Grundlagen für eine Landtechnische Bodenmechanik]. NIAE Translation 53, NIAE, Silsoe, Bedford UK [Grundl. Landtech., 7, p.11].
  • Ting J M, Corkum B T, Kauffman C R, Greco C (1989). Discrete numerical-model for soil mechanics. J.of Geotech. Eng.-ASCE. 115(3): 379-398.

Dar kanat geometrisinin ayrık eleman metodu kullanılarak toprak arızası ve çekme kuvveti üzerindeki etkilerinin modellenmesi

Year 2019, , 24 - 33, 29.03.2019
https://doi.org/10.29133/yyutbd.429950

Abstract

 Buldozerler
veya toprak işleme araçları gibi çoğu toprak işleme makinesinde, çalışma aleti
bir çatal dişidir. Bu nedenle toprak işleme sistemleri için, bıçak üzerinde
etkili olan kuvvetlerin doğru tahmin edilmesi, üretkenliklerini arttırmak için
çok önemlidir. Kesme hızı ve kesme derinliği gibi bıçak geometrisi veya toprak
tipi ve çalışma koşulları gibi başlangıç koşulları deneysel olarak makine
verimliliği üzerinde büyük bir etkiye sahip olduğu gösterilmiştir. Deneysel
çalışmalar değerli bilgiler verir, ancak pahalı olabilir ve belirli kesme
hızları ve derinlikleri ile sınırlı olabilir. Sonuçlar aynı zamanda ölçüm
cihazlarının doğruluğuna oldukça bağlıdır. Ancak artan hesaplama gücü ve daha
sofistike modellerin geliştirilmesinde, ayrık eleman analizi (AEA), toprak
bıçağı etkileşimini etkileyen faktörleri analiz etmede daha fazla umut
vermektedir. Bu çalışmada, farklı eğim açıları, ileri hız, çalışma derinliği ve
derinlik/ sürat oranının, ayrı bir eleman yöntemi kullanılarak dik bir çekme ve
düşey kuvvet üzerindeki etkileri araştırılmıştır. Sürüş hızı arttıkça tırmık
açısı, d / w oranı ve çalışma derinliği çekme kuvvetinin arttığı görülmüştür. AEA,
toprak reaksiyon kuvvetlerini bir diş üzerinde öngörebilir ve simülasyon ile
deney sonuçları arasında iyi bir uyum bulunmuştur. Genel olarak, bu çalışmanın
sonuçlarına dayanarak, AEA toprak reaksiyon kuvvetlerini % 90'dan fazla bir
doğrulukla tahmin edebilir.

References

  • Cundall P A. & Strack O D L (1979). A discrete numerical model for granular assemblies. J. of Geotech. 29 (1): 47–65.
  • Dransfield P, Willat S T, Willis A H (1964). Soil-implement reaction experienced with simple tines at various angles of attack. J. of Agric. Eng. Res. 9(3):220-224.
  • Fielke J M (1996). Interactions of the cutting edge of tillage implements with soil. J. of Agri. Eng. Res. 63, 61-72.
  • Fielke J M (1999). Finite element modeling of the interaction of the cutting edge of tillage implements with soil. J. of Agri. Eng. Res. 74: 91-101.
  • Freitag D R (1988). Principles of soil cutting and excavation: A review of Russian literature. Trans. ASAE Technical Paper 880812. Society of Automotive Engineers, Inc. NY, USA. 13p.
  • Gill W R, Vanden Berg G E (1968). Assessment of the dynamic Properties of soils. Chapter 3 in soil dynamics in tillage and traction. Agriculture Handbook No. 316, pp. 55-116.Washington, D.C.:U.S. Government Printing Office.
  • Godwin R J (200). A review of the effect of implement geometry on soil failure and implement forces. Soil and Tillage Res. 97:331-340.
  • Khot L R, Salokhe V M, Jayasuriya H P W, Nakashima H (2007). Experimental validation of distinct element simulation for dynamic wheel-soil interaction. J. of Terramech. 44(6): 429-437.
  • McKeys E & Ali O S (197). The cutting of soil by narrow baldes. J. of Terramech. 14(2): 43-58.
  • Owen G T (1989). Subsoiling forces and tool speed in compact soils. Can. Agric. Eng. 31: 15-20.
  • Payne P C J & Tanner D W (1989). The relationship between rake angle and the performance of simple cultivation implements. J. of Agric. Eng. Res. 4: 312-32510.
  • Shmulevich I, Asaf Z, Rubinstein D (2007). Interaction between soil and a wide cutting blade using the discrete element method. Soil and Tillage Res. 97: 37-50.
  • Summers J O, Khalilian A, Batchelder D G (1986). Draft relationships for primary tillage in Oklahoma soils. Trans. ASAE. 29 (1). 37 - 39.
  • Söhne W (1956). Some basic considerations of soil mechanics applied to agricultural engineering [Einige Grundlagen für eine Landtechnische Bodenmechanik]. NIAE Translation 53, NIAE, Silsoe, Bedford UK [Grundl. Landtech., 7, p.11].
  • Ting J M, Corkum B T, Kauffman C R, Greco C (1989). Discrete numerical-model for soil mechanics. J.of Geotech. Eng.-ASCE. 115(3): 379-398.
There are 15 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Gholamhossein Shahgholı

Naser Kanyawı This is me

Davood Kalantarı This is me

Publication Date March 29, 2019
Acceptance Date February 14, 2019
Published in Issue Year 2019

Cite

APA Shahgholı, G., Kanyawı, N., & Kalantarı, D. (2019). Modeling the Effects of Narrow Blade Geometry on Soil Failure Draught and Vertical Forces Using Discrete Element Method. Yuzuncu Yıl University Journal of Agricultural Sciences, 29(1), 24-33. https://doi.org/10.29133/yyutbd.429950
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.