Research Article
BibTex RIS Cite

Salinity Stress Effect on Morphological and Physiological Properties in Giant Reed (Arundo donax L.)

Year 2019, , 233 - 241, 28.06.2019
https://doi.org/10.29133/yyutbd.499322

Abstract

Salinity is a significant abiotic stress factor
that threatens agriculture in both arid and semiarid environments, affecting
over 20% of the world’s irrigated land. In the present study, we have
investigated that effects of different salinity levels (0, 50, 100, 150, 200,
and 250 mM NaCl) in giant reed (Arundo
donax
L.). Salt treatment was started as 50 mM and this
concentration was increased day after day, and finally 250 mM concentration of
NaCl was applied until harvest time. Stress responses of the giant reed were measured in early plant development
stage. In conclusion, the giant reed showed large variation in their response to salt tolerance in different
salt levels. The morphological parameters were reduced with increasing
salt concentrations; important decreases occurred with 100 mM 
NaCl and the lowest values were obtained with 250 mM. The highest 0-5 symptoms score were determined in 250 mM
levels. The fresh and dry weight, fresh and dry root weight decreased 27-60%
and 13-77% compared to control groups, respectively. While the relative water
content was obtained 85% in control plants, this parameter decreased 52.5%
ration in 250 mM salt level. The increasing salt stress caused decreasing in
chlorophyll content. With increasing of salt levels, Na ion content increased
on the other hand K and Ca ions contents diminished. The results
obtained from this experiment show that high salinity reduced plant growth and
development in giant reed. In these levels, 150 mM NaCl concentration was determined
at critical dose for plant development.

References

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017). Plant responses to salt stress: adaptive mechanisms. Agron. 7 (1): 18. DOI:10.3390/agronomy7010018.
  • Alzahrani Y, Kusvuran A, Alharby HF, Kusvuran S, Rady MM (2018). The defensive role of silicon in wheat against stress conditions induced by drought, salinity or cadmium. Ecotoxicol Environ Safety. 154: 187-196.
  • Angelini LG, Ceccarini L, Nasso NN, Bonari E (2009). Comparison of Arundo donax L. and Miscanthus x giganteus in a long-term field experiment in Central Italy: Analysis of productive characteristics and energy balance. Biomass Bioenergy. 33: 635-643.
  • Anonim (2010). European Commission Report. Report from the Commission to the Council and the European parliament, Brussels.
  • Anonim (2012). İklim Değişikliği Ulusal Eylem Planı 2011-2023, Çevre ve Şehircilik Bakanlığı, Ankara.
  • Bayat RA, Kuşvuran Ş, Ellialtıoğlu ŞŞ, Üstün AS (2014). Tuz stresi altındaki genç kabak (Cucurbita pepo L. ve C. moschata Poir.) bitkilerine uygulanan prolin’in, antioksidatif enzim aktiviteleri üzerine etkisi. Türk Tarım ve Doğa Bilimleri Dergisi. 1: 25-33.
  • Christou M, Papavassiliou D, Alexopoulou E, Chatziathanassiou A (1998). Biomass for Energy and Industry: Proocedings of the International Conference, 8-11 June, Würzburg, Germany.
  • Daşgan HY, Koç S 2009. Evaluation of Salt Tolerance in common bean genotypes by ion regulation and searching for screening parameters. J Food Agric Environ. 7 (2): 363-372
  • Dasgan HY, Bayram M, Kusvuran S, Coban Aydoner G (2017). Screening and saving of local tomatoes (Solanum lycopersicum) for their resistance to drought and salinity. 92nd International Conference, 8-9 December, 2017, Russia pp. 5.
  • Doğu F (2017). Allium cepa L.’nın bazı fizyolojik ve sitogenetik parametreleri üzerindeki tuz stresinin zararlı etkilerinin hafifletilmesinde sodyum hipokloritin (NaClO) rolü. Selçuk Üniversitesi Fen Bilimleri Enst. 38 sayfa.
  • Eser V, Sarsu F, Altunkaya M (2007). Biyoyakıt üretiminde kullanılan bitkilerin mevcut durumu ve geleceği. Biyoyakıtlar ve Biyoyakıtlar Teknolojileri Sempozyumu, Ankara, ss. 51-61.
  • Elbersen HW, Bakker RR, Elbersen BS (2005). A simple method to estimate practical field yields of biomass grasses In Europe. 14th European Biomass Conference, 17-21 October 2005, Paris, France, pp. 476-479.
  • Gao W, Xu FC, Guo DD, Zhao JR, Liu J, Guo YW, Song CP (2018). Calcium-dependent protein kinases in cotton: insights into early plant responses to salt stress. BMC Plant Biol. 18 (1): 15. DOI 10.1186/s12870-018-1230-8.
  • Ghars MA, Parre E, Debez A, Bordenave M, Richard L, Leport L, Bouchereau A, Savoure A, Abdelly C (2008). Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K+/Na+ selectivity and proline accumulation. J Plant Physiol. 165 : 588-599.
  • Goreta S, Bucevic-Popovic V, Vuletin Selak G, Pavela-Vrancic M, Perica S (2008). Vegetative growth, superoxide dismutase activity and ion concentration of salt-stressed watermelon as influenced by rootstock. J Agric Sci. 146 (6): 695-704.
  • Habib SH, Kausar H, Saud HM (2016). Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. Biomed Res Int. http://dx.doi.org/10.1155/2016/6284547.
  • Karakaş S, Cullu MA, Dikilitaş M (2017). Comparison of two halophyte species (Salsola soda and Portulaca oleracea) for salt removal potential under different soil salinity conditions. Turk J Agric For. 41(3): 183-190.
  • Kıran S, Kuşvuran Ş, Özkay F, Özgün Ö, Sönmez K, Özbek H, Ellialtıoğlu ŞŞ (2015). Bazı patlıcan anaçlarının tuzluluk stresi koşullarındaki gelişmelerinin karşılaştırılması. Tarım Bilimleri Araştırma Dergisi (TABAD). 8 (1): 20-30.
  • Kuşvuran Ş (2010). Kavunlarda kuraklık ve tuzluluğa toleransın fizyolojik mekanizmaları arasındaki bağlantılar. Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 355s.
  • Kuşvuran Ş (2011). Bamya (Abelmoschus esculentus L.) da tuz stresine tolerans bakımından genotipsel farklılıklar ve tarama parametrelerinin araştırılması. Batı Akdeniz Tarımsal Araştırma Enstitüsü Derim Dergisi. 28 (2):55-70.
  • Kusvuran A, Uslu Kiran S, Nazli RI, Kusvuran S. (2015). Morphological response and ion regulation in maize (Zea mays L.) varieties under salt stress. Fresen Environ Bull. 24 (1): 124-131.
  • Lewandowski I, Schmidt U (2006). Nitrogen, energy and land use efficiencies of miscanthus, reed canary grass and triticale as determined by the boundary line approach. Agr Ecosyst Environ. 112: 335–346.
  • Mantineo M, Agosta GMD, Copani V, Patane C, Cosentino SL (2009). Biomass yield and energy balance of three perennial crops for energy use in the semi-arid Mediterranean environment. Field Crops Res. 114: 204–213.
  • Menason E, Betty T, Vijayan KK, Anbudurai PR (2015). Modification of fatty acid composition in salt adopted Synechocystis 6803 cells. Ann Biol Res. 6: 4-9.
  • Moser LE, Vogel KP (1995). Switchgrass, big bluestem, and indiangrass. Forages. 1: 409-420.
  • Munns R (2005). Genes and salt tolerance: bringing them together. New Phytol. 167: 645-663.
  • Negrão S, Schmöckel SM, Tester M (2017). Evaluating physiological responses of plants to salinity stress. Ann Botany. 119 (1): 1-11.
  • Pollastri S, Savvides A, Pesando M, Lumini E, Volpe MG, Ozudogru EA, Fotopoulos V (2018). Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress. Planta. 247 (3): 573-585.
  • Rady MM, Mohamed GF (2015). Modulation of salt stress effects on the growth, physio-chemical attributes and yields of Phaseolus vulgaris L. plants by the combined application of salicylic acid and Moringa oleifera leaf extract. Sci Hort. 193: 105-113.
  • Shrivastava P, Kumar R (2015). Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci. 22: 123-131.
  • Siddiqui H, Yusuf M, Faraz A, Faizan M, Sami F, Hayat S (2018). 24-Epibrassinolide supplemented with silicon enhances the photosynthetic efficiency of Brassica juncea under salt stress. S Afr J Bot. 118: 120-128.
  • Stavridou E, Hastings A, Webster RJ, Robson PR (2017). The impact of soil salinity on the yield, composition and physiology of the bioenergy grass Miscanthus× giganteus. Gcb Bioenergy. 9(1): 92-104.
  • Yang Y, Guo Y (2018). Elucidating the molecular mechanisms mediating plant salt‐stress responses. New Phytol. 217 (2): 523-539.
  • Yasar F, Ellialtioglu S, Yildiz K (2008). Effect of salt stress on antioxidant defense systems, lipid peroxidation, and hlorophyll content in green bean. Russ J Plant Physiol. 55: 782–786.
  • Yun P, Xu L, Wang SS, Shabala L, Shabala S, Zhang WY (2018). Piriformospora indica improves salinity stress tolerance in Zea mays L. plants by regulating Na+ and K+ loading in root and allocating K+ in shoot. Plant Growth Regul. 1-9. DOIhttps://doi.org/10.1007/s10725-018-0431-3.
  • Wang Y, Li K, Li X (2009). Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana. J Plant Physiol. 166: 1637‐1645.
  • Zhu M, Zhou M, Shabala L, Shabala S (2017). Physiological and molecular mechanisms mediating xylem Na+ loading in barley in the context of salinity stress tolerance. Plant Cell Environ. 40 (7): 1009-1020.

Kargı Kamışı (Arundo donax L.)’nda Tuz Stresinin Morfolojik ve Fizyolojik Özelliklere Etkisi

Year 2019, , 233 - 241, 28.06.2019
https://doi.org/10.29133/yyutbd.499322

Abstract

Tuzluluk,
dünyada sulanabilir tarım alanlarının %20’den fazlasında görülen ve özellikle
kurak-yarı kurak tarım alanlarını tehdit eden önemli bir abiyotik stres
faktörüdür. Bu çalışmada, 0-kontrol, 50, 100, 150, 200 ve 250 mM NaCl tuz
yoğunluklarının kargı kamışı (Arundo
donax
L.)’na etkileri incelenmiştir. Sulamaya öncelikle 50 mM tuz
konsantrasyonu ile başlanarak son doz olan 250 mM’a ulaşılmıştır. Kargı
kamışının stres karşısında gösterdiği tepkiler bitkinin erken gelişim döneminde
gözlemlenmiştir. Araştırmada, yaprak zararlanma indeksi, bitki yaş ve kuru
ağırlığı, kök yaş ve kuru ağırlığı, yaprak sayısı ve alanı, bitki boyu, sap
kalınlığı, yaprak su potansiyel içeriği, klorofil değeri ile sodyum (Na),
potasyum (K) ve kalsiyum (Ca) içerikleri belirlenmiştir. Kargı kamışı farklı
tuz konsantrasyonlarına karşı tolerans bakımından geniş bir varyasyon
göstermiştir. Artan tuz konsantrasyonları ile birlikte bitkide morfolojik
özellikler bakımından gerilemeler olmuş, bu etki özellikle 100 mM tuz
konsantrasyonu ile etkisini göstermiş ve en düşük değerler 250 mM dozunda elde
edilmiştir. En yüksek yaprak zararlanma indeksi (0-5 skalası) değerleri 250 mM
konsantrasyonunda elde edilmiştir. Kontrol gruplarına göre yaprak yaş ve kuru
ağırlıklarında sırasıyla %27 ve %60, kök yaş ve kuru ağırlıklarında ise %13 ve
%77 oranında azalmalar tespit edilmiştir. Yaprak oransal su içeriği kontrol
bitkilerinde %85 olarak saptanırken, bu değer 250 mM konsantrasyonunda %52.5
olarak belirlenmiştir. Artan tuz stresine bağlı olarak klorofil içerikleri ile
potasyum (K) ve kalsiyum (Ca) iyonlarında azalmalar görülürken, sodyum (Na)
iyonlarında ise artış meydana gelmiştir. Araştırmadan elde edilen sonuçlara
göre, yüksek tuzluluk bitki büyüme ve gelişmesini olumsuz yönde etkilemiş, 150
mM NaCl konsantrasyonunun bitki gelişimi üzerinde kritik doz olduğu sonucuna
varılmıştır.
 

References

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017). Plant responses to salt stress: adaptive mechanisms. Agron. 7 (1): 18. DOI:10.3390/agronomy7010018.
  • Alzahrani Y, Kusvuran A, Alharby HF, Kusvuran S, Rady MM (2018). The defensive role of silicon in wheat against stress conditions induced by drought, salinity or cadmium. Ecotoxicol Environ Safety. 154: 187-196.
  • Angelini LG, Ceccarini L, Nasso NN, Bonari E (2009). Comparison of Arundo donax L. and Miscanthus x giganteus in a long-term field experiment in Central Italy: Analysis of productive characteristics and energy balance. Biomass Bioenergy. 33: 635-643.
  • Anonim (2010). European Commission Report. Report from the Commission to the Council and the European parliament, Brussels.
  • Anonim (2012). İklim Değişikliği Ulusal Eylem Planı 2011-2023, Çevre ve Şehircilik Bakanlığı, Ankara.
  • Bayat RA, Kuşvuran Ş, Ellialtıoğlu ŞŞ, Üstün AS (2014). Tuz stresi altındaki genç kabak (Cucurbita pepo L. ve C. moschata Poir.) bitkilerine uygulanan prolin’in, antioksidatif enzim aktiviteleri üzerine etkisi. Türk Tarım ve Doğa Bilimleri Dergisi. 1: 25-33.
  • Christou M, Papavassiliou D, Alexopoulou E, Chatziathanassiou A (1998). Biomass for Energy and Industry: Proocedings of the International Conference, 8-11 June, Würzburg, Germany.
  • Daşgan HY, Koç S 2009. Evaluation of Salt Tolerance in common bean genotypes by ion regulation and searching for screening parameters. J Food Agric Environ. 7 (2): 363-372
  • Dasgan HY, Bayram M, Kusvuran S, Coban Aydoner G (2017). Screening and saving of local tomatoes (Solanum lycopersicum) for their resistance to drought and salinity. 92nd International Conference, 8-9 December, 2017, Russia pp. 5.
  • Doğu F (2017). Allium cepa L.’nın bazı fizyolojik ve sitogenetik parametreleri üzerindeki tuz stresinin zararlı etkilerinin hafifletilmesinde sodyum hipokloritin (NaClO) rolü. Selçuk Üniversitesi Fen Bilimleri Enst. 38 sayfa.
  • Eser V, Sarsu F, Altunkaya M (2007). Biyoyakıt üretiminde kullanılan bitkilerin mevcut durumu ve geleceği. Biyoyakıtlar ve Biyoyakıtlar Teknolojileri Sempozyumu, Ankara, ss. 51-61.
  • Elbersen HW, Bakker RR, Elbersen BS (2005). A simple method to estimate practical field yields of biomass grasses In Europe. 14th European Biomass Conference, 17-21 October 2005, Paris, France, pp. 476-479.
  • Gao W, Xu FC, Guo DD, Zhao JR, Liu J, Guo YW, Song CP (2018). Calcium-dependent protein kinases in cotton: insights into early plant responses to salt stress. BMC Plant Biol. 18 (1): 15. DOI 10.1186/s12870-018-1230-8.
  • Ghars MA, Parre E, Debez A, Bordenave M, Richard L, Leport L, Bouchereau A, Savoure A, Abdelly C (2008). Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K+/Na+ selectivity and proline accumulation. J Plant Physiol. 165 : 588-599.
  • Goreta S, Bucevic-Popovic V, Vuletin Selak G, Pavela-Vrancic M, Perica S (2008). Vegetative growth, superoxide dismutase activity and ion concentration of salt-stressed watermelon as influenced by rootstock. J Agric Sci. 146 (6): 695-704.
  • Habib SH, Kausar H, Saud HM (2016). Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. Biomed Res Int. http://dx.doi.org/10.1155/2016/6284547.
  • Karakaş S, Cullu MA, Dikilitaş M (2017). Comparison of two halophyte species (Salsola soda and Portulaca oleracea) for salt removal potential under different soil salinity conditions. Turk J Agric For. 41(3): 183-190.
  • Kıran S, Kuşvuran Ş, Özkay F, Özgün Ö, Sönmez K, Özbek H, Ellialtıoğlu ŞŞ (2015). Bazı patlıcan anaçlarının tuzluluk stresi koşullarındaki gelişmelerinin karşılaştırılması. Tarım Bilimleri Araştırma Dergisi (TABAD). 8 (1): 20-30.
  • Kuşvuran Ş (2010). Kavunlarda kuraklık ve tuzluluğa toleransın fizyolojik mekanizmaları arasındaki bağlantılar. Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 355s.
  • Kuşvuran Ş (2011). Bamya (Abelmoschus esculentus L.) da tuz stresine tolerans bakımından genotipsel farklılıklar ve tarama parametrelerinin araştırılması. Batı Akdeniz Tarımsal Araştırma Enstitüsü Derim Dergisi. 28 (2):55-70.
  • Kusvuran A, Uslu Kiran S, Nazli RI, Kusvuran S. (2015). Morphological response and ion regulation in maize (Zea mays L.) varieties under salt stress. Fresen Environ Bull. 24 (1): 124-131.
  • Lewandowski I, Schmidt U (2006). Nitrogen, energy and land use efficiencies of miscanthus, reed canary grass and triticale as determined by the boundary line approach. Agr Ecosyst Environ. 112: 335–346.
  • Mantineo M, Agosta GMD, Copani V, Patane C, Cosentino SL (2009). Biomass yield and energy balance of three perennial crops for energy use in the semi-arid Mediterranean environment. Field Crops Res. 114: 204–213.
  • Menason E, Betty T, Vijayan KK, Anbudurai PR (2015). Modification of fatty acid composition in salt adopted Synechocystis 6803 cells. Ann Biol Res. 6: 4-9.
  • Moser LE, Vogel KP (1995). Switchgrass, big bluestem, and indiangrass. Forages. 1: 409-420.
  • Munns R (2005). Genes and salt tolerance: bringing them together. New Phytol. 167: 645-663.
  • Negrão S, Schmöckel SM, Tester M (2017). Evaluating physiological responses of plants to salinity stress. Ann Botany. 119 (1): 1-11.
  • Pollastri S, Savvides A, Pesando M, Lumini E, Volpe MG, Ozudogru EA, Fotopoulos V (2018). Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress. Planta. 247 (3): 573-585.
  • Rady MM, Mohamed GF (2015). Modulation of salt stress effects on the growth, physio-chemical attributes and yields of Phaseolus vulgaris L. plants by the combined application of salicylic acid and Moringa oleifera leaf extract. Sci Hort. 193: 105-113.
  • Shrivastava P, Kumar R (2015). Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci. 22: 123-131.
  • Siddiqui H, Yusuf M, Faraz A, Faizan M, Sami F, Hayat S (2018). 24-Epibrassinolide supplemented with silicon enhances the photosynthetic efficiency of Brassica juncea under salt stress. S Afr J Bot. 118: 120-128.
  • Stavridou E, Hastings A, Webster RJ, Robson PR (2017). The impact of soil salinity on the yield, composition and physiology of the bioenergy grass Miscanthus× giganteus. Gcb Bioenergy. 9(1): 92-104.
  • Yang Y, Guo Y (2018). Elucidating the molecular mechanisms mediating plant salt‐stress responses. New Phytol. 217 (2): 523-539.
  • Yasar F, Ellialtioglu S, Yildiz K (2008). Effect of salt stress on antioxidant defense systems, lipid peroxidation, and hlorophyll content in green bean. Russ J Plant Physiol. 55: 782–786.
  • Yun P, Xu L, Wang SS, Shabala L, Shabala S, Zhang WY (2018). Piriformospora indica improves salinity stress tolerance in Zea mays L. plants by regulating Na+ and K+ loading in root and allocating K+ in shoot. Plant Growth Regul. 1-9. DOIhttps://doi.org/10.1007/s10725-018-0431-3.
  • Wang Y, Li K, Li X (2009). Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana. J Plant Physiol. 166: 1637‐1645.
  • Zhu M, Zhou M, Shabala L, Shabala S (2017). Physiological and molecular mechanisms mediating xylem Na+ loading in barley in the context of salinity stress tolerance. Plant Cell Environ. 40 (7): 1009-1020.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Alpaslan Kusvuran 0000-0002-5252-6261

Şebnem Kuşvuran 0000-0002-1270-6962

Recep İrfan Nazlı This is me 0000-0002-6416-6603

Veyis Tansı This is me 0000-0003-0613-4125

Publication Date June 28, 2019
Acceptance Date April 18, 2019
Published in Issue Year 2019

Cite

APA Kusvuran, A., Kuşvuran, Ş., Nazlı, R. İ., Tansı, V. (2019). Kargı Kamışı (Arundo donax L.)’nda Tuz Stresinin Morfolojik ve Fizyolojik Özelliklere Etkisi. Yuzuncu Yıl University Journal of Agricultural Sciences, 29(2), 233-241. https://doi.org/10.29133/yyutbd.499322
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.