Research Article
BibTex RIS Cite

Putrescine, Spermine and Spermidine Mitigated the Salt Stress Damage on Pepper (Capsicum annum L.) Seedling

Year 2019, , 290 - 299, 28.06.2019
https://doi.org/10.29133/yyutbd.562482

Abstract

In order to evaluate the effects of polyamines on
plant growth, physiological and biochemical characteristics of pepper seedlings
grown under salt stress (0, 50 and 100 mM NaCl), putrescine (Put), spermine
(Spr) and spermidine (Spd) were foliarly applied to the seedlings under
controlled greenhouse conditions. The effects of polyamines on plant height,
number of leaves, stem diameter, chlorophyll reading value (CRV), stoma
conductance (SC), tissue electrical conductivity (TEC), leaf relative water
content (LRWC), enzyme activity of superoxide dismutase (SOD), catalase (CAT)
and peroxidase (POD) of pepper seedlings were significant under salt stress. As
salt concentration increased, plant height, stem diameter, number of leaves,
CRV, plant and root fresh and dry weight, and LRWC lowered but an increase in
TEC occurred. However, polyamine treatments improved the parameters
investigated under salt stress. In the study, it has been determined that the
negative effects of salt stress can be mitigated with exogenously polyamine
applications to the pepper seedlings.

Supporting Institution

ATATÜRK ÜNİVERSİTESİ

Project Number

FHD-2017-6153

Thanks

We appreciate Atatürk University, Scientific Research Projects Foundation for generous financial support (Project Number HD-2017/6153).

References

  • Agarwal, S., Pandey, V. (2004). Antioxidant enzyme response to NaCl stres in Cassia angustifolia. Biologia Plantarum, 48(4), 555-560.Ahmad, P., Abdel Latef, A. A., Hashem, A., Abd_Allah, E.F., Gucel, S., & Tran, L.S P. (2016). Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Frontiers in plant science, 7, 347. Alcàzar, R., Cuevas, J.C., Planas, J., Zarza, X., Bortolotti, C., Carrasco, P., Salinas, J., Tiburico, A.T., & Altabella, T. (2011). Integration of polyamines in the cold acclimation response. Plant Science, 180(1), 31-38.Alet, A.I., Sánchez, D.H., Cuevas, J.C., Marina, M., Carrasco, P., Altabella, T. Tiburcio, A.F., & Ruiz, O.A. (2012). New insights into the role of spermine in Arabidopsis thaliana under long-term salt stress. Plant Science, 182, 94–100.Angelini, R., Manes, F., & Federico, R. (1990). Spatial a functional correlation between daimine- oxsidase and peroxidase activities and their dependence upon de-etilation and wounding in chick-pea. Planta, 182, 89-96.Ashraf, M.P.J.C., & Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant science, 166(1), 3-16.Bor, M., Özdemir, F., & Türkan, I. (2003). The effect of salt stress on lipid peroxidation in leaves of sugar beet (Beta vulgaris L.) and wild beet (Beta maritima L.). Plant Science, (164), 77-84.De Pascale, S., Ruggiero, C., Barbieri, G., & Maggio, A. (2003). Physiological responses of pepper to salinity and drought. Journal of the American Society for Horticultural Science, 128(1), 48-54.Duan, J.J., Guo, S.R., Kang, Y.Y., & Jiao, Y.S. (2007). Effects of exogenous spermidine on polyamine content and antioxidant system in roots of cucumber under salinity stress. Journal of Ecology and Rural Environment, 4(4), 11-17.Ekinci, M., Ors, S., Sahin, U., Yildirim, E., & Dursun, A. (2015). Responses to the irrigation water amount of spinach supplemented with organic amendment in greenhouse conditions. Communications in Soil Science and Plant Analysis, 46, 327–342.Esringü, A., Kant, C., Yildirim, E., Karlidag, H., & Turan, M. (2011). Ameliorative effect of foliar nutrient supply on growth, inorganic ions, membrane permeability, and leaf relative water content of physalis plants under salinity stress. Communications in Soil Science and Plant Analysis, 42(4), 408-423.Gallardo, M., Matilla, A., & Munöz de Rueda, P. (1996). Role of polyaminesin growth and development, Ars Pharm. 37(1), 17-27.Gomez, J.M., Hernandez, J.A., Jimenez, A., Del Rio, L.A., & Sevilla, F. (1999). Differential response of antioxitative enzymes of chloplasts and mitochodria to long-term NaCl stres of pea plants. Free Radical Research, (31), 11-18.Gong, Y., Toivonen, P.M.A., Lau, O.L., & Wiersma, P.A. (2001). Antioxidant system level in ‘Braeburn’ apple is related to its browning disorder. Botanical Bulletin of the Academia Sinica (Taipei), 42, 259-264.Gupta, K., Dey, A., & Gupta, B. (2013). Plant polyamines in abiotic stress responses. Acta Physiologiae Plantarum, 35, 2015–2036.Günes, A., Inal, A., & Alpaslan, M. (1996). Effect of salinity on stomatal resistance, proline, and mineral composition of pepper. Journal of Plant Nutrition, 19(2), 389-396.Hernandez, J.A., Ferrer, M. A., Jimenez, A., Barcelo, A. R., & Sevilla, F. (2001). Antioxidant systems and O2/H2O2 production in the apoplast of pea leaves. Its relation with salt induced necrotic lesions in minor veins. Plant Physiology, (127), 817-831.Houimli, S.I.M., Denden, M., & El Hadj, S.B. (2008). Induction of salt tolerance in pepper (Capsicum annuum) by 24-epibrassinolide. EurAsian Journal of BioSciences, 2, 83-90.Houimli ,S.I.M., Denden, M., & Mouhandes, B.D. (2010). Effects of 24-epibrassinolide on growth, chlorophyll, electrolyte leakage and proline by pepper plants under NaCl-stress. EurAsian Journal of BioSciences, 4, 96-104.Hussein, M.M., El-Faham, S.Y., & Alva, A.K. (2012). Pepper plants growth, yield, photosynthetic pigments, and total phenols as affected by foliar application of potassium under different salinity irrigation water. Agricultural Sciences, 3(2), 241-248.Jiuju, D., & Shirong, G. (2005). Effects of exogenous spermidine on salt tolerance of cucumber seedlings under NaCl stress. China Vegetables, 12, 8-10.Karlidag, H., Yildirim, E., & Turan, M. (2011). Role of 24-epibrassinolide in mitigating the adverse effects of salt stress on stomatal conductance, membrane permeability, and leaf water content, ionic composition in salt stressed strawberry (Fragaria× ananassa). Scientia horticulturae, 130(1), 133-140.Kaya, C., Ak, B.E., & Higss, D. (2003). Response of salt-stressed strawberry plants to supplementary calcium nitrate and/or potassium nitrate. Journal of Plant Nutrition, 26, 543-560.Khan, H., Ziaf, K., Amjad, M., & Iqbal, Q. (2012). Exogenous application of polyamines improves germination and early seedling growth of hot pepper. Chilean Journal of Agricultural Research, 72(3), 429-433.Kusvuran, S., Ellialtioglu, S., & Polat, Z. (2013). Antioxidative enzyme activity, lipid peroxidation, and proline accumulation in the callus tissues of salt and drought-tolerant and sensitive pumpkin genotypes under chilling stress. Horticulture, Environment and Biotechnology, 54, 319-325.Li, B., Sang, T., He, L., Sun, J., Li, J., & Guo, S. (2013). Exogenous spermidine inhibits ethylene production in leaves of cucumber seedlings under NaCl stress. Journal of the American Society for Horticultural Science, 138(2), 108-113.Li, Z., Zhou, H., Peng, Y., Zhang, X., Ma, X., Huang, L., & Yan, Y. (2015). Exogenously applied spermidine improves drought tolerance in creeping bentgrass associated with changes in antioxidant defense, endogenous polyamines and phytohormones. Plant Growth Regulation, 76(1), 71-82.Liu, J.H., Kitashiba, H., Wang, J., Ban, Y., & Moriguchi, T. (2007). Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnology, 24(1), 117-126.Lin, C.C., & Kao, C.H. (2000). Effect of NaCl stress on H2O2 metabolism in rice leaves. Plant Growth Regulation, 30(2), 151-155.Meloni, D. A., Oliva, M. A., Martinez, C. A., & Cambraia, J. (2003). Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany, (49), 69-76.Minocha, R., Majumdar, R., & Minocha, S.C. (2014). Polyamines and abiotic stress in plants: a complex relationship. Frontiers in Plant Science, 5, 175.Parida, A.K., & Das, A.B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60(3), 324-349.Radhakrishnan, R., & Lee, I.J. (2014). Effect of low dose of spermidine on physiological changes in salt-stressed cucumber plants. Russian Journal of Plant Physiology, 61(1), 90-96.Rasool, S., Ahmad, A., Siddiqi, T.O., & Ahmad, P. (2013). Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiologiae Plantarum, 35(4), 1039-1050.Roychoudhury, A., Basu, S., & Sengupta, D.N. (2011). Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance. Journal of Plant Physiology, 168 (4), 317–328.Saha, J., Brauer, E.K., Sengupta, A., Popescu, S.C., Gupta, K., & Gupta, B. (2015). Polyamines as redox homeostasis regulators during salt stress in plants. Frontiers Environmental Science, 3, 21. doi: 10.3389/fenvs.2015.00021Samancioglu, A., Yildirim, E., Turan, M., Kotan, R., Sahin, U., & Ku,l R. (2016). Amelioration of Drought Stress Adverse Effect and Mediating Biochemical Content of Cabbage Seedlings by Plant Growth Promoting Rhizobacteria. International Journal of Agriculture and Biology, 18(5), 948-956.Shannon, M.C., & Grieve, C.M. (1998). Tolerance of vegetable crops to salinity. Scientia Horticulturae, 78 (1-4), 5-38.Shi, H., Ye, T., & Chan, Z. (2013). Comparative proteomic and physiological analyses reveal the protective effect of exogenous polyamines in the bermudagrass (Cynodon dactylon) response to salt and drought stresses. Journal of Proteome Research, 12(11), 4951-4964.Sudhakar, C., Lakshmi, A., & Giridarakumar, A. (2001). Changes in the antioxidant enzyme efficacy in two high yeilding genotypes of mulber (Morus alba L.) under NaCl salinity. Plant Science, (161), 613-619.Terzi, R., Kadioglu, A., Kalaycioglu, E., & Saglam, A. (2014). Hydrogen peroxide pretreatment induces osmotic stress tolerance by influencing osmolyte and absisic acid levels in maize leaves. Journal of Plant Interactions, 9(1), 559-565.Yokoi, S., Bressan, R.A., & Hasegava, P.M. (2002). Salt stress tolerance of plants. Jırcas Working Report, 25-33.Yordanova, R.Y., Christov, K.N., & Popova, L.P. (2004). Antioxidative enzymes in barley plants subjected to soil flooding. Environmental and Experimental Botany, (51), 93-101.Zapata, P.J., Serrano, M., Pretel, M.T., & Botella, M.A. (2008). Changes in free polyamine concentration induced by salt stress in seedlings of different species. Plant Growth Regulation, 56(2), 167-177.Zeid, I.M. (2004). Response of bean (Phaseolus vulgaris) to exogenous putrescine treatment under salinity stress. Pakistan Journal of Biological Sciences, 7(2), 219-225.Zhang, W., Jiang, B., Li, W., Song, H., Yu, Y., & Chen, J. (2009). Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system. Scientia Horticulturae, 122(2), 200-208.Zhu, J.K. (2016). Abiotic stress signaling and responses in plants. Cell, 167, 313-324.

Putresin, Spermin ve Spermidin Uygulamalarının Biber (Capsicum annum L.) Fidesinde Tuz Stresi Zararını Hafifletici Etkisi

Year 2019, , 290 - 299, 28.06.2019
https://doi.org/10.29133/yyutbd.562482

Abstract

Poliaminlerin
tuz stresi altında (0, 50 ve 100 mM NaCl) yetiştirilen biber fidelerinde bitki
büyümesi, fizyolojik ve biyokimyasal özellikleri üzerine etkilerini belirlemek
için, kontrollü sera koşullarında putresin (Put), spermin (Spr) ve spermidin
(Spd) fidelere yapraktan uygulanmıştır. Poliaminlerin tuz stresi altındaki
biber fidelerinde bitki boyu, yaprak sayısı, gövde çapı, klorofil değeri, stoma
iletkenliği, doku elektrik iletkenliği, yaprak bağıl su içeriği, süperoksit
dismutaz (SOD), katalaz (CAT) ve peroksidaz (POD) enzim aktivitesi üzerine
etkisi istatistiksel olarak önemli olmuştur. Tuz konsantrasyonu arttıkça, bitki
boyu, gövde çapı, yaprak sayısı, klorofil değeri, bitki ve kök taze ve kuru
ağırlığı ve yaprak bağıl su içeriği azalmış, ancak doku elektrik iletkenliğinde
bir artış meydana gelmiştir. Bununla birlikte, poliamin uygulamaları tuz
stresindeki biber fidelerinde incelenen parametreleri iyileştirmiştir.
Araştırmada, tuz stresinin olumsuz etkilerinin biber fidelerine dışarıdan
yapılan poliamin uygulamasıyla hafifletilebileceği belirlenmiştir.

Project Number

FHD-2017-6153

References

  • Agarwal, S., Pandey, V. (2004). Antioxidant enzyme response to NaCl stres in Cassia angustifolia. Biologia Plantarum, 48(4), 555-560.Ahmad, P., Abdel Latef, A. A., Hashem, A., Abd_Allah, E.F., Gucel, S., & Tran, L.S P. (2016). Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Frontiers in plant science, 7, 347. Alcàzar, R., Cuevas, J.C., Planas, J., Zarza, X., Bortolotti, C., Carrasco, P., Salinas, J., Tiburico, A.T., & Altabella, T. (2011). Integration of polyamines in the cold acclimation response. Plant Science, 180(1), 31-38.Alet, A.I., Sánchez, D.H., Cuevas, J.C., Marina, M., Carrasco, P., Altabella, T. Tiburcio, A.F., & Ruiz, O.A. (2012). New insights into the role of spermine in Arabidopsis thaliana under long-term salt stress. Plant Science, 182, 94–100.Angelini, R., Manes, F., & Federico, R. (1990). Spatial a functional correlation between daimine- oxsidase and peroxidase activities and their dependence upon de-etilation and wounding in chick-pea. Planta, 182, 89-96.Ashraf, M.P.J.C., & Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant science, 166(1), 3-16.Bor, M., Özdemir, F., & Türkan, I. (2003). The effect of salt stress on lipid peroxidation in leaves of sugar beet (Beta vulgaris L.) and wild beet (Beta maritima L.). Plant Science, (164), 77-84.De Pascale, S., Ruggiero, C., Barbieri, G., & Maggio, A. (2003). Physiological responses of pepper to salinity and drought. Journal of the American Society for Horticultural Science, 128(1), 48-54.Duan, J.J., Guo, S.R., Kang, Y.Y., & Jiao, Y.S. (2007). Effects of exogenous spermidine on polyamine content and antioxidant system in roots of cucumber under salinity stress. Journal of Ecology and Rural Environment, 4(4), 11-17.Ekinci, M., Ors, S., Sahin, U., Yildirim, E., & Dursun, A. (2015). Responses to the irrigation water amount of spinach supplemented with organic amendment in greenhouse conditions. Communications in Soil Science and Plant Analysis, 46, 327–342.Esringü, A., Kant, C., Yildirim, E., Karlidag, H., & Turan, M. (2011). Ameliorative effect of foliar nutrient supply on growth, inorganic ions, membrane permeability, and leaf relative water content of physalis plants under salinity stress. Communications in Soil Science and Plant Analysis, 42(4), 408-423.Gallardo, M., Matilla, A., & Munöz de Rueda, P. (1996). Role of polyaminesin growth and development, Ars Pharm. 37(1), 17-27.Gomez, J.M., Hernandez, J.A., Jimenez, A., Del Rio, L.A., & Sevilla, F. (1999). Differential response of antioxitative enzymes of chloplasts and mitochodria to long-term NaCl stres of pea plants. Free Radical Research, (31), 11-18.Gong, Y., Toivonen, P.M.A., Lau, O.L., & Wiersma, P.A. (2001). Antioxidant system level in ‘Braeburn’ apple is related to its browning disorder. Botanical Bulletin of the Academia Sinica (Taipei), 42, 259-264.Gupta, K., Dey, A., & Gupta, B. (2013). Plant polyamines in abiotic stress responses. Acta Physiologiae Plantarum, 35, 2015–2036.Günes, A., Inal, A., & Alpaslan, M. (1996). Effect of salinity on stomatal resistance, proline, and mineral composition of pepper. Journal of Plant Nutrition, 19(2), 389-396.Hernandez, J.A., Ferrer, M. A., Jimenez, A., Barcelo, A. R., & Sevilla, F. (2001). Antioxidant systems and O2/H2O2 production in the apoplast of pea leaves. Its relation with salt induced necrotic lesions in minor veins. Plant Physiology, (127), 817-831.Houimli, S.I.M., Denden, M., & El Hadj, S.B. (2008). Induction of salt tolerance in pepper (Capsicum annuum) by 24-epibrassinolide. EurAsian Journal of BioSciences, 2, 83-90.Houimli ,S.I.M., Denden, M., & Mouhandes, B.D. (2010). Effects of 24-epibrassinolide on growth, chlorophyll, electrolyte leakage and proline by pepper plants under NaCl-stress. EurAsian Journal of BioSciences, 4, 96-104.Hussein, M.M., El-Faham, S.Y., & Alva, A.K. (2012). Pepper plants growth, yield, photosynthetic pigments, and total phenols as affected by foliar application of potassium under different salinity irrigation water. Agricultural Sciences, 3(2), 241-248.Jiuju, D., & Shirong, G. (2005). Effects of exogenous spermidine on salt tolerance of cucumber seedlings under NaCl stress. China Vegetables, 12, 8-10.Karlidag, H., Yildirim, E., & Turan, M. (2011). Role of 24-epibrassinolide in mitigating the adverse effects of salt stress on stomatal conductance, membrane permeability, and leaf water content, ionic composition in salt stressed strawberry (Fragaria× ananassa). Scientia horticulturae, 130(1), 133-140.Kaya, C., Ak, B.E., & Higss, D. (2003). Response of salt-stressed strawberry plants to supplementary calcium nitrate and/or potassium nitrate. Journal of Plant Nutrition, 26, 543-560.Khan, H., Ziaf, K., Amjad, M., & Iqbal, Q. (2012). Exogenous application of polyamines improves germination and early seedling growth of hot pepper. Chilean Journal of Agricultural Research, 72(3), 429-433.Kusvuran, S., Ellialtioglu, S., & Polat, Z. (2013). Antioxidative enzyme activity, lipid peroxidation, and proline accumulation in the callus tissues of salt and drought-tolerant and sensitive pumpkin genotypes under chilling stress. Horticulture, Environment and Biotechnology, 54, 319-325.Li, B., Sang, T., He, L., Sun, J., Li, J., & Guo, S. (2013). Exogenous spermidine inhibits ethylene production in leaves of cucumber seedlings under NaCl stress. Journal of the American Society for Horticultural Science, 138(2), 108-113.Li, Z., Zhou, H., Peng, Y., Zhang, X., Ma, X., Huang, L., & Yan, Y. (2015). Exogenously applied spermidine improves drought tolerance in creeping bentgrass associated with changes in antioxidant defense, endogenous polyamines and phytohormones. Plant Growth Regulation, 76(1), 71-82.Liu, J.H., Kitashiba, H., Wang, J., Ban, Y., & Moriguchi, T. (2007). Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnology, 24(1), 117-126.Lin, C.C., & Kao, C.H. (2000). Effect of NaCl stress on H2O2 metabolism in rice leaves. Plant Growth Regulation, 30(2), 151-155.Meloni, D. A., Oliva, M. A., Martinez, C. A., & Cambraia, J. (2003). Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany, (49), 69-76.Minocha, R., Majumdar, R., & Minocha, S.C. (2014). Polyamines and abiotic stress in plants: a complex relationship. Frontiers in Plant Science, 5, 175.Parida, A.K., & Das, A.B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60(3), 324-349.Radhakrishnan, R., & Lee, I.J. (2014). Effect of low dose of spermidine on physiological changes in salt-stressed cucumber plants. Russian Journal of Plant Physiology, 61(1), 90-96.Rasool, S., Ahmad, A., Siddiqi, T.O., & Ahmad, P. (2013). Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiologiae Plantarum, 35(4), 1039-1050.Roychoudhury, A., Basu, S., & Sengupta, D.N. (2011). Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance. Journal of Plant Physiology, 168 (4), 317–328.Saha, J., Brauer, E.K., Sengupta, A., Popescu, S.C., Gupta, K., & Gupta, B. (2015). Polyamines as redox homeostasis regulators during salt stress in plants. Frontiers Environmental Science, 3, 21. doi: 10.3389/fenvs.2015.00021Samancioglu, A., Yildirim, E., Turan, M., Kotan, R., Sahin, U., & Ku,l R. (2016). Amelioration of Drought Stress Adverse Effect and Mediating Biochemical Content of Cabbage Seedlings by Plant Growth Promoting Rhizobacteria. International Journal of Agriculture and Biology, 18(5), 948-956.Shannon, M.C., & Grieve, C.M. (1998). Tolerance of vegetable crops to salinity. Scientia Horticulturae, 78 (1-4), 5-38.Shi, H., Ye, T., & Chan, Z. (2013). Comparative proteomic and physiological analyses reveal the protective effect of exogenous polyamines in the bermudagrass (Cynodon dactylon) response to salt and drought stresses. Journal of Proteome Research, 12(11), 4951-4964.Sudhakar, C., Lakshmi, A., & Giridarakumar, A. (2001). Changes in the antioxidant enzyme efficacy in two high yeilding genotypes of mulber (Morus alba L.) under NaCl salinity. Plant Science, (161), 613-619.Terzi, R., Kadioglu, A., Kalaycioglu, E., & Saglam, A. (2014). Hydrogen peroxide pretreatment induces osmotic stress tolerance by influencing osmolyte and absisic acid levels in maize leaves. Journal of Plant Interactions, 9(1), 559-565.Yokoi, S., Bressan, R.A., & Hasegava, P.M. (2002). Salt stress tolerance of plants. Jırcas Working Report, 25-33.Yordanova, R.Y., Christov, K.N., & Popova, L.P. (2004). Antioxidative enzymes in barley plants subjected to soil flooding. Environmental and Experimental Botany, (51), 93-101.Zapata, P.J., Serrano, M., Pretel, M.T., & Botella, M.A. (2008). Changes in free polyamine concentration induced by salt stress in seedlings of different species. Plant Growth Regulation, 56(2), 167-177.Zeid, I.M. (2004). Response of bean (Phaseolus vulgaris) to exogenous putrescine treatment under salinity stress. Pakistan Journal of Biological Sciences, 7(2), 219-225.Zhang, W., Jiang, B., Li, W., Song, H., Yu, Y., & Chen, J. (2009). Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system. Scientia Horticulturae, 122(2), 200-208.Zhu, J.K. (2016). Abiotic stress signaling and responses in plants. Cell, 167, 313-324.
There are 1 citations in total.

Details

Primary Language English
Subjects Horticultural Production
Journal Section Articles
Authors

Melek Ekinci 0000-0002-7604-3803

Ertan Yıldırım 0000-0003-3369-0645

Atilla Dursun 0000-0002-8475-8534

Noor Mohamedsrajaden This is me

Project Number FHD-2017-6153
Publication Date June 28, 2019
Acceptance Date June 14, 2019
Published in Issue Year 2019

Cite

APA Ekinci, M., Yıldırım, E., Dursun, A., Mohamedsrajaden, N. (2019). Putrescine, Spermine and Spermidine Mitigated the Salt Stress Damage on Pepper (Capsicum annum L.) Seedling. Yuzuncu Yıl University Journal of Agricultural Sciences, 29(2), 290-299. https://doi.org/10.29133/yyutbd.562482

Cited By







Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.