Use of Nanomaterials in Agriculture
Year 2019,
, 817 - 831, 31.12.2019
Kağan Tolga Cinisli
,
Sevda Uçar
Neslihan Dikbaş
Abstract
The current known as "Nano-Era" is becoming increasingly widespread, gaining extremely popularity along with various nanotechnology research programs and engineering applications, attracting the attention of researchers. The use of nanomaterials in agriculture is called ‘‘under explorer’’. Nanomaterials with their superior characteristics, what order of agricultural applications can create a positive contribution is a matter of wonder. Working with this hypothesis includes current research in terms of the availability of various nanomaterials as fertilizers and growth regulators. The review paper is important for the researchers concerned in the application of nanomaterials in agriculture at a level that may be an important data source and point of action.
References
- Bandyopadhyay, S., Plascencia-Villa, G., Mukherjee, A., Rico, C.M., Jose -Yacama n, M., Peralta-Videa, J.R., Gardea-Torresdey, J.L., 2015. Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associ- ated with Sinorhizobium meliloti in soil. Sci. Total Environ.515e516, 60e69.
- Batsmanova, L.M., Gonchar, L.M., Taran, N.Y., Okanenko, A.A., 2013. Using a colloidal solution of metal nanoparticles as micronutrient fertiliser for cereals. Proceedings of the International Conference Nanomaterials: Applications and Properties.
- Castiglione, M.R., Giorgetti, L., Geri, C., Cremonini, R., 2011. The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J. Nanoparticle Res. 13, 2443–2449.
- Chen, W.S., 1991. Changes in cytokinins before and during early flower bud differentitation in lychee (Litchi chinensis Sonn.).Plant Physiology, 96, 1203- 1206.Dağhan, H. 2017. Nano Gübreler Turk J Agric Res 2017, 4(2): 197-203 © TÜTAD ISSN: 2148-2306 e-ISSN: 2528-858X doi: 10.19159/tutad.294991
- Delfani, M., Firouzabadi, M.B., Farrokhi, N., Makarian, H., 2014.Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun. SoilSci. Plant Anal. 45, 530–540.
- Du, W.C., Sun, Y.Y., Ji, R., Zhu, J.G., Wu, J.C., Guo, H.Y., 2011. TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J. Environ. Monit. 13 (4), 822e828.
- Gao, F., Liu, C., Qu, C., Zheng, L., Yang, F., Su, M., et al.2008. Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activase? Biometals 21, 211–217.
- Ghafariyan, M.H., Malakouti, M.J., Dadpour, M.R., Stroeve, P., Mahmoudi, M., 2013.Effects of magnetite nanoparticles on soybean chlorophyll. Environ. Sci. Technol. 47, 10645–10652.
- Ghodake, G., Seo, Y.D., Lee, D.S., 2011. Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. J. Hazard. Mater. 186, 952e955.
- Gupta, S.M., Tripathi, M., 2011.A review of TiO2 nanoparticles. Chin. Sci. Bull. 56, 1639–1657. Hershey, D.R., Paul, J.L., Carlson, R.M., 1980. Evaluation of potassium-enriched clinoptilolite as a potassium source for potting media. HortSci. 15, 87–89.
- Güneş, A., Alpaslan, M., İnal, A., 2007.Bitki Besleme ve Gübreleme. Ankara Üniversitesi, Ziraat Fakültesi Ders Kitabı, No: 504, Yayın No: 1551, Ankara Üniversitesi Basımevi, Ankara.
- Hernandez-Viezcas, J.A., Castillo-Michel, H., Andrews, J.C., Cotte, M., Rico, C., Peralta- Videa, J.R., Gardea-Torresdey, J.L., 2013. In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soy- bean (Glycine max). ACS Nano 7, 1415e1423.
- Lopez-Moreno, Hernandez-Viezcas, J.A., Castillo-Michel, H.A., M., Peralta-Videa, J.R., Gardea-Torresdey, J.L., 2016. Interactions between CeO2 nanoparticles and the desert plant mesquite: a spectroscopy approach. ACS Sustain. Chem. Eng. 4 (3), 1187e1192.
- Hong, J., Peralta-Videa, J.R., Rico, C., Sahi, S., Viveros, M.N., Bartonjo, J., Zhao, L.J., Gardea-Torresdey, J.L., 2014. Evidence of translocation and physiological im- pacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environ. Sci. Technol. 48, 4376e4385.
- Khodakovskaya, M.V., de Silva, K., Nedosekin, D.A., Dervishi, E., Biris, A.S., Shashkov, E.V., Galanzha, E.I., Zharov, V.P., 2011. Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions.Proc. Natl. Acad. Sci. 108 (3), 1028e1033.
- Lahiani, M.H., Chen, J., Irin, F., Puretzky, A.A., Green, M.J., Khodakovskaya, M.V., 2015. Interaction of carbon nanohorns with plants: uptake and biological effects. Carbon 81, 607e619.
- Lee, W., An, Y., Yoon, H., Kweon, H., 2008. Toxicity and bioavailability of copper nanopar- ticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ. Toxicol. Chem. 27, 1915–1921.
- Lin, D., Xing, B., 2007. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ. Pollut. 150, 243–250.
- Lin, D., Xing, B., 2008. Root uptake and phytotoxicity of ZnO nanoparticles. Environ. Sci. Technol. 42, 5580–5585.
- Liu ve Lal, 2016. Effects of Stabilized Nanoparticles of Copper, Zinc, Manganese, and Iron Oxides in Low Concentrations on Lettuce (Lactuca sativa) Seed Germination: Nanotoxicants or Nanonutrients? Water Air Soil Pollut (2016) 227: 42 DOI 10.1007/s11270-015-2738-2.
- Liu, R., Lal, R., 2014. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci. Rep. 4, 5686–5691.
- Liu, X., Zhang, D., Zhang, S., He, X., Wang, Y., Feng, Z., et al.2005. Responses of peanut to nano-calcium carbonate. J. Plant. Nutr. Fert. (Chin.) 11, 385–389.
- Liu, Y., Laks, P., Heiden, P., 2002. Controlled release of biocides in solid wood. I. Efficacy against brown rot wood decay fungus (Gloeophyllum trabeum). J. Appl. Polym. Sci. 86, 596–607.
- Lv, J., Zhang, S., Luo, L., Zhang, J., Yang, K., Christie, P., 2015.Accumulation, speciation and uptake pathway of ZnO nanoparticles in maize. Environ. Sci. Nano 2, 68e77.
- Ma, C.X., White, J.C., Dhankher, O.P., Xing, B., 2015a.Metal-based nanotoxicity and detoxification pathways in higher plants. Environ. Sci. Technol. 49 (12), 7109e7122.
- MacKown, C.T., Tucker, T.C., 1985. Ammonium nitrogen movement in a coarse-textured soil amended with zeolite. Soil Sci. Soc. Am. J. 49, 235–238.
- Mahajan, P., Dhoke, S.K., Khanna, A.S., 2011. Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J. Nanotechnol. 2011, 7 pp (Article ID 696535).
- Malekian, R., Abedi-Koupai, J., Eslamian, S.S., 2011. Influences of clinoptilolite and surfactant-modified clinoptilolite zeolite on nitrate leaching and plant growth. J. Hazard. Mater. 185, 970–976.
- Ming, D.W., Allen, E.R., 2001. Use of natural zeolites in agronomy, horticulture, and environmental soil remediation. In: Bish, D.L., Ming, D.W. (Eds.), Natural Zeolites: Occurrence, Properties, Applications vol. 45. Mineralogical Society of America, Chantilly, pp. 619–654.
- Mukherjee, A., Peralta-Videa, J.R., Bandyopadhyay, S., Rico, C.M., Zhao, L., Gardea- Torresdey, J.L., 2014. Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6, 132e138.
- Mukherjee, A., Sinha, I., Das, R., 2015. Application of nanotechnology in agriculture: Future prospects. Outstanding Young Chemical Engineers (OYCE) Conference, March 13-14, DJ Sanghvi College of Engineering, Mumbai, India.
- Musante, C., White, J.C., 2012. Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environ. Toxicol. 27, 510–517.
- Naderi, M., Danesh Shahraki, A.A., Naderi, R., 2011.Application of nanotechnology in the optimization of formulation of chemical fertilizers. Iran J. Nanotech. 12, 16–23.
- Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y., Kumar, D.S., 2010.Nanoparticulate material delivery to plants. Plant Sci. 179, 154–163.
- Nekrasova, G.F., Ushakova, O.S., Ermakov, A.E., Uimin, M.A., Byzov, I.V., 2011. Effects of copper(II) ions and copper oxide nanoparticles on Elodea densa Planch. Russ. J. Ecol. 42, 458–463.
- Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey Kumar K, , Akbar S, Palit P and Goswami A. 2013. Photochemical Modulation of Biosafe Manganese Nanoparticles on Vigna radiata: A Detailed Molecular, Biochemical, and Biophysical Study. Environ. Sci. Technol.2013472213122-13131
- Raikova, O.P., Panichkin, L.A., Raikova, N.N., 2006. Studies on the Effect of Ultrafine Metal Powders Produced by Different Methods on Plant Growth and Development.Nanotechnologies and Information Technologies in the 21 st Century. Proceedings of the International Scientific and Practical Conference, 108–111.Raliya, R., Nair, R., Chavalmane, S., Wang, W.N., Biswas, P., 2015.Mechanistic eval- uation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant.Metallomics 7, 1584e1594.
- Reynolds, G.H., 2002. Forward to the future nanotechnology and regulatory policy. Pac. Res. Inst. 24, 1–23.
- Rico, C.M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J.R., Gardea- Torresdey, J.L., 2011. Interaction of nanoparticles with edible plants and their possible implications in the food chain.J. Agric. Food Chem. 59, 3485e3498.
- Rico, C.M., Peralta-Videa, J.R., Gardea-Torresdey, J.L., 2015b. Chemistry, biochemistry of nanoparticles, and their role in antioxidant defense system in plants. Nanotechnol. Plant Sci. 1e17. Springer International Publishing.
- Roco, M.C., 2003. Nanotechnology: convergence with modern biology and medicine. Curr. Opin. Biotechnol. 14, 337e346.
- Scott, N., Chen, H., 2003. Nanoscale Science and Engineering for Agriculture and Food Systems. A Report Submitted to Cooperative State Research, Education and Extension Service. USDA. National Planing Workshop, Washington.
- Selivanov, V.N., Zorin, E.V., 2001. Sustained Action of ultrafine metal powders on seeds of grain crops. Perspekt. Materialy 4, 66–69.
- Servin, A., Elmer, W., Mukherjee, A., De La TorreRoche, R., Hamdi, H., White, J.C., Bindraban, P., Dimkpa, C., 2015. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. Journal of Nanoparticle Research, 17: 92-113.
- Servin, A.D., Morales, M.I., Castillo-Michel, H., Hernandez-Viezcas, J.A., Munoz, B., Zhao, L.J., Nunez, J.E., Peralta-Videa, J.R., Gardea-Torresdey, J.L., 2013.
- Synchro- tron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ. Sci. Technol. 47 (20), 11592e11598.
- Shah, V., Belozerova, I., 2009. Influence of metal nanoparticles on the soil microbial com- munity and germination of lettuce seeds. Water Air Soil Pollut.197, 143–148.
- Singh, M.D., Chirag, G., Prakash, P.O., Mohan, M.H.,Prakasha, G., Vishwajith, 2017. Nano fertilizers is anew way to increase nutrients use efficiency ın cropproduction. International Journal of Agriculture Sciences, 9(7): 3831-3833.
- Sohrab, D Ali Tehranifara,∗, Gholamhossein Davarynejada, Javier Abadíab, Reza Khorasani Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality Scientia Horticulturae 210 (2016) 57–64
- Song, G., Gao, Y., Wu, H., Hou, W., Zhang, C., Ma, H., 2012.Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environ. Toxicol. Chem. 31, 2147–2152.
- Stampoulis, D., Sinha, S.K., White, J.C., 2009. Assay-dependent phytotoxicity of nanoparti- cles to plants. Environ. Sci. Technol. 43, 9473–9479.
- Su, M., Liu, H., Liu, C., Qu, C., Zheng, L., Hong, F., 2009.Promotion of nano-anatase TiO2 on the spectral responses and photochemical activities of D1/D2/Cyt b559 complex of spinach. Spectrochim. Acta A 72, 1112–1116.
- Subramanian, K.S., Manikandan, A., Thirunavukkarasu, M., Sharmila Rahale, C., 2015. Nano-fertilizers for balanced crop nutrition. In: Rai, M., Ribeiro, C., Mattoso, L., Duran, N. (Eds.), Nanotechnologies in Food and Agriculture. Springer International Publishing, Switzerland, pp. 69–80.
- Batsmanova, L.M, Taran, N.Y., Gonchar, O.M., Lopatko, K.G.,., Patyka, M.V., Volkogon, M.V., 2014.The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale Res. Lett.9, 289.
- Tiwari, D.K., Dasgupta-Schubert, N., Villasen~or-Cendejas, L.M., Villegas, J., Carreto- Montoya, L., Borjas-Garcia, S.E., 2014. Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl. Nanosci. (4), 577e591. Tomar, A., Garg, G., 2013. Short review on application of gold nanoparticles. Glob. J. Üniversitesi Basımevi, Ankara.
- Wang, P., Menzies, N.W., Lombi, E., McKenna, B.A., Johannessen, B., Glover, C.J., Kappen, P., Kopittke, P.M., 2013a.Fate of ZnO nanoparticles in soils and cowpea (Vigna unguiculata). Environ. Sci. Technol. 47, 13822e13830.
- Wiesner, M.R., Lowry, G.V., Alvarez, P., Dionysion, D., Biswas, P., 2006. Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol. 40, 4336–4345.
- Wild, E., Jones, K.C., 2009.Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environ. Sci. Technol. 43, 5290e5294.
- Yang, F., Liu, C., Gao, F., Su, M., Wu, X., Zheng, L., et al.2007. The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol. Trace Elem. Res. 119, 77–88.
- Zhao, L., Peralta-Videa, J.R., Rico, C.M., Hernandez-Viezcas, J.A., Sun, Y., Niu, G., et al.2014. CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J. Agric. Food Chem. 62, 2752–2759.
- Zhao, L.J., Peralta-Videa, J.R., Ren, M., Varela-Ramirez, A., Li, C., Hernandez- Viezcas, J.A., Aguilerad, R.J., Gardea-Torresdeya, J.L., 2012b. Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies. Chem. Eng. J. 184, 1e8.
Nanomateryallerin Tarımda Kullanımı
Year 2019,
, 817 - 831, 31.12.2019
Kağan Tolga Cinisli
,
Sevda Uçar
Neslihan Dikbaş
Abstract
”Nano-Era’’ adıyla bilinen akım giderek yaygınlaşarak çeşitli nanoteknoloji araştırma programları ve mühendislik uygulamaları ile birlikte son derece popülerlik kazanarak araştırmacıların dikkatini çekmektedir. Tarımda nanomateryallerin kullanımı ‘’under explorer’’ olarak adlandırılmaktadır. Nanomateryallerin kendilerine ait üstün özellikleri ile tarımsal uygulamalarda ne düzeyde olumlu katkı yaratabilecekleri merak konusudur. Bu hipotezle çalışma, çeşitli nanomalzemelerin gübre ve büyüme düzenleyici olarak kullanılabilirliği açısından güncel araştırmaları içermektedir. Derleme makale, nanomateryallerin tarımda uygulanması konusunda ilgili araştırmacılar için önemli bir veri kaynağı ve haraket noktası olabilecek düzeyde önem arz etmektedir.
References
- Bandyopadhyay, S., Plascencia-Villa, G., Mukherjee, A., Rico, C.M., Jose -Yacama n, M., Peralta-Videa, J.R., Gardea-Torresdey, J.L., 2015. Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associ- ated with Sinorhizobium meliloti in soil. Sci. Total Environ.515e516, 60e69.
- Batsmanova, L.M., Gonchar, L.M., Taran, N.Y., Okanenko, A.A., 2013. Using a colloidal solution of metal nanoparticles as micronutrient fertiliser for cereals. Proceedings of the International Conference Nanomaterials: Applications and Properties.
- Castiglione, M.R., Giorgetti, L., Geri, C., Cremonini, R., 2011. The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J. Nanoparticle Res. 13, 2443–2449.
- Chen, W.S., 1991. Changes in cytokinins before and during early flower bud differentitation in lychee (Litchi chinensis Sonn.).Plant Physiology, 96, 1203- 1206.Dağhan, H. 2017. Nano Gübreler Turk J Agric Res 2017, 4(2): 197-203 © TÜTAD ISSN: 2148-2306 e-ISSN: 2528-858X doi: 10.19159/tutad.294991
- Delfani, M., Firouzabadi, M.B., Farrokhi, N., Makarian, H., 2014.Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun. SoilSci. Plant Anal. 45, 530–540.
- Du, W.C., Sun, Y.Y., Ji, R., Zhu, J.G., Wu, J.C., Guo, H.Y., 2011. TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J. Environ. Monit. 13 (4), 822e828.
- Gao, F., Liu, C., Qu, C., Zheng, L., Yang, F., Su, M., et al.2008. Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activase? Biometals 21, 211–217.
- Ghafariyan, M.H., Malakouti, M.J., Dadpour, M.R., Stroeve, P., Mahmoudi, M., 2013.Effects of magnetite nanoparticles on soybean chlorophyll. Environ. Sci. Technol. 47, 10645–10652.
- Ghodake, G., Seo, Y.D., Lee, D.S., 2011. Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. J. Hazard. Mater. 186, 952e955.
- Gupta, S.M., Tripathi, M., 2011.A review of TiO2 nanoparticles. Chin. Sci. Bull. 56, 1639–1657. Hershey, D.R., Paul, J.L., Carlson, R.M., 1980. Evaluation of potassium-enriched clinoptilolite as a potassium source for potting media. HortSci. 15, 87–89.
- Güneş, A., Alpaslan, M., İnal, A., 2007.Bitki Besleme ve Gübreleme. Ankara Üniversitesi, Ziraat Fakültesi Ders Kitabı, No: 504, Yayın No: 1551, Ankara Üniversitesi Basımevi, Ankara.
- Hernandez-Viezcas, J.A., Castillo-Michel, H., Andrews, J.C., Cotte, M., Rico, C., Peralta- Videa, J.R., Gardea-Torresdey, J.L., 2013. In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soy- bean (Glycine max). ACS Nano 7, 1415e1423.
- Lopez-Moreno, Hernandez-Viezcas, J.A., Castillo-Michel, H.A., M., Peralta-Videa, J.R., Gardea-Torresdey, J.L., 2016. Interactions between CeO2 nanoparticles and the desert plant mesquite: a spectroscopy approach. ACS Sustain. Chem. Eng. 4 (3), 1187e1192.
- Hong, J., Peralta-Videa, J.R., Rico, C., Sahi, S., Viveros, M.N., Bartonjo, J., Zhao, L.J., Gardea-Torresdey, J.L., 2014. Evidence of translocation and physiological im- pacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environ. Sci. Technol. 48, 4376e4385.
- Khodakovskaya, M.V., de Silva, K., Nedosekin, D.A., Dervishi, E., Biris, A.S., Shashkov, E.V., Galanzha, E.I., Zharov, V.P., 2011. Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions.Proc. Natl. Acad. Sci. 108 (3), 1028e1033.
- Lahiani, M.H., Chen, J., Irin, F., Puretzky, A.A., Green, M.J., Khodakovskaya, M.V., 2015. Interaction of carbon nanohorns with plants: uptake and biological effects. Carbon 81, 607e619.
- Lee, W., An, Y., Yoon, H., Kweon, H., 2008. Toxicity and bioavailability of copper nanopar- ticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ. Toxicol. Chem. 27, 1915–1921.
- Lin, D., Xing, B., 2007. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ. Pollut. 150, 243–250.
- Lin, D., Xing, B., 2008. Root uptake and phytotoxicity of ZnO nanoparticles. Environ. Sci. Technol. 42, 5580–5585.
- Liu ve Lal, 2016. Effects of Stabilized Nanoparticles of Copper, Zinc, Manganese, and Iron Oxides in Low Concentrations on Lettuce (Lactuca sativa) Seed Germination: Nanotoxicants or Nanonutrients? Water Air Soil Pollut (2016) 227: 42 DOI 10.1007/s11270-015-2738-2.
- Liu, R., Lal, R., 2014. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci. Rep. 4, 5686–5691.
- Liu, X., Zhang, D., Zhang, S., He, X., Wang, Y., Feng, Z., et al.2005. Responses of peanut to nano-calcium carbonate. J. Plant. Nutr. Fert. (Chin.) 11, 385–389.
- Liu, Y., Laks, P., Heiden, P., 2002. Controlled release of biocides in solid wood. I. Efficacy against brown rot wood decay fungus (Gloeophyllum trabeum). J. Appl. Polym. Sci. 86, 596–607.
- Lv, J., Zhang, S., Luo, L., Zhang, J., Yang, K., Christie, P., 2015.Accumulation, speciation and uptake pathway of ZnO nanoparticles in maize. Environ. Sci. Nano 2, 68e77.
- Ma, C.X., White, J.C., Dhankher, O.P., Xing, B., 2015a.Metal-based nanotoxicity and detoxification pathways in higher plants. Environ. Sci. Technol. 49 (12), 7109e7122.
- MacKown, C.T., Tucker, T.C., 1985. Ammonium nitrogen movement in a coarse-textured soil amended with zeolite. Soil Sci. Soc. Am. J. 49, 235–238.
- Mahajan, P., Dhoke, S.K., Khanna, A.S., 2011. Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J. Nanotechnol. 2011, 7 pp (Article ID 696535).
- Malekian, R., Abedi-Koupai, J., Eslamian, S.S., 2011. Influences of clinoptilolite and surfactant-modified clinoptilolite zeolite on nitrate leaching and plant growth. J. Hazard. Mater. 185, 970–976.
- Ming, D.W., Allen, E.R., 2001. Use of natural zeolites in agronomy, horticulture, and environmental soil remediation. In: Bish, D.L., Ming, D.W. (Eds.), Natural Zeolites: Occurrence, Properties, Applications vol. 45. Mineralogical Society of America, Chantilly, pp. 619–654.
- Mukherjee, A., Peralta-Videa, J.R., Bandyopadhyay, S., Rico, C.M., Zhao, L., Gardea- Torresdey, J.L., 2014. Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6, 132e138.
- Mukherjee, A., Sinha, I., Das, R., 2015. Application of nanotechnology in agriculture: Future prospects. Outstanding Young Chemical Engineers (OYCE) Conference, March 13-14, DJ Sanghvi College of Engineering, Mumbai, India.
- Musante, C., White, J.C., 2012. Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environ. Toxicol. 27, 510–517.
- Naderi, M., Danesh Shahraki, A.A., Naderi, R., 2011.Application of nanotechnology in the optimization of formulation of chemical fertilizers. Iran J. Nanotech. 12, 16–23.
- Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y., Kumar, D.S., 2010.Nanoparticulate material delivery to plants. Plant Sci. 179, 154–163.
- Nekrasova, G.F., Ushakova, O.S., Ermakov, A.E., Uimin, M.A., Byzov, I.V., 2011. Effects of copper(II) ions and copper oxide nanoparticles on Elodea densa Planch. Russ. J. Ecol. 42, 458–463.
- Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey Kumar K, , Akbar S, Palit P and Goswami A. 2013. Photochemical Modulation of Biosafe Manganese Nanoparticles on Vigna radiata: A Detailed Molecular, Biochemical, and Biophysical Study. Environ. Sci. Technol.2013472213122-13131
- Raikova, O.P., Panichkin, L.A., Raikova, N.N., 2006. Studies on the Effect of Ultrafine Metal Powders Produced by Different Methods on Plant Growth and Development.Nanotechnologies and Information Technologies in the 21 st Century. Proceedings of the International Scientific and Practical Conference, 108–111.Raliya, R., Nair, R., Chavalmane, S., Wang, W.N., Biswas, P., 2015.Mechanistic eval- uation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant.Metallomics 7, 1584e1594.
- Reynolds, G.H., 2002. Forward to the future nanotechnology and regulatory policy. Pac. Res. Inst. 24, 1–23.
- Rico, C.M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J.R., Gardea- Torresdey, J.L., 2011. Interaction of nanoparticles with edible plants and their possible implications in the food chain.J. Agric. Food Chem. 59, 3485e3498.
- Rico, C.M., Peralta-Videa, J.R., Gardea-Torresdey, J.L., 2015b. Chemistry, biochemistry of nanoparticles, and their role in antioxidant defense system in plants. Nanotechnol. Plant Sci. 1e17. Springer International Publishing.
- Roco, M.C., 2003. Nanotechnology: convergence with modern biology and medicine. Curr. Opin. Biotechnol. 14, 337e346.
- Scott, N., Chen, H., 2003. Nanoscale Science and Engineering for Agriculture and Food Systems. A Report Submitted to Cooperative State Research, Education and Extension Service. USDA. National Planing Workshop, Washington.
- Selivanov, V.N., Zorin, E.V., 2001. Sustained Action of ultrafine metal powders on seeds of grain crops. Perspekt. Materialy 4, 66–69.
- Servin, A., Elmer, W., Mukherjee, A., De La TorreRoche, R., Hamdi, H., White, J.C., Bindraban, P., Dimkpa, C., 2015. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. Journal of Nanoparticle Research, 17: 92-113.
- Servin, A.D., Morales, M.I., Castillo-Michel, H., Hernandez-Viezcas, J.A., Munoz, B., Zhao, L.J., Nunez, J.E., Peralta-Videa, J.R., Gardea-Torresdey, J.L., 2013.
- Synchro- tron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ. Sci. Technol. 47 (20), 11592e11598.
- Shah, V., Belozerova, I., 2009. Influence of metal nanoparticles on the soil microbial com- munity and germination of lettuce seeds. Water Air Soil Pollut.197, 143–148.
- Singh, M.D., Chirag, G., Prakash, P.O., Mohan, M.H.,Prakasha, G., Vishwajith, 2017. Nano fertilizers is anew way to increase nutrients use efficiency ın cropproduction. International Journal of Agriculture Sciences, 9(7): 3831-3833.
- Sohrab, D Ali Tehranifara,∗, Gholamhossein Davarynejada, Javier Abadíab, Reza Khorasani Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality Scientia Horticulturae 210 (2016) 57–64
- Song, G., Gao, Y., Wu, H., Hou, W., Zhang, C., Ma, H., 2012.Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environ. Toxicol. Chem. 31, 2147–2152.
- Stampoulis, D., Sinha, S.K., White, J.C., 2009. Assay-dependent phytotoxicity of nanoparti- cles to plants. Environ. Sci. Technol. 43, 9473–9479.
- Su, M., Liu, H., Liu, C., Qu, C., Zheng, L., Hong, F., 2009.Promotion of nano-anatase TiO2 on the spectral responses and photochemical activities of D1/D2/Cyt b559 complex of spinach. Spectrochim. Acta A 72, 1112–1116.
- Subramanian, K.S., Manikandan, A., Thirunavukkarasu, M., Sharmila Rahale, C., 2015. Nano-fertilizers for balanced crop nutrition. In: Rai, M., Ribeiro, C., Mattoso, L., Duran, N. (Eds.), Nanotechnologies in Food and Agriculture. Springer International Publishing, Switzerland, pp. 69–80.
- Batsmanova, L.M, Taran, N.Y., Gonchar, O.M., Lopatko, K.G.,., Patyka, M.V., Volkogon, M.V., 2014.The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale Res. Lett.9, 289.
- Tiwari, D.K., Dasgupta-Schubert, N., Villasen~or-Cendejas, L.M., Villegas, J., Carreto- Montoya, L., Borjas-Garcia, S.E., 2014. Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl. Nanosci. (4), 577e591. Tomar, A., Garg, G., 2013. Short review on application of gold nanoparticles. Glob. J. Üniversitesi Basımevi, Ankara.
- Wang, P., Menzies, N.W., Lombi, E., McKenna, B.A., Johannessen, B., Glover, C.J., Kappen, P., Kopittke, P.M., 2013a.Fate of ZnO nanoparticles in soils and cowpea (Vigna unguiculata). Environ. Sci. Technol. 47, 13822e13830.
- Wiesner, M.R., Lowry, G.V., Alvarez, P., Dionysion, D., Biswas, P., 2006. Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol. 40, 4336–4345.
- Wild, E., Jones, K.C., 2009.Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environ. Sci. Technol. 43, 5290e5294.
- Yang, F., Liu, C., Gao, F., Su, M., Wu, X., Zheng, L., et al.2007. The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol. Trace Elem. Res. 119, 77–88.
- Zhao, L., Peralta-Videa, J.R., Rico, C.M., Hernandez-Viezcas, J.A., Sun, Y., Niu, G., et al.2014. CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J. Agric. Food Chem. 62, 2752–2759.
- Zhao, L.J., Peralta-Videa, J.R., Ren, M., Varela-Ramirez, A., Li, C., Hernandez- Viezcas, J.A., Aguilerad, R.J., Gardea-Torresdeya, J.L., 2012b. Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies. Chem. Eng. J. 184, 1e8.