Research Article
BibTex RIS Cite

Effect of Plant Growth and Antioxidantive Enzyme Activity of Lettuce (Lactuca sativa L.var. longifolia) Applied to Cadmium and Zinc in Sewage Sludge Enriched with Soil

Year 2019, , 755 - 764, 31.12.2019
https://doi.org/10.29133/yyutbd.616417

Abstract



The aim of this study is to investigate the effects of a constant rate of sewage sludge (SS) together with cadmium (Cd) and zinc (Zn) at varying levels on the growth of lettuce and antioxidative enzyme activity. In the pot experiment, a fixed ratio of 10%SS with varying doses of Cd (Cd1:50 mg Cd kg-1; Cd2:100 mg Cd kg-1) and Zn (Zn1:250 mg Zn kg-1; Zn2:500 mg Zn kg-1) was applied. According to experiment results, compared to the control, 10% SS + Cd1 and 10% SS + Cd2 applications significantly reduced fresh and dry shoot weights, plant height, Zn content and SOD (superoxide dismutase) enzyme activity in the root and shoot of lettuce. However, 10%SS +Cd1 and 10%SS+Cd2 applications significantly increased shoot and root Cd contents, GPX (glutathione peroxidase) enzyme activity in plant and the amount of Cd in soil. On the other hand, 10%SS+Zn1+Cd1 application increased fresh shoot weight, Zn content, SOD and GPX enzyme activities in the shoot of lettuce and decreased the amount of DTPA-Cd in comparison with 10%SS+Cd1 application. Compared to the Cd1 application, 10%SS+Zn2+Cd1 application increased SOD and GPX enzyme activities in the root of lettuce. In comparison with 10%SS +Cd2 application, 10%SS+Zn2+Cd2 application increased fresh and dry shoot weight, Zn content, SOD and GPX enzymes in both shoot and root of lettuce and decreased shoot Cd content and the amount of DTPA-Cd in soil. These results indicate that the Zn application could be beneficial for reducing the toxic effects of Cd in lettuce.

References

  • Referans1 Anonymous, (2010). T.C.: Official Journal of Soil Pollution Control Regulation No: 27605, Ankara.
  • Referans2 Abbas, M.S., Akmal, M., Ulah, S Hassan &MU Farooq, S. (2017). Effectiveness of zinc and gypsum application against cadmium toxicity and accumulation in wheat (Triticum aestivum L.). Commun Soil Sci Plan, 48, 1659-1668.
  • Referans3 Aravind, P., Narasimha, M., & Prasad, V. (2005). Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism. Plant Physiol Bioch, 43, 107-116.
  • Referans4 Benakova, M., Ahmadi, H., Ducaiova, Z., Tylova, E., Clemens, S. & Tuma, J. (2017). Effects of Cd and Zn on physiological and anatomical properties of hydroponically grown Brassica napus plants. Environ Sci Pollut Control Ser,, 24, 20705-20716.
  • Referans5 Benavides, M.P., Gallego, S.M., & Tomaro, M.L. (2005). Cadmium toxicity in plants. Braz J Plant Physiol, 17, 21-34.
  • Referans6 Beutler, E. (1984). Red Cell Metabolism: A Manual of Biochemical Methods. Thirth Edition. ed. Orlando, FL: Grune and Startton.
  • Referans7 Bouyoucous, G.D. (1951). A recalibration of the hydrometer method for making mechanical analysis of soil. Soil Agron J, 43, 434-438.
  • Referans8 Cakmak, I. (2000). Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol, 146 (2), 185-205.
  • Referans9 Canal-Boysan, S., & Bozkurt, M.A. (2017). Effects of iron application against cadmium toxicity on growth and anti-oxidative enzyme activity in lettuce. Fresen Environ, 26(4), 2614-2620.
  • Referans10 Castro, E., Manas, P., & De las Heras, J. (2009). A comparison of the application of different waste products to a lettuce crop: Effects on plant and soil properties. Science Horticulturae,123, 148–155.
  • Referans11 Chaoui, A., Mazhoudi, S., Ghorbal, M.H., & ElFerjani, E. (1997). Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L). Plant Sci, 127 (2), 139-147.
  • Referans12 Cherif, J., Mediouni, C., Ammar, W.B., &Jemal, F. (2011). Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (Solarium lycopersicum). J Environ Sci -China, 23, 837-844.
  • Referans13 Düzgüneş, A., Kesici, O.T., Kavuncu, O., & Gürbüz, F. (1987). Araştırma ve Deneme Metodları (İstatistik Metodları-II) Ank. Üniversitesi Ziraat Fakültesi Yayınları, Ankara.
  • Referans14 Erdogan, R., Zaimoglu, Z., Budak, F., & Koseoglu, C. (2011). Use of sewage sludge in growth media for ornamental plants and its effects on growth and heavy metal accumulation. J. Food Agric Environ, 9, 632–635.
  • Referans15 Fhole, L., & Günzler, W.A. (1984). Assays of Glutathione Peroxidase. Method Enzymol 105, 114-121.
  • Referans16 Grant, C.A., Buckley, W.T., Bailey, L.D., & Selles, F. (1998). Cadmium accumulation in crops. Can J Plant Sci, 78, 1-17.
  • Referans17 Green, C.E., Chaney, R.L., & Bouwkamp, J., (2017). Increased zinc supply does not inhibitcadmium accumulation by rice (Oryza sativaL.). J Plant Nutr, 40, 869–877.
  • Referans18 Hana, S., Rachid, R., Ibtissem, S., Houria, B., & Mohammed-Reda, D. (2008). Induction of anti-oxidative enzymes by cadmium stress in tomato (Lycopersicon esculentum). Afr J Plan Sci, 2(8), 72-76.
  • Referans19 Hajiboland, R. (2000). Zinc efficiency in rice (Oryza sativa L.) plants.: Ph.D dissertation: Verlag Grauer, Stuttgart. Hohenheim University.Stuttgart, Germany:Verlag Grauer
  • Referans20 Hassan, M.J., Zhang, G., Wu, F., Wei, K., & Chen, Z. (2005). Zinc alleviates growth inhibition and oxidative stress caused by cadmium in rice. J Plant Nutr Soil SC, 168, 255-261.
  • Referans21 Hizalan, E.,& Ünal, E. (1966). Topraklarda Önemli Analizler, Ankara Üniversitesi Ziraat Fakültesi Yayınları, Ankara.
  • Referans22 Hossain, M.K., Strezov, V., & Nelson, P.F. (2015). Comparative assessment of the effect of wastewater sludge biochar on growth, yield and metal bioaccumulation of cherry tomato. Pedosphere, 25,680-685.
  • Referans23 Jackson, M.L. (1958). Soil Chemical Analysis Prentice Hall, Inc., Prentice Hall, Inc.
  • Referans24 Jibril, S.A., Hassan, S.A., Ishak, C.F., & Wahab, P.E.M. (2017). Cadmium toxicity affects phytochemicals and nutrient elements composition of lettuce (Lactuca sativa L.). Hindawi Advances in Agri, 2017, 1-7.
  • Referans25 Kabata-Pendias, A., & Pendias, H. (1984). Trace Elements in Soils and Plants., FL:CRC Press.
  • Referans 26 Kabata-Pendias, A. (2010). Trace elements in soils and plants, CRC Press.
  • Referans27 Kacar, B. (1994). Bitki ve Toprağın Kimyasal Analizleri: III Toprak Analizleri, A.Ü.Z.Eğitim Araştırma ve Geliştirme Vakfı Yayınları, Ankara.
  • Referans28 Kacar, B., & Katkat, V.N. (1999). Gübreler ve Gübreleme Tekniği, Uludağ Üniversitesi Güçlendirme Vakfı Yayınları, Ankara.
  • Referans29 Köleli, N., Eker, S., & Cakmak, I. (2004). Effect of zinc fertilization on cadmium toxicity in durum and bread wheat grown in zinc-deficient soil. Environ Pollut, 131(3), 453-459.
  • Referans30 Lin, Y.F., & Aarts, M.G.M. (2012). The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci, 69 (19), 3187-3206.
  • Referans31 Liu, H.J., Zhang, J.L., Christie, P., & Zhang, F.S. (2008). Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil. Sci Total Environ, 394, 361-368.
  • Referans32 Mannervik, B., & Guthenberg, C. (1981). Glutathione transferase (human placenta). Academic Press, 77, 231-235.
  • Referans33 McCord, J.M., & Fridovich, I. (1969). Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein). J Biol Chem, 244 (22), 6049-6055.
  • Referans34 Mckenna, I.M., Chaney, R.L., & Williams, F.M. (1993). The effects of cadmium and zinc interactions on the accumulation and tissue distribution of zinc and cadmium in lettuce and spinach. Environ Pollut, 79 (2), 113-120.
  • Referans35 Monteiro, M.S., Santos, C., Soares, A.M.V.M., & Mann, R.M. (2009). Assessment of biomarkers of cadmium stress in lettuce. Ecotox Environ Safe, 72 (3), 811-818.Referans36 Murtaza, G., Javed, W., Hussain, A., Qadir, M., & Aslam, M. (2017). Soil-applied zinc and copper suppress cadmium uptake and improve the performance of cereals and legumes. Int J Phytoremediat, 19 (2), 199-206.
  • Referans36 Rajapaksha, R.M.C.P., & Amarakoon, I.D. (2011). Response of Lettuce and Rhizosphere Biota to Successive Additions of Zinc and Cadmium to a Tropical Entisol. Commun Soil Sci Plan, 42 (11), 1336-1348.
  • Referans37 Rizwan, M., Ali, S., Hussain, A., Ali, Q., Shakoor, M.B., Zia-ur-Rehman, M., Farid, M., & Asma, M. (2017). Effect of zinc-lysine on growth, yield and cadmium uptake in wheat (Triticum aestivum L.) and health risk assessment. Chemosphere, 187, 35-42.
  • Referans38 Saifullah, N., Sarwar, M., Bibi, S., Ahmad, M., & Ok, Y.S. (2014). Effectiveness of zinc application to minimize cadmium toxicity and accumulation in wheat (Triticum aestivum L.). Environ Earth Sci, 71 (4), 1663-1672.
  • Referans39 Sharma, R.K., & Agrawal, M. (2006). Single and combined effects of cadmium and zinc on carrots: Uptake and bioaccumulation. J Plant Nutr, 29 (10), 1791-1804.
  • Referans40 Tran, T.A., & Popova, L.P. (2013). Functions and toxicity of cadmium in plants: recent advances and future prospects. Turk J Bot, 37 (1), 1-13.
  • Referans41 Viehweger, K. (2014). How plants cope with heavy metals. Bot Stud 55.
  • Referans42 Walkley, A. (1947). A critical examination of a rapid method for determining organic carbon in soils—effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci, 63 (4), 251-264.
  • Referans43 Wu, F.B., & Zhang, G.P. (2002). Alleviation of cadmium-toxicity by application of zinc and ascorbic acid in barley. J Plant Nutr, 25 (12), 2745-2761.
  • Referans44 Zare, A., Khoshgoftarmanesh, A., Malakouti, M., Bahrami, H., & Chaney, R.(2018). Root uptake and shoot accumulation of cadmium by lettuce at various Cd: Zn ratios in nutrient solution. Ecotoxicol. Environ.Saf., 148, 441-446.
  • Referans45 Zhao, A.Q., Tian, X.H., Lu, W.H., Gale, W.J., Lu, X.C., & Cao, Y.X. (2011). Effect of Zinc on Cadmium Toxicity in Winter Wheat. J Plant Nutr, 34 (9-11), 1372-1385.
  • Referans46 Zhao, Z.Q., Zhu, Y.G., Kneer, R., & Smith, S.E. (2005). Effect of zinc on cadmium toxicity-induced oxidative stress in winter wheat seedlings. J Plant Nutr, 28(11), 1947-1959.

Arıtma Çamuru ile Zenginleştirilmiş Toprağa Uygulanan Kadmiyum ve Çinkonun Marulun (Lactuca sativa L. var. longifolia) Gelişimi ve Antioksidatif Enzim Aktivitesine Etkisi

Year 2019, , 755 - 764, 31.12.2019
https://doi.org/10.29133/yyutbd.616417

Abstract






Bu çalışmanın amacı sabit oranda arıtma çamuru ile birlikte kadmiyum ve çinko düzeylerinin marul bitkisinin gelişimine ve antioksidatif enzim aktivitesine etkisini araştırmaktır. Saksı çalışmasında sabit oranda, arıtma çamuru (%10AÇ), değişen oranlarda kadmiyum (Cd1:50 mg Cd kg-1;Cd2:100 mg Cd kg-1) ve çinko (Zn1:250 mg Zn kg-1; Zn2:500 mg Zn kg-1) uygulanmıştır. Elde edilen sonuçlara göre,%10 AÇ+Cd1 ve %10AÇ+Cd2 uygulamaları, kontrole göre, marul bitkisinin kuru ve yaş sürgün ağırlığını, bitki boyu, çinko içeriğini ve kök ve sürgün bölgesinde SOD (süperoksit dismutaz) enzim aktivitesini önemli düzeyde azaltmıştır. Bununla birlikte marul bitkisinin kök ve sürgün kısımlarında ve toprakta kadmiyum konsantrasyonu ile GPX (glutatyon peroksidaz) enzim aktivitesi önemli düzeyde artış göstermiştir. Ancak 10%AÇ +Zn1+Cd1 uygulaması ile 10%AÇ +Cd1 karşılaştırıldığında, marulun sürgün kısımlarında SOD ve GPX enzim aktiviteleri, çinko içeriği ve sürgün yaş ağırlığında artışa neden olurken toprakta DTPA-Cd (yarayışlı-Cd) içeriğinde düşüşe neden olmuştur. 10%AÇ +Zn2+Cd1 uygulaması ile 10%AÇ +Cd1 karşılaştırıldığında, marul kök bölgesinde GPX ve SOD enzim aktiviteleri artış göstermiştir. 10%AÇ +Zn2+Cd2 uygulaması ile 10%AÇ +Cd2 karşılaştırıldığında bitkinin sürgün yaş ve kuru ağırlığı, Zn içeriğinde ve hem kök hem sürgün SOD ve GPX enzim aktivitesinde artışa neden olurken sürgün Cd içeriğinde ve toprak DTPA-Cd (yarayışlı-Cd) içeriğinde düşüşe neden olmuştur. Bu sonuçlar göstermektedir ki, marul bitkisinde çinko uygulaması kadmiyum toksisitesini azaltmada faydalı olabilir.

References

  • Referans1 Anonymous, (2010). T.C.: Official Journal of Soil Pollution Control Regulation No: 27605, Ankara.
  • Referans2 Abbas, M.S., Akmal, M., Ulah, S Hassan &MU Farooq, S. (2017). Effectiveness of zinc and gypsum application against cadmium toxicity and accumulation in wheat (Triticum aestivum L.). Commun Soil Sci Plan, 48, 1659-1668.
  • Referans3 Aravind, P., Narasimha, M., & Prasad, V. (2005). Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism. Plant Physiol Bioch, 43, 107-116.
  • Referans4 Benakova, M., Ahmadi, H., Ducaiova, Z., Tylova, E., Clemens, S. & Tuma, J. (2017). Effects of Cd and Zn on physiological and anatomical properties of hydroponically grown Brassica napus plants. Environ Sci Pollut Control Ser,, 24, 20705-20716.
  • Referans5 Benavides, M.P., Gallego, S.M., & Tomaro, M.L. (2005). Cadmium toxicity in plants. Braz J Plant Physiol, 17, 21-34.
  • Referans6 Beutler, E. (1984). Red Cell Metabolism: A Manual of Biochemical Methods. Thirth Edition. ed. Orlando, FL: Grune and Startton.
  • Referans7 Bouyoucous, G.D. (1951). A recalibration of the hydrometer method for making mechanical analysis of soil. Soil Agron J, 43, 434-438.
  • Referans8 Cakmak, I. (2000). Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol, 146 (2), 185-205.
  • Referans9 Canal-Boysan, S., & Bozkurt, M.A. (2017). Effects of iron application against cadmium toxicity on growth and anti-oxidative enzyme activity in lettuce. Fresen Environ, 26(4), 2614-2620.
  • Referans10 Castro, E., Manas, P., & De las Heras, J. (2009). A comparison of the application of different waste products to a lettuce crop: Effects on plant and soil properties. Science Horticulturae,123, 148–155.
  • Referans11 Chaoui, A., Mazhoudi, S., Ghorbal, M.H., & ElFerjani, E. (1997). Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L). Plant Sci, 127 (2), 139-147.
  • Referans12 Cherif, J., Mediouni, C., Ammar, W.B., &Jemal, F. (2011). Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (Solarium lycopersicum). J Environ Sci -China, 23, 837-844.
  • Referans13 Düzgüneş, A., Kesici, O.T., Kavuncu, O., & Gürbüz, F. (1987). Araştırma ve Deneme Metodları (İstatistik Metodları-II) Ank. Üniversitesi Ziraat Fakültesi Yayınları, Ankara.
  • Referans14 Erdogan, R., Zaimoglu, Z., Budak, F., & Koseoglu, C. (2011). Use of sewage sludge in growth media for ornamental plants and its effects on growth and heavy metal accumulation. J. Food Agric Environ, 9, 632–635.
  • Referans15 Fhole, L., & Günzler, W.A. (1984). Assays of Glutathione Peroxidase. Method Enzymol 105, 114-121.
  • Referans16 Grant, C.A., Buckley, W.T., Bailey, L.D., & Selles, F. (1998). Cadmium accumulation in crops. Can J Plant Sci, 78, 1-17.
  • Referans17 Green, C.E., Chaney, R.L., & Bouwkamp, J., (2017). Increased zinc supply does not inhibitcadmium accumulation by rice (Oryza sativaL.). J Plant Nutr, 40, 869–877.
  • Referans18 Hana, S., Rachid, R., Ibtissem, S., Houria, B., & Mohammed-Reda, D. (2008). Induction of anti-oxidative enzymes by cadmium stress in tomato (Lycopersicon esculentum). Afr J Plan Sci, 2(8), 72-76.
  • Referans19 Hajiboland, R. (2000). Zinc efficiency in rice (Oryza sativa L.) plants.: Ph.D dissertation: Verlag Grauer, Stuttgart. Hohenheim University.Stuttgart, Germany:Verlag Grauer
  • Referans20 Hassan, M.J., Zhang, G., Wu, F., Wei, K., & Chen, Z. (2005). Zinc alleviates growth inhibition and oxidative stress caused by cadmium in rice. J Plant Nutr Soil SC, 168, 255-261.
  • Referans21 Hizalan, E.,& Ünal, E. (1966). Topraklarda Önemli Analizler, Ankara Üniversitesi Ziraat Fakültesi Yayınları, Ankara.
  • Referans22 Hossain, M.K., Strezov, V., & Nelson, P.F. (2015). Comparative assessment of the effect of wastewater sludge biochar on growth, yield and metal bioaccumulation of cherry tomato. Pedosphere, 25,680-685.
  • Referans23 Jackson, M.L. (1958). Soil Chemical Analysis Prentice Hall, Inc., Prentice Hall, Inc.
  • Referans24 Jibril, S.A., Hassan, S.A., Ishak, C.F., & Wahab, P.E.M. (2017). Cadmium toxicity affects phytochemicals and nutrient elements composition of lettuce (Lactuca sativa L.). Hindawi Advances in Agri, 2017, 1-7.
  • Referans25 Kabata-Pendias, A., & Pendias, H. (1984). Trace Elements in Soils and Plants., FL:CRC Press.
  • Referans 26 Kabata-Pendias, A. (2010). Trace elements in soils and plants, CRC Press.
  • Referans27 Kacar, B. (1994). Bitki ve Toprağın Kimyasal Analizleri: III Toprak Analizleri, A.Ü.Z.Eğitim Araştırma ve Geliştirme Vakfı Yayınları, Ankara.
  • Referans28 Kacar, B., & Katkat, V.N. (1999). Gübreler ve Gübreleme Tekniği, Uludağ Üniversitesi Güçlendirme Vakfı Yayınları, Ankara.
  • Referans29 Köleli, N., Eker, S., & Cakmak, I. (2004). Effect of zinc fertilization on cadmium toxicity in durum and bread wheat grown in zinc-deficient soil. Environ Pollut, 131(3), 453-459.
  • Referans30 Lin, Y.F., & Aarts, M.G.M. (2012). The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci, 69 (19), 3187-3206.
  • Referans31 Liu, H.J., Zhang, J.L., Christie, P., & Zhang, F.S. (2008). Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil. Sci Total Environ, 394, 361-368.
  • Referans32 Mannervik, B., & Guthenberg, C. (1981). Glutathione transferase (human placenta). Academic Press, 77, 231-235.
  • Referans33 McCord, J.M., & Fridovich, I. (1969). Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein). J Biol Chem, 244 (22), 6049-6055.
  • Referans34 Mckenna, I.M., Chaney, R.L., & Williams, F.M. (1993). The effects of cadmium and zinc interactions on the accumulation and tissue distribution of zinc and cadmium in lettuce and spinach. Environ Pollut, 79 (2), 113-120.
  • Referans35 Monteiro, M.S., Santos, C., Soares, A.M.V.M., & Mann, R.M. (2009). Assessment of biomarkers of cadmium stress in lettuce. Ecotox Environ Safe, 72 (3), 811-818.Referans36 Murtaza, G., Javed, W., Hussain, A., Qadir, M., & Aslam, M. (2017). Soil-applied zinc and copper suppress cadmium uptake and improve the performance of cereals and legumes. Int J Phytoremediat, 19 (2), 199-206.
  • Referans36 Rajapaksha, R.M.C.P., & Amarakoon, I.D. (2011). Response of Lettuce and Rhizosphere Biota to Successive Additions of Zinc and Cadmium to a Tropical Entisol. Commun Soil Sci Plan, 42 (11), 1336-1348.
  • Referans37 Rizwan, M., Ali, S., Hussain, A., Ali, Q., Shakoor, M.B., Zia-ur-Rehman, M., Farid, M., & Asma, M. (2017). Effect of zinc-lysine on growth, yield and cadmium uptake in wheat (Triticum aestivum L.) and health risk assessment. Chemosphere, 187, 35-42.
  • Referans38 Saifullah, N., Sarwar, M., Bibi, S., Ahmad, M., & Ok, Y.S. (2014). Effectiveness of zinc application to minimize cadmium toxicity and accumulation in wheat (Triticum aestivum L.). Environ Earth Sci, 71 (4), 1663-1672.
  • Referans39 Sharma, R.K., & Agrawal, M. (2006). Single and combined effects of cadmium and zinc on carrots: Uptake and bioaccumulation. J Plant Nutr, 29 (10), 1791-1804.
  • Referans40 Tran, T.A., & Popova, L.P. (2013). Functions and toxicity of cadmium in plants: recent advances and future prospects. Turk J Bot, 37 (1), 1-13.
  • Referans41 Viehweger, K. (2014). How plants cope with heavy metals. Bot Stud 55.
  • Referans42 Walkley, A. (1947). A critical examination of a rapid method for determining organic carbon in soils—effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci, 63 (4), 251-264.
  • Referans43 Wu, F.B., & Zhang, G.P. (2002). Alleviation of cadmium-toxicity by application of zinc and ascorbic acid in barley. J Plant Nutr, 25 (12), 2745-2761.
  • Referans44 Zare, A., Khoshgoftarmanesh, A., Malakouti, M., Bahrami, H., & Chaney, R.(2018). Root uptake and shoot accumulation of cadmium by lettuce at various Cd: Zn ratios in nutrient solution. Ecotoxicol. Environ.Saf., 148, 441-446.
  • Referans45 Zhao, A.Q., Tian, X.H., Lu, W.H., Gale, W.J., Lu, X.C., & Cao, Y.X. (2011). Effect of Zinc on Cadmium Toxicity in Winter Wheat. J Plant Nutr, 34 (9-11), 1372-1385.
  • Referans46 Zhao, Z.Q., Zhu, Y.G., Kneer, R., & Smith, S.E. (2005). Effect of zinc on cadmium toxicity-induced oxidative stress in winter wheat seedlings. J Plant Nutr, 28(11), 1947-1959.
There are 46 citations in total.

Details

Primary Language English
Subjects Soil Sciences and Ecology
Journal Section Articles
Authors

Ayşegül Bitiktaş This is me 0000-0002-1339-6599

Sibel Boysan Canal 0000-0001-9027-0458

Mehmet Ali Bozkurt 0000-0003-3923-857X

Publication Date December 31, 2019
Acceptance Date December 8, 2019
Published in Issue Year 2019

Cite

APA Bitiktaş, A., Boysan Canal, S., & Bozkurt, M. A. (2019). Effect of Plant Growth and Antioxidantive Enzyme Activity of Lettuce (Lactuca sativa L.var. longifolia) Applied to Cadmium and Zinc in Sewage Sludge Enriched with Soil. Yuzuncu Yıl University Journal of Agricultural Sciences, 29(4), 755-764. https://doi.org/10.29133/yyutbd.616417
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.