Research Article
BibTex RIS Cite

Effect of Methyl Jasmonate on Enzymatic Browning and Antioxidant Enzyme System of Eggplant Fruit (Solanum melongena L.)**

Year 2020, , 419 - 428, 30.06.2020
https://doi.org/10.29133/yyutbd.678198

Abstract

Eggplant fruit result in significant economic losses, as being non-climacteric is sensitive to chilling injury and short postharvest life. Eggplants were harvested in Gevas district of Van, Turkey. The eggplant fruits were harvested by taking maturity levels into consideration and then placed in foam plates and covered with Modified Atmosphere Packaging (MAP) for 21 days in cold air depots containing 10 and 20 °C temperature and 90-95% relative humidity. The fruits of the same size were divided into 3 different groups. The first group of fruits was immersed in distilled water as a control. The second group of fruits were immersed in 1 μM MeJA solution for 10 minutes. The third group was immersed in 5 μM MeJA solution for 10 minutes. The effect of postharvest Methyl Jasmonate treatment during the storage period on respiratory rate, Superoxide dismutase (SOD), catalase (CAT), polyphenol oxidase (PPO), and malondialdehyde (MDA) were evaluated. The results obtained from this study suggest that 1 µM Methyl Jasmonate application gives the best results in terms of parameters such as respiratory rate, SOD, PPO, and MDA at 20 °C, while 5 µM Methyl Jasmonate was found to be the most positive one in terms of CAT enzyme activity. As a result, it can be suggested that MeJA treatments were effective on antioxidativ enzymes and respiration rate during the storage period.

Supporting Institution

VAN YYÜ BİLİMSEL ARAŞTIRMA PRPJELERİ KOORDİNASYON BİRİMİ

Project Number

FYL-2018-7288

Thanks

This research project was granted by Yuzuncu Yil University Scientific Research Projects Department .

References

  • Alp, Y., and Kabay, T. (2019). The Effect of Drought Stress on Antioxidative Enzyme and Nutrient Exchange in Some Tomato Genotypes. Turkish Journal of Agricultural and Natural Sciences, 6 (1), 71-77. DOI: 10.30910/turkjans.515352.
  • Ames, B.N., Shigenaga, M.K., and Hagen, T.M. (1993). Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. U.S.A. 90, 7915–7922.
  • Asghari, M., and Hasanlooe, A.R. (2015). Methyl jasmonate effectively enhanced some defense enzymes activity and Total Antioxidant content in harvested “Sabrosa” strawberry fruit. Food Sci. Nutr.
  • Bağcı, E.G. (2010). Identification of Drought-induced Oxidative Stress in Chickpea with Physiological and Biochemical Parameters. PhD thesis, Ankara University Faculty of Science, 403 p.
  • Barbagallo, R.N., Chisari, M., and Caputa, G. (2012). Effects of calcium citrate and ascorbate as inhibitors of browning and softening in minimally processed ‘Birgah’eggplants. Postharvest biology and technology, 73, 107-114 .
  • Cantwell, M., and Suslow, T.V. (2009). Eggplant: Recommendations for Maintaining Postharvest Quality. http://postharvest.ucdavis.edu/Produce/ProduceFacts/ Veg/eggplant.shtml.
  • Cao, S., Zheng, Y., Wang, K., Jin, P., and Rui, H. (2009). Methyl jasmonate reduces chilling injury and enhances antioxidant enzyme activity in postharvest loquat fruit. Food Chem. 115, 1458-1463.
  • Cao, S., Zheng, Y., Wang, K., Rui, H., and Tang, S. (2009). Effect of methyl jasmonate on cell wall modification of loquat fruit in relation to chilling injury after harvest. Food Chemistry, 118: 641–647.
  • Catalano, A.E., Schilirò, A., Todaro, A., Palmieri, R. and Spagna, G. (2007). Enzymatic degradations on fresh-cut eggplants differently packaged. Acta Horticultural, 746: 469–474. Çavuşoğlu, Ş. (2008). The effect of pre-harvest cytokinin application on postharvest physiology of cauliflower (Brassica oleracea L. botrytis). PhD Thesis, Ankara University, Institute of Natural and Applied Sciences, Turkey.
  • Cavusoglu, Ş. (2018). Effects of Modified Atmosphere and Methyl Jasmonate Treatments on The Postharvest Quality and Storage Life of Agaricus bisporus. The Journal of Fungus, 9 (2) 206-218.
  • Concellón, A., Añón, M.C., and Chaves, A.R. (2007). Effect of low temperature storage on physical and physiological characteristics of eggplant fruit (Solanum melongena L.). LWT. Food Sci. Technol. 40, 389–396.
  • Esim, N., and Atici, O. (2014). Nitric oxide improves chilling tolerance of maize by affecting apoplastic antioxidative enzymes in leaves. Plant Growth Regul, 72: 29–38. Eşiyok, D., and Bozokalfa, M.K. (2007). Patlıcan Yetiştiriciliği ve Besin İçeriği. Dünya Yayıncılık. GIDA. Bağcılar/İstanbul. 7: 91-91.
  • Fan, L., Shi, J., Zuo, J., Gao, L., Jiayu, L., and Wang, Q. (2016). Methyl jasmonate delays postharvest ripening and senescence in the non-climacteric eggplant (Solanum melongena L.) fruit Postharvest Biology and Technology, 120: 76–83.
  • FAO. (2019). Food and agriculture data. Available online at: http://www.fao.org/faostat/en/#home, Accessed date: 4 October 2019.
  • Ghasemnezhad, M., and Javaherdashti, M. (2008). Effect of methyl jasmonate treatment on antioxidant capacity, internal quality and postharvest life of raspberry fruit. Casp. J. Environ. Sci. 6, 73–78.
  • Gill, S., and Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909–930.
  • Harwood, J.L. (1998). Fatty acid metabolism. Ann Rev Plant Physiol Mol Biol, 39: 101–138.
  • Hung, H.C., Joshipura, K.J., Jiang, R., Hu, F.B., Hunter, D., and Smith-Warner, S.A. (2004). Fruit and vegetable intake and risk of major chronic disease. J. Nat. Cancer Inst. 96, 1577–1584.
  • Janisiewicz, W., and Korsten, L. (2002). Biological control of postharvest diseases of fruits. Annu. Rev. Phytopathol. 40, 411–441.
  • Jebara, S., Jebara, M., Limam, F., and Aouani, M. E. (2005). Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. Journal of Plant Physiology, 162(8): 929-936.
  • Jin. P., Zhu, H., Wang, J., Chen, J., Wang, X., and Zheng, Y. (2012). Effect of methyl jasmonate on energy metabolism in peach fruit during chilling stress. Society of Chemical Industry, 10: 1002-5973.
  • Jing. P., Qian, B., Zhao, S., Qi, X., Ye, L., Giusti, M., and Wang, X. (2015). Effect of glycosylation patterns of, Chinese eggplant anthocyanins and other derivatives on antioxidant effectiveness in human colon cell lines. Food Chemistry, 172: 183– 189.
  • Jing, P., Zhao, S., Ruan, S., Sui, Z., Chen, L., Jiang, L., and Qian, B. (2014). Quantitative studies on structure–ORAC relationships of anthocyanins from eggplant and radish using 3D-QSAR. Food Chemistry, 145: 365–371.
  • Karuppanapandian, T., Moon, J. C., Kim, C., Manoharan, K., and Kim, W. (2011). Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust. J. Crop. Sci. 5, 709–725.
  • Liu, Y., Yanga, X., Zhua, S., and Wang, Y. (2016). Postharvest application of MeJA and NO reduced chilling injury in cucumber (Cucumis sativus) through inhibition of H2O2 accumulation. Postharvest Biology and Technology, 119: 77–83.
  • Menga, D., Zhanga, Y., Yanga, R., Wanga, J., Zhangc, X., Shengd, J., Wanga, J., and Fana, Z. (2017). Arginase participates in the methyl jasmonate-regulated quality maintenance of postharvest Agaricus bisporus fruit bodies. Postharvest Biology and Technology, 132: 7–14.
  • Mishra, B. B., Gautam, S., and Sharma, A.(2013). Free phenolics and polyphenol oxidase (PPO): the factors affecting post-cut browning in eggplant (Solanum melongena). Food Chemistry, 139: 105–114.
  • Rawyler, A., Pavelic, D., Gianinazzi, C., Oberson, J., and Braendle, R. (1999). Membrane lipid integrity relies on a threshold of ATP production rate in potato cell cultures submitted to anoxia. Plant Physiol, 120: 293–300.
  • Rui, H. J., Cao, S. F., Shang, H. T., Jin, P., Wang, K. T., and Zheng, Y. H. (2010). Effects of heat treatment on internal browning and membrane fatty acid in loquat fruit in response to chilling stress. J Sci Food Agric 90: 1557–1561.
  • Seylam Küşümler, A. (2011). Effects of Ultraviolet (uv-c) Light Applications on the chilling Injury in Eggplant and Cucumbers. PhD Thesis, İstanbul Technical University, Institute of Science and Technology, Turkey.
  • Sun, D. Q, Lu, X. H., Hu, Y. L., Li, W. M., Hong, K. Q., Mo, Y. W., Cahill, D. M., and Xie, J. (2013). Methyl jasmonate induced defense responses increase resistance to Fusarium oxysporum f sp. cubense race 4 in banana. Sci. Horticultural, 164: 484–491.
  • Toivonen, P. M. A., and DeDell, J. R. (2002). Physiology of fresh-cut fruits and vegetables. In:Lamikanra, O. (Ed.), Fresh-Cut Fruits and Vegetables. Science, Technology and Market. CRC Press, Boca Raton, FL:91–123.
  • Venkatachalam, K., & Meenune, M. (2015). Effect of methyl jasmonate on physiological and biochemical quality changes of longkong fruit under low temperature storage. Fruits, 70(2): 69–75.
  • Wang, C. Y. (1990). Chilling Injury of Horticultural Crops. CRC Press, Boca Raton,FL, 308-313.
  • Wu, B., Guo, Q., Li Q., Ha, Y., Li, X., and Chen, W. (2014). Impact of postharvest nitric oxide treatment on antioxidant enzymes and related genes in banana fruit in response to chilling tolerance. Postharvest Biology Technology, 92: 157–163.
  • Zhu, Z., & Tian, S. P. (2012). Resistant responses of tomato fruit treated with exogenous methyl jasmonate to Botrytis cinerea infection. Sci Horticultural, 142: 38–43.
  • Ziosi, V., Bregoli, A., Fregola, F., Costa, G., and Torrigiani, P. (2008). Jasmonate-Induced ripening delay is associated with up-regulation of polyamine levels in peach fruit. J. Plant Physiol. 166, 938–946.

Patlıcan Meyvelerinde (Solanum melongena L.) Metil Jasmonat Uygulamalarının Enzimatik Kararma ve Antioksidatif Enzimler Üzerine Etkileri

Year 2020, , 419 - 428, 30.06.2020
https://doi.org/10.29133/yyutbd.678198

Abstract

Meyveleri klimakterik olmayan patlıcanlar, üşüme zararına hassas ve hasat sonrası raf ömrü kısa olduğundan dolayı önemli ekonomik kayıplara neden olmaktadır. Çalışma materyali olan patlıcanlar Türkiye de Van'ın Gevaş ilçesinde hasat edilmiştir. Patlıcan meyveleri olgunluk seviyeleri dikkate alınarak hasat edilmiş ve daha sonra köpük tabaklarda modifiye atmosfer paketleme yapılarak 10 ve 20 °C'de % 90-95 bağıl nem içeren soğuk hava depolarında 21 gün boyunca depolanmıştır. Aynı olgunluğa sahip meyveler 3 ayrı gruba ayrılmıştır. Birinci grup meyveler kontrol olarak saf suya daldırılmıştır. İkinci grup meyveler 1 µM Metil Jasmonat (MeJA) çözeltisine 10 dakika süreyle daldırılmıştır. Üçüncü grup meyvelere ise 5 µM Metil Jasmonat (MeJA) çözeltisine 10 dakika süreyle daldırılmıştır. Hasat sonrası uygulanan Metil Jasmonat'ın solunum hızı, Süperoksit dismutaz (SOD), katalaz (CAT), polifenol oksidaz (PPO) ve malondialdehit (MDA) üzerine olan etkisi araştırılmıştır. Çalışmadan elde edilen sonuçlara göre, 20 °C'de depolanan meyvelerde 1 uM Metil Jasmonat uygulamasının, solunum hızı, SOD, PPO ve MDA gibi parametreler açısından en iyi sonuçları verdiği tespit edilirken, 5 uM Metil Jasmonatın ise CAT enzim aktivitesi açısından en iyi sonucu verdiğini göstermiştir. Sonuç olarak, MeJA uygulamalarının depolama periyodu boyunca antioksidatif enzimler ve solunum hızı üzerine etkisi olduğu söylenebilir.

Project Number

FYL-2018-7288

References

  • Alp, Y., and Kabay, T. (2019). The Effect of Drought Stress on Antioxidative Enzyme and Nutrient Exchange in Some Tomato Genotypes. Turkish Journal of Agricultural and Natural Sciences, 6 (1), 71-77. DOI: 10.30910/turkjans.515352.
  • Ames, B.N., Shigenaga, M.K., and Hagen, T.M. (1993). Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. U.S.A. 90, 7915–7922.
  • Asghari, M., and Hasanlooe, A.R. (2015). Methyl jasmonate effectively enhanced some defense enzymes activity and Total Antioxidant content in harvested “Sabrosa” strawberry fruit. Food Sci. Nutr.
  • Bağcı, E.G. (2010). Identification of Drought-induced Oxidative Stress in Chickpea with Physiological and Biochemical Parameters. PhD thesis, Ankara University Faculty of Science, 403 p.
  • Barbagallo, R.N., Chisari, M., and Caputa, G. (2012). Effects of calcium citrate and ascorbate as inhibitors of browning and softening in minimally processed ‘Birgah’eggplants. Postharvest biology and technology, 73, 107-114 .
  • Cantwell, M., and Suslow, T.V. (2009). Eggplant: Recommendations for Maintaining Postharvest Quality. http://postharvest.ucdavis.edu/Produce/ProduceFacts/ Veg/eggplant.shtml.
  • Cao, S., Zheng, Y., Wang, K., Jin, P., and Rui, H. (2009). Methyl jasmonate reduces chilling injury and enhances antioxidant enzyme activity in postharvest loquat fruit. Food Chem. 115, 1458-1463.
  • Cao, S., Zheng, Y., Wang, K., Rui, H., and Tang, S. (2009). Effect of methyl jasmonate on cell wall modification of loquat fruit in relation to chilling injury after harvest. Food Chemistry, 118: 641–647.
  • Catalano, A.E., Schilirò, A., Todaro, A., Palmieri, R. and Spagna, G. (2007). Enzymatic degradations on fresh-cut eggplants differently packaged. Acta Horticultural, 746: 469–474. Çavuşoğlu, Ş. (2008). The effect of pre-harvest cytokinin application on postharvest physiology of cauliflower (Brassica oleracea L. botrytis). PhD Thesis, Ankara University, Institute of Natural and Applied Sciences, Turkey.
  • Cavusoglu, Ş. (2018). Effects of Modified Atmosphere and Methyl Jasmonate Treatments on The Postharvest Quality and Storage Life of Agaricus bisporus. The Journal of Fungus, 9 (2) 206-218.
  • Concellón, A., Añón, M.C., and Chaves, A.R. (2007). Effect of low temperature storage on physical and physiological characteristics of eggplant fruit (Solanum melongena L.). LWT. Food Sci. Technol. 40, 389–396.
  • Esim, N., and Atici, O. (2014). Nitric oxide improves chilling tolerance of maize by affecting apoplastic antioxidative enzymes in leaves. Plant Growth Regul, 72: 29–38. Eşiyok, D., and Bozokalfa, M.K. (2007). Patlıcan Yetiştiriciliği ve Besin İçeriği. Dünya Yayıncılık. GIDA. Bağcılar/İstanbul. 7: 91-91.
  • Fan, L., Shi, J., Zuo, J., Gao, L., Jiayu, L., and Wang, Q. (2016). Methyl jasmonate delays postharvest ripening and senescence in the non-climacteric eggplant (Solanum melongena L.) fruit Postharvest Biology and Technology, 120: 76–83.
  • FAO. (2019). Food and agriculture data. Available online at: http://www.fao.org/faostat/en/#home, Accessed date: 4 October 2019.
  • Ghasemnezhad, M., and Javaherdashti, M. (2008). Effect of methyl jasmonate treatment on antioxidant capacity, internal quality and postharvest life of raspberry fruit. Casp. J. Environ. Sci. 6, 73–78.
  • Gill, S., and Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909–930.
  • Harwood, J.L. (1998). Fatty acid metabolism. Ann Rev Plant Physiol Mol Biol, 39: 101–138.
  • Hung, H.C., Joshipura, K.J., Jiang, R., Hu, F.B., Hunter, D., and Smith-Warner, S.A. (2004). Fruit and vegetable intake and risk of major chronic disease. J. Nat. Cancer Inst. 96, 1577–1584.
  • Janisiewicz, W., and Korsten, L. (2002). Biological control of postharvest diseases of fruits. Annu. Rev. Phytopathol. 40, 411–441.
  • Jebara, S., Jebara, M., Limam, F., and Aouani, M. E. (2005). Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. Journal of Plant Physiology, 162(8): 929-936.
  • Jin. P., Zhu, H., Wang, J., Chen, J., Wang, X., and Zheng, Y. (2012). Effect of methyl jasmonate on energy metabolism in peach fruit during chilling stress. Society of Chemical Industry, 10: 1002-5973.
  • Jing. P., Qian, B., Zhao, S., Qi, X., Ye, L., Giusti, M., and Wang, X. (2015). Effect of glycosylation patterns of, Chinese eggplant anthocyanins and other derivatives on antioxidant effectiveness in human colon cell lines. Food Chemistry, 172: 183– 189.
  • Jing, P., Zhao, S., Ruan, S., Sui, Z., Chen, L., Jiang, L., and Qian, B. (2014). Quantitative studies on structure–ORAC relationships of anthocyanins from eggplant and radish using 3D-QSAR. Food Chemistry, 145: 365–371.
  • Karuppanapandian, T., Moon, J. C., Kim, C., Manoharan, K., and Kim, W. (2011). Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust. J. Crop. Sci. 5, 709–725.
  • Liu, Y., Yanga, X., Zhua, S., and Wang, Y. (2016). Postharvest application of MeJA and NO reduced chilling injury in cucumber (Cucumis sativus) through inhibition of H2O2 accumulation. Postharvest Biology and Technology, 119: 77–83.
  • Menga, D., Zhanga, Y., Yanga, R., Wanga, J., Zhangc, X., Shengd, J., Wanga, J., and Fana, Z. (2017). Arginase participates in the methyl jasmonate-regulated quality maintenance of postharvest Agaricus bisporus fruit bodies. Postharvest Biology and Technology, 132: 7–14.
  • Mishra, B. B., Gautam, S., and Sharma, A.(2013). Free phenolics and polyphenol oxidase (PPO): the factors affecting post-cut browning in eggplant (Solanum melongena). Food Chemistry, 139: 105–114.
  • Rawyler, A., Pavelic, D., Gianinazzi, C., Oberson, J., and Braendle, R. (1999). Membrane lipid integrity relies on a threshold of ATP production rate in potato cell cultures submitted to anoxia. Plant Physiol, 120: 293–300.
  • Rui, H. J., Cao, S. F., Shang, H. T., Jin, P., Wang, K. T., and Zheng, Y. H. (2010). Effects of heat treatment on internal browning and membrane fatty acid in loquat fruit in response to chilling stress. J Sci Food Agric 90: 1557–1561.
  • Seylam Küşümler, A. (2011). Effects of Ultraviolet (uv-c) Light Applications on the chilling Injury in Eggplant and Cucumbers. PhD Thesis, İstanbul Technical University, Institute of Science and Technology, Turkey.
  • Sun, D. Q, Lu, X. H., Hu, Y. L., Li, W. M., Hong, K. Q., Mo, Y. W., Cahill, D. M., and Xie, J. (2013). Methyl jasmonate induced defense responses increase resistance to Fusarium oxysporum f sp. cubense race 4 in banana. Sci. Horticultural, 164: 484–491.
  • Toivonen, P. M. A., and DeDell, J. R. (2002). Physiology of fresh-cut fruits and vegetables. In:Lamikanra, O. (Ed.), Fresh-Cut Fruits and Vegetables. Science, Technology and Market. CRC Press, Boca Raton, FL:91–123.
  • Venkatachalam, K., & Meenune, M. (2015). Effect of methyl jasmonate on physiological and biochemical quality changes of longkong fruit under low temperature storage. Fruits, 70(2): 69–75.
  • Wang, C. Y. (1990). Chilling Injury of Horticultural Crops. CRC Press, Boca Raton,FL, 308-313.
  • Wu, B., Guo, Q., Li Q., Ha, Y., Li, X., and Chen, W. (2014). Impact of postharvest nitric oxide treatment on antioxidant enzymes and related genes in banana fruit in response to chilling tolerance. Postharvest Biology Technology, 92: 157–163.
  • Zhu, Z., & Tian, S. P. (2012). Resistant responses of tomato fruit treated with exogenous methyl jasmonate to Botrytis cinerea infection. Sci Horticultural, 142: 38–43.
  • Ziosi, V., Bregoli, A., Fregola, F., Costa, G., and Torrigiani, P. (2008). Jasmonate-Induced ripening delay is associated with up-regulation of polyamine levels in peach fruit. J. Plant Physiol. 166, 938–946.
There are 37 citations in total.

Details

Primary Language English
Subjects Horticultural Production
Journal Section Articles
Authors

Nurettin Yılmaz 0000-0003-0655-5165

Şeyda Çavuşoğlu 0000-0001-8797-6687

Project Number FYL-2018-7288
Publication Date June 30, 2020
Acceptance Date April 14, 2020
Published in Issue Year 2020

Cite

APA Yılmaz, N., & Çavuşoğlu, Ş. (2020). Effect of Methyl Jasmonate on Enzymatic Browning and Antioxidant Enzyme System of Eggplant Fruit (Solanum melongena L.)**. Yuzuncu Yıl University Journal of Agricultural Sciences, 30(2), 419-428. https://doi.org/10.29133/yyutbd.678198
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.