Süleymaniye Bölgesindeki Domates Genotipleri Arasındaki Genetik İlişkilerin ISSR Belirteçleri ile Belirlenmesi
Year 2020,
, 810 - 820, 31.12.2020
Abdulrahman Smail Ibrahım
Çeknas Erdinç
Abstract
Çalışmada Süleymaniye bölgesinde yetiştirilen 32 domates (Solanum lycopersicon L.) genotipi arasındaki genetik çeşitliliğin ISSR belirteç tekniği kullanarak belirlemek amaçlanmıştır. ISSR primerlerinin sonuçları, 15 primerden 65 amplifikasyon oluştuğunu ve bu amplifikasyonların 50’sinin polimorfik olduğunu ortaya çıkarmıştır. Polimorfizmi belirlemek için kullanılan 15 ISSR primeri % 50-100 arasında polimorfizm oranına sahip olmuş ve ortalama polimorfizm oranının % 75.61 olduğu belirlenmiştir. ISSR primerlerinin PIC değeri ortalaması 0.50 olarak tespit edilmiştir. Benzerlik matriksi polimorfik bant varlığın bağlı olarak Jaccard benzerlik katsayısı ile hesaplanmış ve UPGMA yöntemine göre kümeleme analizi ile dendogram elde edilmiştir. Dendogramda 4 temel grup oluştuğu belirlenmiştir. Genotipler arasındaki genetik benzerlik (GS) katsayıları 0.261 ile 0.941 arasında değişiklik göstermiştir. En yüksek benzerlik 0.941benzerlik katsayısı ile G7 ve G16 genotipleri arasında olurken, en düşük benzerlik 0.261 ile G15-G24 ve G15-G26 arasında bulunmuştur. STRUCTURE analizine göre ise genotiplerin iki populasyona ayrıldıkları saptanmıştır. ISSR yönteminin Süleymaniye’nin farklı bölgelerinden toplanmış domates genotipleri arasındaki genetik çeşitliliği tanımlamada etkili olduğu belirlenmiştir.
Supporting Institution
Van Yüzüncü Yıl Üniversitesi Bilimsel Araştırmalar Proje Koordinatörlüğü
Project Number
2015-FBE-YL360
Thanks
Bu çalışma Van Yüzüncü Yıl Üniversitesi Bilimsel Araştırmalar Proje Koordinatörlüğü tarafından 2015-FBE-YL360 nolu proje ile desteklenmiştir.
References
- Aguilera, J. G., Pesson, L. A., Rodrigues, G. B., Elsayed, A.Y., da Silva, D. J. H., de Barros, E. G. (2011). Genetic variability by ISSR markers in tomato (Solanum lycopersicon Mill.). Revista Brasileira de Ciências Agrárias, 6(2): 243-252.
- Al-Tamimi, A. J. T., Al-Saadi, A. H., Abbass, M. C. (2015). Genetic diversity of some tomato Lycopersicon esculentum Mill varieties in Iraq using Simple Sequence Repeat (SSR) Markers. Magazin of Al-Kufa University for Biology, 7(1), 64-80.
- Antonio, Garcia, L. L., Benchimol, A. M. M., Barbosa, I. O.,Geraldi, C. L., Jr, S., Souza, A. P. d. (2004). Comparison of RAPD, RFLP, AFLP and SSR markers for diversity studies in tropical maize in bred lines. Genetics and Molecular Biology, 27(4), 579-588.
- Bredemeijer, G. M. M., Paul, A., Doret, W.,Vosman, B. (1998). The use of semi-automated fluorescent microsatellite analysis for tomato cultivar identification. Theoretical and Applied Genetics, 97(4), 584-590.
- Doyle, J. J., Doyle, J. L. (1987). A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochemical Bulletin, 19, 11-15.
- Ekincialp, A., Şensoy, S. (2018). Phenotypic and molecular determination of anthracnose disease resistance in Lake Van Basin's bean genotypes (Phaseolus vulgaris L.). Legume Research, 41, 135-142.
- Ekincialp, A., Erdinc, C., Turan, S., Cakmakci, O., Nadeem, M. A., Baloch, F. S., Sensoy., S. (2019). Genetic characterization of Rheum ribes (wild rhubarb) genotypes in Lake Van Basin of Turkey through ISSR and SSR markers. Intl. J. Agric. Biol, 21, 795-802.
Erdinç, Ç., Ekincialp, A., Yıldız, M., Kabay, T., Türkmen, Ö., Şensoy, S. (2013). Molecular genetic diversity in Lake Van Basin melons (Cucumis melo L.) based on RAPD and ISSR markers. YYU J AGR SCI, 23, 264-270.
- Erdinc, C., Turkmen, O., Dasgan, H. Y., Şensoy, S. (2017). Phenotypic and molecular genetic diversity among some Turkish bean genotypes. The Journal of Animal and Plant Sciences, 27(6), 1963-1973.
- Figueiredo, A. S. T., Resende, J. T. V., Faria, M. V., Da-Silva, P. R., Fagundes, B. S., Morales, R. G. F. (2016). Prediction of industrial tomato hybrids from agronomic traits and ISSR molecular markers. Genetics and Molecular Research, 15(2), 1-13.
- Foolad, M. R. (2007). Genome mapping and molecular breeding of tomato. Int J Plant Genomics, 27, 1-52.
- Fukunaga, K., Hill, J., Vigouroux, Y., Matsuoka, Y., Sanchez, G. J., Liu, K., Buckler, E. S., Doebley, J. (2005). Genetic diversity and population structure of Teosinte. Genetics, 169, 2241-2254.
- Furan, M. A., Geboloğlu, M. D. (2017). Assessment of genetic variation on some cultivated Turkish coriander (Coriandrum sativum L.) varieties based on ISSR and SRAP markers. YYU J AGR SCI, 27(2), 245-251.
- Garcia, A. A. F., Benchimol, L. L., Barbosa, A. M. M., Geraldi, I. O., Souza, Jr., C. L., de Souza, A. P. (2004). Comparison of RAPD, RFLP, AFLP and SSR markers for diversity studies in tropical maize in bred lines. Genetics and Molecular Biology, 27(4), 579-588.
- García-Martínez, S., Andreani, L., Garcia-Gusano, M., Genua, F., Ruiz, J. J. (2006). Evaluation of amplified fragment length polymorphism and simple sequence repeats for tomato germplasm fingerprinting: utility for grouping closely related traditional cultivars. Genome, 49(6), 648-656.
- He, C., Poysa, V., Yu, K. (2003). Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. Theoretical Applied Genetics, 106, 363-373.
- Henareh, M., Dursun, A., Abdollahi Mandoulakani, B., Haliloğlu, K. (2016). Assessment of genetic diversity in tomato landraces using ISSR markers. Genetika, 48(1), 25-35.
- Kamel, M. A., Soliman, S. S., Mandour, A. E., Mahassen Ahmed, S. S. (2010). Genetic evaluation and molecular markers for heat tolerance in tomato (Lycopersicon esculentum Mill.). Journal of American Science, 6(12), 364-374.
- Kiani, G., Siahchehreh, M. (2018). Genetic diversity in tomato varieties assessed by ISSR markers. International Journal of Vegetable Science, 24:4, 353-360. DOI: 10.1080/19315260.2017.1419397.
- Kochieva, E. Z., Ryzhova, N. N., Khrapalova, I. A., Pukhalskyi, V. A. (2002). Genetic diversity and phylogenetic relationships in the genus Lycopersicon (Tourn.) Mill. as revealed by Inter-Simple Sequence Repeat (ISSR) analysis. Russian Journal of Genetics, 38(8), 958-966.
- Korir, N. K., Diao, W., Tao, R., Li, X., Kayesh, E., Li, A., Zhen, W., Wang, S. (2014). Genetic diversity and relationships among different tomato varieties revealed by EST-SSR markers. Genetics and Molecular Research, 13(1), 43-53.
- Masumbuko, L., Bryngelsson, T. (2006). Inter Simple Sequence Repeat (ISSR) analysis of diploid coffee species and cultivated Coffea arabica L. from Tanzania. Genetic Resources and Crop Evolution, 53(2), 357-366.
- Meng, F., Xu, X., Feng-lan, Huang, F., Li, J. (2010). Analysis of genetic diversity in cultivated and wild tomato varieties in chinese market by RAPD and SSR. Agricultural Sciences in China, 9(10), 1430-1437.
- Muthusamy, S., Kanagarajan, S., Ponnusamy, S. (2008). Efficiency of RAPD and ISSR markers system in accessing genetic variation of rice bean (Vigna umbellata) landraces. Electronic Journal of Biotechnology, 11(3), 32-41.
- Pharmawati, M., Yan, G., McFarlane, I. J. (2004). Application of RAPD and ISSR markers to analyse molecular relationships in Grevillea (Proteaceae). Australian Systematic Botany, 17, 49-61.
- Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., Rafalski, A. (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 2(3), 225-238.
- Pritchard, J. K., Stephens, M., Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945-959.
- Reddy, M.P., Sarla, N., Siddiq, E. (2002). Inter Simple Sequence Repeat (ISSR) polymorphism and its application in plant breeding. Euphytica, 128(1), 9-17.
- Sharifova, S., Mehdiyeva, S., Theodorikas, K., Roubos, K. (2013). Assessment of genetic diversity in cultivated tomato (Solanum Lycopersicum L.) genotypes using raped primers. Journal of Horticultural Research, 21(1), 83-89.
- Shahlaei, A., Torabi, S., Khosroshahli, M. (2014). Efficiacy of SCoT and ISSR marekers in assesment of tomato (Lycopersicum esculentum Mill.). Int. J. Biosci, 5(2), 14-22.
- Smith, J., Chin, E., Shu, H., Smith, O., Wall, S., Senior, M., Mitchell, S., Kresovich, S., Ziegle, J. (1997). An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): Comparisons with data from RFLPs and pedigree. Theoretical and Applied Genetics, 95, 163-173.
- Smolik, M., Zielinski, J., Danuta, R. P., Katarzyna, A. (2006). Polymorphism of microsatellite sequences in morphologically and phenologically different genotypes of Lonicera periclymenum. Journal of Food, Agriculture and Environment, 4(2), 226-233.
- Suhartanto, M. R. (2002). Chlorophyll in tomato seeds: marker for seed performance? Wageningen,The Netherlands, 1-150.
Suliman-Pollatschek, S., Kashkush, K., Shats, H., Hillel, J., Lavi, U. (2002). Generation and mapping of AFLP, SSRs and SNPs in Lycopersicon esculentum. Cell Mol Biol Lett, 7(2A), 583-597.
- Tabassum, N., Sony, S. K., Bhajan, S. K., Islam, M. N. (2013.) Analysis of genetic diversity in eleven tomato (Lycopersicon esculentum Mill.) varieties using RAPD markers. Plant Tissue Culture and Biotechnology, 23(1), 49‐57.
- Tam, S. M., Mhiri, C., Vogelaar, A., Kerkveld, M., Pearce, S. R., Grandbastien, M. (2005). Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor Appl Genet, 110, 819-831.
- Terzopoulos, P., Bebeli, P. (2008). DNA and morphological diversity of selected Greek tomato (Solanum lycopersicum L.) landraces. Scientia Horticulturae, 116, 354-361.
- Thamir, A.J., Al-Saadi, A. H., Abbass, M. C. (2014). Genetic diversity of some tomato Lycopersicon esculentum Mill varieties in Iraq using Random Amplified Polymorphic DNA (RAPD) Markers. Ournal of Babylon University/Pure and Applied Sciences, 9(22), 2342-2351.
- Tikunov, Y. M., Khrustaleva, L. I., Karlov, G. I. (2003). Application of ISSR markers in the genus Lycopersicon. Euphytica, 131(1), 71-80.
- Todorovska, E., Ivanova, A., Ganeva, D., Pevicharova, G., Molle, E., Bojinov, B., Radkova, M., Danailov, Z. (2014). Assessment of genetic variation in Bulgarian tomato (Solanum lycopersicum L.) genotypes, using fluorescent SSR genotyping platform. Biotechnology and Biotechnological Equipment, 28(1), 68-76.
- Topaklı, F., Hepaksoy, S. (2019). Overall assessment of the molecular analysis of olives in Turkey. YYU J AGR SCI, 29(2), 362-372.
Vargas-Ponce, O., Pérez-Álvarez, L. F., Zamora-Tavares, P., Rodríguez, A. (2011). Assessing genetic diversity in Mexican husk tomato species. Plant Mol. Biol. Rep, 29, 733-738.
- Vishwanath, K., Prasanna, K. P. R., Pallavi, H. M., Prasad, R. S., Ramegowda Devaraju, P. J., Ananthararayanan, T. (2011). Identification of tomato (Lycopersicon esculentum) varieties through total soluble seed proteins. Research Journal Agrilculture Science, 2(1), 08-12.
- Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res, 18(22), 6531-6535.
Determination of Genetic Relations among Tomato Accessions in Sulaymaniyah Region through ISSRs Markers Genetic Relations in Tomato Accessions
Year 2020,
, 810 - 820, 31.12.2020
Abdulrahman Smail Ibrahım
Çeknas Erdinç
Abstract
The goal of this study was to examine the genetic difference among thirty two tomato accessions (Solanum lycopersicum L.) grown in Sulaymaniyah using ISSR molecular markers technique. The results of ISSR markers revealed 65 amplified fragments, 50 of them were polymorphic from using 15 primers. Fifteen ISSR markers used to detect DNA polymorphism gave polymorphism percentage for each primer range between 50–100% with an average polymorphism percentage reaching 75.61%. ISSR6 and Sola 11 gave the highest polymorphism percentage was 100%, while 3F, Sola 5 and Sola 12 did not give any amplification. The mean of PIC (Polymorphic Information Content) value was 0.50 for ISSR markers. The similarity matrix was obtained by using Jaccard’s coefficients, based on polymorphic bands and dendrogram constituted through UPGMA cluster analysis. The dendrogram revealed 4 main groups. Genetic similarity (GS) ranged from 0.261 to 0.941 within studied accessions. The highest similarity was 0.941 for the genotype pairs G7 and G16. However, the lowest similarity index was 0.261 among G15-G24 and G15-G26. Tomato accessions were determined by two populations according to STRUCTURE analysis. The ISSR marker system ensured useful information in describing genetic diversity among tomato accessions collected from different geographical around Sulaymaniyah province.
Project Number
2015-FBE-YL360
References
- Aguilera, J. G., Pesson, L. A., Rodrigues, G. B., Elsayed, A.Y., da Silva, D. J. H., de Barros, E. G. (2011). Genetic variability by ISSR markers in tomato (Solanum lycopersicon Mill.). Revista Brasileira de Ciências Agrárias, 6(2): 243-252.
- Al-Tamimi, A. J. T., Al-Saadi, A. H., Abbass, M. C. (2015). Genetic diversity of some tomato Lycopersicon esculentum Mill varieties in Iraq using Simple Sequence Repeat (SSR) Markers. Magazin of Al-Kufa University for Biology, 7(1), 64-80.
- Antonio, Garcia, L. L., Benchimol, A. M. M., Barbosa, I. O.,Geraldi, C. L., Jr, S., Souza, A. P. d. (2004). Comparison of RAPD, RFLP, AFLP and SSR markers for diversity studies in tropical maize in bred lines. Genetics and Molecular Biology, 27(4), 579-588.
- Bredemeijer, G. M. M., Paul, A., Doret, W.,Vosman, B. (1998). The use of semi-automated fluorescent microsatellite analysis for tomato cultivar identification. Theoretical and Applied Genetics, 97(4), 584-590.
- Doyle, J. J., Doyle, J. L. (1987). A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochemical Bulletin, 19, 11-15.
- Ekincialp, A., Şensoy, S. (2018). Phenotypic and molecular determination of anthracnose disease resistance in Lake Van Basin's bean genotypes (Phaseolus vulgaris L.). Legume Research, 41, 135-142.
- Ekincialp, A., Erdinc, C., Turan, S., Cakmakci, O., Nadeem, M. A., Baloch, F. S., Sensoy., S. (2019). Genetic characterization of Rheum ribes (wild rhubarb) genotypes in Lake Van Basin of Turkey through ISSR and SSR markers. Intl. J. Agric. Biol, 21, 795-802.
Erdinç, Ç., Ekincialp, A., Yıldız, M., Kabay, T., Türkmen, Ö., Şensoy, S. (2013). Molecular genetic diversity in Lake Van Basin melons (Cucumis melo L.) based on RAPD and ISSR markers. YYU J AGR SCI, 23, 264-270.
- Erdinc, C., Turkmen, O., Dasgan, H. Y., Şensoy, S. (2017). Phenotypic and molecular genetic diversity among some Turkish bean genotypes. The Journal of Animal and Plant Sciences, 27(6), 1963-1973.
- Figueiredo, A. S. T., Resende, J. T. V., Faria, M. V., Da-Silva, P. R., Fagundes, B. S., Morales, R. G. F. (2016). Prediction of industrial tomato hybrids from agronomic traits and ISSR molecular markers. Genetics and Molecular Research, 15(2), 1-13.
- Foolad, M. R. (2007). Genome mapping and molecular breeding of tomato. Int J Plant Genomics, 27, 1-52.
- Fukunaga, K., Hill, J., Vigouroux, Y., Matsuoka, Y., Sanchez, G. J., Liu, K., Buckler, E. S., Doebley, J. (2005). Genetic diversity and population structure of Teosinte. Genetics, 169, 2241-2254.
- Furan, M. A., Geboloğlu, M. D. (2017). Assessment of genetic variation on some cultivated Turkish coriander (Coriandrum sativum L.) varieties based on ISSR and SRAP markers. YYU J AGR SCI, 27(2), 245-251.
- Garcia, A. A. F., Benchimol, L. L., Barbosa, A. M. M., Geraldi, I. O., Souza, Jr., C. L., de Souza, A. P. (2004). Comparison of RAPD, RFLP, AFLP and SSR markers for diversity studies in tropical maize in bred lines. Genetics and Molecular Biology, 27(4), 579-588.
- García-Martínez, S., Andreani, L., Garcia-Gusano, M., Genua, F., Ruiz, J. J. (2006). Evaluation of amplified fragment length polymorphism and simple sequence repeats for tomato germplasm fingerprinting: utility for grouping closely related traditional cultivars. Genome, 49(6), 648-656.
- He, C., Poysa, V., Yu, K. (2003). Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. Theoretical Applied Genetics, 106, 363-373.
- Henareh, M., Dursun, A., Abdollahi Mandoulakani, B., Haliloğlu, K. (2016). Assessment of genetic diversity in tomato landraces using ISSR markers. Genetika, 48(1), 25-35.
- Kamel, M. A., Soliman, S. S., Mandour, A. E., Mahassen Ahmed, S. S. (2010). Genetic evaluation and molecular markers for heat tolerance in tomato (Lycopersicon esculentum Mill.). Journal of American Science, 6(12), 364-374.
- Kiani, G., Siahchehreh, M. (2018). Genetic diversity in tomato varieties assessed by ISSR markers. International Journal of Vegetable Science, 24:4, 353-360. DOI: 10.1080/19315260.2017.1419397.
- Kochieva, E. Z., Ryzhova, N. N., Khrapalova, I. A., Pukhalskyi, V. A. (2002). Genetic diversity and phylogenetic relationships in the genus Lycopersicon (Tourn.) Mill. as revealed by Inter-Simple Sequence Repeat (ISSR) analysis. Russian Journal of Genetics, 38(8), 958-966.
- Korir, N. K., Diao, W., Tao, R., Li, X., Kayesh, E., Li, A., Zhen, W., Wang, S. (2014). Genetic diversity and relationships among different tomato varieties revealed by EST-SSR markers. Genetics and Molecular Research, 13(1), 43-53.
- Masumbuko, L., Bryngelsson, T. (2006). Inter Simple Sequence Repeat (ISSR) analysis of diploid coffee species and cultivated Coffea arabica L. from Tanzania. Genetic Resources and Crop Evolution, 53(2), 357-366.
- Meng, F., Xu, X., Feng-lan, Huang, F., Li, J. (2010). Analysis of genetic diversity in cultivated and wild tomato varieties in chinese market by RAPD and SSR. Agricultural Sciences in China, 9(10), 1430-1437.
- Muthusamy, S., Kanagarajan, S., Ponnusamy, S. (2008). Efficiency of RAPD and ISSR markers system in accessing genetic variation of rice bean (Vigna umbellata) landraces. Electronic Journal of Biotechnology, 11(3), 32-41.
- Pharmawati, M., Yan, G., McFarlane, I. J. (2004). Application of RAPD and ISSR markers to analyse molecular relationships in Grevillea (Proteaceae). Australian Systematic Botany, 17, 49-61.
- Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., Rafalski, A. (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 2(3), 225-238.
- Pritchard, J. K., Stephens, M., Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945-959.
- Reddy, M.P., Sarla, N., Siddiq, E. (2002). Inter Simple Sequence Repeat (ISSR) polymorphism and its application in plant breeding. Euphytica, 128(1), 9-17.
- Sharifova, S., Mehdiyeva, S., Theodorikas, K., Roubos, K. (2013). Assessment of genetic diversity in cultivated tomato (Solanum Lycopersicum L.) genotypes using raped primers. Journal of Horticultural Research, 21(1), 83-89.
- Shahlaei, A., Torabi, S., Khosroshahli, M. (2014). Efficiacy of SCoT and ISSR marekers in assesment of tomato (Lycopersicum esculentum Mill.). Int. J. Biosci, 5(2), 14-22.
- Smith, J., Chin, E., Shu, H., Smith, O., Wall, S., Senior, M., Mitchell, S., Kresovich, S., Ziegle, J. (1997). An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): Comparisons with data from RFLPs and pedigree. Theoretical and Applied Genetics, 95, 163-173.
- Smolik, M., Zielinski, J., Danuta, R. P., Katarzyna, A. (2006). Polymorphism of microsatellite sequences in morphologically and phenologically different genotypes of Lonicera periclymenum. Journal of Food, Agriculture and Environment, 4(2), 226-233.
- Suhartanto, M. R. (2002). Chlorophyll in tomato seeds: marker for seed performance? Wageningen,The Netherlands, 1-150.
Suliman-Pollatschek, S., Kashkush, K., Shats, H., Hillel, J., Lavi, U. (2002). Generation and mapping of AFLP, SSRs and SNPs in Lycopersicon esculentum. Cell Mol Biol Lett, 7(2A), 583-597.
- Tabassum, N., Sony, S. K., Bhajan, S. K., Islam, M. N. (2013.) Analysis of genetic diversity in eleven tomato (Lycopersicon esculentum Mill.) varieties using RAPD markers. Plant Tissue Culture and Biotechnology, 23(1), 49‐57.
- Tam, S. M., Mhiri, C., Vogelaar, A., Kerkveld, M., Pearce, S. R., Grandbastien, M. (2005). Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor Appl Genet, 110, 819-831.
- Terzopoulos, P., Bebeli, P. (2008). DNA and morphological diversity of selected Greek tomato (Solanum lycopersicum L.) landraces. Scientia Horticulturae, 116, 354-361.
- Thamir, A.J., Al-Saadi, A. H., Abbass, M. C. (2014). Genetic diversity of some tomato Lycopersicon esculentum Mill varieties in Iraq using Random Amplified Polymorphic DNA (RAPD) Markers. Ournal of Babylon University/Pure and Applied Sciences, 9(22), 2342-2351.
- Tikunov, Y. M., Khrustaleva, L. I., Karlov, G. I. (2003). Application of ISSR markers in the genus Lycopersicon. Euphytica, 131(1), 71-80.
- Todorovska, E., Ivanova, A., Ganeva, D., Pevicharova, G., Molle, E., Bojinov, B., Radkova, M., Danailov, Z. (2014). Assessment of genetic variation in Bulgarian tomato (Solanum lycopersicum L.) genotypes, using fluorescent SSR genotyping platform. Biotechnology and Biotechnological Equipment, 28(1), 68-76.
- Topaklı, F., Hepaksoy, S. (2019). Overall assessment of the molecular analysis of olives in Turkey. YYU J AGR SCI, 29(2), 362-372.
Vargas-Ponce, O., Pérez-Álvarez, L. F., Zamora-Tavares, P., Rodríguez, A. (2011). Assessing genetic diversity in Mexican husk tomato species. Plant Mol. Biol. Rep, 29, 733-738.
- Vishwanath, K., Prasanna, K. P. R., Pallavi, H. M., Prasad, R. S., Ramegowda Devaraju, P. J., Ananthararayanan, T. (2011). Identification of tomato (Lycopersicon esculentum) varieties through total soluble seed proteins. Research Journal Agrilculture Science, 2(1), 08-12.
- Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res, 18(22), 6531-6535.