Research Article
BibTex RIS Cite

The Effects of Magnetic Compounds on Growth and Yield of Cucumber under Greenhouse Conditions

Year 2020, , 890 - 897, 31.12.2020
https://doi.org/10.29133/yyutbd.777105

Abstract

This study was performed to examine the effects of different concentrations of magnetic nano-chitosan (MNC) and nano-Fe3O4 (NF) on the growth and yield of cucumber (Cucumis sativus L. cv. 'Negin'). The sizes of nano-particles were in the range of 20 nm to 50 nm, and their concentrations ranged between 10 to 100 mg L-1. The experiment was designed with nine treatments of MNC (10, 25, 50 and 100 mg L-1), NF (10, 25, 50 and 100 mg L-1) and one control treatment (iron chelate; IC: 60 mg L-1). The results showed that the foliar application of MNC and NF could improve yield and plant growth in cucumber, as well as iron chelate. The results of the present study suggest that the foliar application of nano-fertilizers similar to iron chelate could improve the plant growth and yield of the greenhouse cucumber. As regards toxicity of iron chelates, especially in high doses in the soil, the application of MNC may be safer in sustainable agriculture and even could be better than NF, because it has the combined effects of magnetism, chitosan and being nano-size.

References

  • Abdel Mawgoud, A. M. R., Tantawy, A. S., El-Nemr, M. A., & Sassine, Y. N. (2010). Growth and yield Responses of strawberry plants to Chitosan application. European Journal of Scientific Research, 39(1), 170-177.
  • Barka, E. A., Eullaffroy, P., Clément, C., & Vernet, G. (2004). Chitosan improves development and protects Vitis vinifera L against Botrytis cinerea. Plant Cell Reports, 22, 608-614.
  • Baruah S., & Dutta, J. (2009). Effect of seeded substrates on hydrothermally grown ZnO nanorods. The Journal of Sol-Gel Science and Technology, 50, 456.
  • Chandrkrachang, S., Sompongchaıkul, P., & Teuntai, S. (2003). Effect of chitosan applying in multiculture crop plantaion Paper presented at the proceeding of the National Chitin–Chitosan Conference, Bangkok.
  • Chang, Y. C., & Chen, D. H. (2005). Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu (II) ions. The Journal of Colloid and Interface Science, 283, 446-451.
  • De Rosa, M. C., Monreal, C., Schnitzer, M., Walsh, R., & Sultan Y. (2010). Nanotechnology in fertilizers. Nature Nanotechnology, 5(2), 91.
  • Eifediyi E.K., & Remıson S.U., (2010). Growth and yield of cucumber (Cucumis sativum L.) as influenced by farm yard manure and inorganic fertilizer. Journal of Plant Breeding and Crop Science, 2(7), 216-220.
  • El-Tantawy, E. M. (2009). Behavior of tomato plants as affected by spaying with chitosan and aminofort as natural stimulator substances under application of soil organic amendments. Pakistan Journal of Biological Sciences, 12, 1164-1173.
  • Farouk, S., Ghoneem, K. M., & Abeer, A. (2008). Induction and expression of systematic resistance to downy mildew disease in cucumber plant by elicitors. The Egyptian Journal of Phytopathology, 1-2, 95-111.
  • Ghoname, A. A., El-Nemr, M. A., Abdel-Mawgoud, A.,M.,R., & El-Tohamy, W. A. (2010). Enhancement of sweet pepper crop growth & production by application of biological organic and nutritional solutions. Research Journal of Agriculture and Biological Sciences, 6(3), 349-355.
  • Gornik, K., Grzesik, M., & Duda, B. R. (2008). The effect of chitosan on rooting of grave vine cuttings and on subsequent plant growth under drought and temperature stress. Journal of Fruit and Ornamental Plant Research, 16, 333-343.
  • Hatamzadeh, A., & Shafiei-Masouleh, S. S. (2019). The use of organic nano-supplements of fertilizer for lily forcing period. Advances in Horticultural Science, 33(2), 215-226.
  • Hirano, S. (1988). The activation of plant cells and their self-defense function against pathogens in connection with chitosan. Journal of the Agricultural Chemical Society of Japan, 62, 293-295.
  • Kang, Y. S., Risbud, S., Rabolt, J. F., & Stroeve, P. (1996). Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chemistry of Materials, 8, 2209-2211.
  • Kim, H. J. (2005). Characterization of bioactive compounds in essential oils fermented anchovy sauce and edible plants and induction of phytochemicals from edible plants using methyl jasmonate (MeJA) and chitosan. (PhD), Clemson University, USA.
  • Kumar, A., Maurya, B. R., & Raghuwanshi, R. (2014). Isolation andcharacterization of PGPR and their effect on growth yield and nutrient content in wheat (Triticum aestivum L.). Biocatalysis and Agricultural Biotechnology, 3, 121–128.
  • Ma, C., & Hong, F. (1998). Preliminary studies on the effects of Hg z§ on the germination and growth of wheat seedlings. J. Acta Bot. Ecol., 22(4), 373-378.
  • Mondal, M. M. A., Malek, M. A., Puteh, A. B., Ismail, M.,R., & Ashrafuzzaman, M. (2012). Effect of foliar application of chitosan on growth and yield in okra. Australian Journal of Crop Science, 6, 918-921.
  • Peyvendi, M., Parande, H., & Mirza, M. (2011). Comparison of the effects of nano-iron chelated with iron chelate on growth parameters and antioxidant enzyme activity of Ocimum Basilicum. New Cellular and Molecular Biotechnology Journal, 1(4), 89-98.
  • Rǎcuciu, M., & Creangǎ, D. E. (2007). TMA-OH coated magnetic nanoparticles internalized in vegetal tissue. Romanian Journal of Physics, 52, 395-402.
  • Ren, L., Eller, F., Lambertini, C., Guo, W. Y., Sorrell, B. K., & Brix, H. (2018). Minimum Fe requirement and toxic tissue concentration of Fe in Phragmites australis: A tool for alleviating Fe-deficiency in constructed wetlands. Ecological Engineering, 118, 152-160.
  • Sawan, Z. M., Hafez, S. A., & Basyony, A. E. (2001). Effect of phosphorus fertilization and foliar application of chelated zinc and calcium on seed protein and oil yields and oil properties of cotton. The Journal of Agricultural Science, 136, 191-198.
  • Shafıee-Masouleh, S. S., Hatamzadeh, A., Samızadeh, H., & Rad-Moghadam, K. (2014). Enlarging Bulblet by Magnetic and Chelating Structures of Nano-Chitosan as Supplementary Fertilizer in Lilium. Horticulture, Environment, and Biotechnology, 55(6), 437-444.
  • Sharifa, S. A. (2013). Effect of chitosan on common bean (Phaseolus vulgaris L.) plants grown under water stress conditions. International Research Journal of Agricultural Science and soil Science, 3, 192-199.
  • Siebach, S., Zalapa, J., Covarrubias-Pazaran, G., Harbut, R., Workmaster, B., DeVetter, L. W., Steffan, S., Guédot, C. & Atucha, A. (2015). Toxicity of chelated iron (Fe-DTPA) in American cranberry. Journal of Horticulture, 2(128), 2376-0354.
  • Srılatha, B. (2011). Nanotechnology in agriculture. Journal of Nanomedicine and Nanotechnology, 2, 123.
  • Wu, L., & Liu, M. (2008). Preparation and properties of chitosan-coated NPK compound fertilizer with controlled-release and water-retention. Carbohydrate Polymers, 72, 240-247.
  • Xie, L., Ye, X., Liu, D., & Ying, Y. (2011). Prediction of titratable acidity, malic acid, and citric acid in bayberry fruit by near-infrared spectroscopy. Food Research International, 44(7), 2198-2204.
  • Zhu, N., Nie, Y., Wu D., He, Y., & Chen, K. (2017). Feasibility study on quantitative pixel-level visualization of internal quality at different cross sections inside postharvest loquat fruit. Food Analytical Methods, 10(2), 287-297.

Manyetik Bileşiklerin Sera Koşullarında Hıyarın Büyüme ve Verimine Etkileri

Year 2020, , 890 - 897, 31.12.2020
https://doi.org/10.29133/yyutbd.777105

Abstract

Bu çalışma, farklı konsantrasyonlarda manyetik nano-kitosan (MNK) ve nano-Fe3O4 (NF)'nin hıyarın (Cucumis sativus L. cv.' Negin') büyüme ve verimi üzerindeki etkilerini incelemek için yürütülmüştür. Nano parçacıkların boyutları, 20 nm ile 50 nm aralığında ve konsantrasyonları 10 ile 100 mg/L arasında yer almıştır. Denemede, MNK (10, 25, 50 ve 100 mg/L), NF (10, 25, 50 ve 100 mg/L) uygulamaları ve bir kontrol uygulaması (demir şelat; IC: 60 mg/L) dahil toplam dokuz uygulama yer almıştır. Sonuçlar, demir şelatta olduğu gibi MNK ve NF'nin yapraktan uygulanmasının, hıyarda verim ve bitki büyümesini iyileştirebileceğini göstermiştir. Mevcut çalışmanın sonuçları, demir şelata benzer şekilde nano gübrelerin yapraklara uygulanmasının, sera hıyarının bitki büyümesini ve verimini artırabileceğini önermektedir. Özellikle topraktaki yüksek dozlarda demir şelat toksisitesi ile ilgili olarak, MNK'nin uygulanması, sürdürülebilir tarımda daha güvenli ve hatta manyetizma, kitosan ve nano boyutlu olmanın birleşik etkilerine sahip olduğu için NF'den daha iyi olabilecektir.

References

  • Abdel Mawgoud, A. M. R., Tantawy, A. S., El-Nemr, M. A., & Sassine, Y. N. (2010). Growth and yield Responses of strawberry plants to Chitosan application. European Journal of Scientific Research, 39(1), 170-177.
  • Barka, E. A., Eullaffroy, P., Clément, C., & Vernet, G. (2004). Chitosan improves development and protects Vitis vinifera L against Botrytis cinerea. Plant Cell Reports, 22, 608-614.
  • Baruah S., & Dutta, J. (2009). Effect of seeded substrates on hydrothermally grown ZnO nanorods. The Journal of Sol-Gel Science and Technology, 50, 456.
  • Chandrkrachang, S., Sompongchaıkul, P., & Teuntai, S. (2003). Effect of chitosan applying in multiculture crop plantaion Paper presented at the proceeding of the National Chitin–Chitosan Conference, Bangkok.
  • Chang, Y. C., & Chen, D. H. (2005). Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu (II) ions. The Journal of Colloid and Interface Science, 283, 446-451.
  • De Rosa, M. C., Monreal, C., Schnitzer, M., Walsh, R., & Sultan Y. (2010). Nanotechnology in fertilizers. Nature Nanotechnology, 5(2), 91.
  • Eifediyi E.K., & Remıson S.U., (2010). Growth and yield of cucumber (Cucumis sativum L.) as influenced by farm yard manure and inorganic fertilizer. Journal of Plant Breeding and Crop Science, 2(7), 216-220.
  • El-Tantawy, E. M. (2009). Behavior of tomato plants as affected by spaying with chitosan and aminofort as natural stimulator substances under application of soil organic amendments. Pakistan Journal of Biological Sciences, 12, 1164-1173.
  • Farouk, S., Ghoneem, K. M., & Abeer, A. (2008). Induction and expression of systematic resistance to downy mildew disease in cucumber plant by elicitors. The Egyptian Journal of Phytopathology, 1-2, 95-111.
  • Ghoname, A. A., El-Nemr, M. A., Abdel-Mawgoud, A.,M.,R., & El-Tohamy, W. A. (2010). Enhancement of sweet pepper crop growth & production by application of biological organic and nutritional solutions. Research Journal of Agriculture and Biological Sciences, 6(3), 349-355.
  • Gornik, K., Grzesik, M., & Duda, B. R. (2008). The effect of chitosan on rooting of grave vine cuttings and on subsequent plant growth under drought and temperature stress. Journal of Fruit and Ornamental Plant Research, 16, 333-343.
  • Hatamzadeh, A., & Shafiei-Masouleh, S. S. (2019). The use of organic nano-supplements of fertilizer for lily forcing period. Advances in Horticultural Science, 33(2), 215-226.
  • Hirano, S. (1988). The activation of plant cells and their self-defense function against pathogens in connection with chitosan. Journal of the Agricultural Chemical Society of Japan, 62, 293-295.
  • Kang, Y. S., Risbud, S., Rabolt, J. F., & Stroeve, P. (1996). Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chemistry of Materials, 8, 2209-2211.
  • Kim, H. J. (2005). Characterization of bioactive compounds in essential oils fermented anchovy sauce and edible plants and induction of phytochemicals from edible plants using methyl jasmonate (MeJA) and chitosan. (PhD), Clemson University, USA.
  • Kumar, A., Maurya, B. R., & Raghuwanshi, R. (2014). Isolation andcharacterization of PGPR and their effect on growth yield and nutrient content in wheat (Triticum aestivum L.). Biocatalysis and Agricultural Biotechnology, 3, 121–128.
  • Ma, C., & Hong, F. (1998). Preliminary studies on the effects of Hg z§ on the germination and growth of wheat seedlings. J. Acta Bot. Ecol., 22(4), 373-378.
  • Mondal, M. M. A., Malek, M. A., Puteh, A. B., Ismail, M.,R., & Ashrafuzzaman, M. (2012). Effect of foliar application of chitosan on growth and yield in okra. Australian Journal of Crop Science, 6, 918-921.
  • Peyvendi, M., Parande, H., & Mirza, M. (2011). Comparison of the effects of nano-iron chelated with iron chelate on growth parameters and antioxidant enzyme activity of Ocimum Basilicum. New Cellular and Molecular Biotechnology Journal, 1(4), 89-98.
  • Rǎcuciu, M., & Creangǎ, D. E. (2007). TMA-OH coated magnetic nanoparticles internalized in vegetal tissue. Romanian Journal of Physics, 52, 395-402.
  • Ren, L., Eller, F., Lambertini, C., Guo, W. Y., Sorrell, B. K., & Brix, H. (2018). Minimum Fe requirement and toxic tissue concentration of Fe in Phragmites australis: A tool for alleviating Fe-deficiency in constructed wetlands. Ecological Engineering, 118, 152-160.
  • Sawan, Z. M., Hafez, S. A., & Basyony, A. E. (2001). Effect of phosphorus fertilization and foliar application of chelated zinc and calcium on seed protein and oil yields and oil properties of cotton. The Journal of Agricultural Science, 136, 191-198.
  • Shafıee-Masouleh, S. S., Hatamzadeh, A., Samızadeh, H., & Rad-Moghadam, K. (2014). Enlarging Bulblet by Magnetic and Chelating Structures of Nano-Chitosan as Supplementary Fertilizer in Lilium. Horticulture, Environment, and Biotechnology, 55(6), 437-444.
  • Sharifa, S. A. (2013). Effect of chitosan on common bean (Phaseolus vulgaris L.) plants grown under water stress conditions. International Research Journal of Agricultural Science and soil Science, 3, 192-199.
  • Siebach, S., Zalapa, J., Covarrubias-Pazaran, G., Harbut, R., Workmaster, B., DeVetter, L. W., Steffan, S., Guédot, C. & Atucha, A. (2015). Toxicity of chelated iron (Fe-DTPA) in American cranberry. Journal of Horticulture, 2(128), 2376-0354.
  • Srılatha, B. (2011). Nanotechnology in agriculture. Journal of Nanomedicine and Nanotechnology, 2, 123.
  • Wu, L., & Liu, M. (2008). Preparation and properties of chitosan-coated NPK compound fertilizer with controlled-release and water-retention. Carbohydrate Polymers, 72, 240-247.
  • Xie, L., Ye, X., Liu, D., & Ying, Y. (2011). Prediction of titratable acidity, malic acid, and citric acid in bayberry fruit by near-infrared spectroscopy. Food Research International, 44(7), 2198-2204.
  • Zhu, N., Nie, Y., Wu D., He, Y., & Chen, K. (2017). Feasibility study on quantitative pixel-level visualization of internal quality at different cross sections inside postharvest loquat fruit. Food Analytical Methods, 10(2), 287-297.
There are 29 citations in total.

Details

Primary Language English
Subjects Horticultural Production
Journal Section Articles
Authors

Mohammad Ahmadi

Sahebali Bolandnazar This is me 0000-0001-9396-7373

Jaber Panahandeh This is me

Seyedeh Somayyeh Shafıeı Masouleh 0000-0001-5455-0970

Publication Date December 31, 2020
Acceptance Date November 3, 2020
Published in Issue Year 2020

Cite

APA Ahmadi, M., Bolandnazar, S., Panahandeh, J., Shafıeı Masouleh, S. S. (2020). The Effects of Magnetic Compounds on Growth and Yield of Cucumber under Greenhouse Conditions. Yuzuncu Yıl University Journal of Agricultural Sciences, 30(Ek sayı (Additional issue), 890-897. https://doi.org/10.29133/yyutbd.777105
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.