Research Article
BibTex RIS Cite

Türkiye'den Elde Edilen Farklı Mantar Türlerinde Radyoaktivite Seviyelerinin Belirlenmesi

Year 2021, , 30 - 41, 30.03.2021
https://doi.org/10.29133/yyutbd.797101

Abstract

Öz: Radyoaktivite; doğal, karasal, dünya dışı faktörler veya insan aktivitesinden kaynaklanmaktadır. Toprakta yetişen radyoaktif elementler içeren gıda maddeleri, gıdalarda birikebilmekte veya emilebilmektedir. Yabani olarak yetişen mantarlar pek çok türde toksikolojik, besleyici ve radyoaktif element biriktirebilmektedir. Bu nedenle, mantarlar radyasyonların neden olduğu çevre kirliliğini belirlemek için iyi biyo-göstergeler olarak kabul edilmektedir. Gıda maddelerindeki radyoaktivite seviyelerinin bilinmesi insan sağlığının korunması açısından büyük önem taşımaktadır. Bu çalışmada, Türk halkı tarafından yaygın olarak tüketilen mantarlarda doğal olarak oluşan 238U, 232Th ve 40K nüklidleri ile yapay olarak oluşan 137Cs nüklidinin aktivite konsantrasyonları, yıllık etkili dozlar ve yaşam boyu kanser riski değerleri belirlenmiştir. Türkiye'nin farklı yerlerinden 15 çeşit mantar örneği toplanmıştır. Sonuçlar 238U, 232Th, 40K ve 137Cs aktivite konsantrasyonlarının sırasıyla 9.2±1.6 - 75.4±8.8 Bq kg-1, 10.9±1.6 - 76.3±8.9 Bq kg-1, 925.9±29.0 - 3848.0±73.2 Bq kg-1 ve 6.1±1.1 - 2824.8±79.8 Bq kg-1 arasında değiştiğini göstermektedir. Ortalama toplam yıllık etkili doz 11.5 μSv y-1 olarak bulunmuştur. 40K radyonüklidi, toplam yıllık etkili doza (5.35 μSv y-1) en yüksek katkıda bulunan radyonüklid olarak belirlenmiştir. Elde edilen bu değerlere göre, mantarların ortalama yaşam boyu kanser riski (ELCR) değeri %4.6 x10-5 olarak belirlenmiştir.

References

  • Abbady, A. (2006). Level of natural radionuclides in foodstuffs and resultant annual ingestion radiation dose. Nuclear Science and Techniques, 17, 297-300.
  • Akça, S. (2011). Mantar çeşitlerinde elemental analiz ve doğal radyoaktivite ölçümü. Yüksek Lisans Tezi, Kahramanmaraş Sütçü İmam Üniversitesi Fen Bilimleri Enstitüsü, Kahramanmaraş.
  • Akça, S., Sögüt, Ö., Küçükönder, E., Karatepe, S., & Dogru, M. (2014). Radioactivity levels in some mushroom species and consequent doses. Asian Journal of Chemistry, 26, 879-882.
  • Baeza, A., Hernandez, S., Guillen, J., Moreno, G., Manjoon, J. L., & Pascuala, R. (2004). Radiocaesium and natural gamma emitters in mushrooms collected in Spain. Science of the Total Environment, 408, 84-91.
  • Baeza, A., Guillen, F. J., Salas, A., & Manjon, J. L. (2006). Distribution of radionuclides in different parts of a mushroom: Influence of the degree of maturity. Science of the Total Environment, 359, 255-266.
  • Bannai, T., Yoshida, S., Muramatsu, Y., & Suzuki, A. (2005). Uptake of radiocesium by hypha of Basidiomycetes radiotracer experiments. Journal of Nuclear and Radiochemical Sciences, 6, 111-113.
  • Bazala, M. A., Golda, K., & Bystrzejewska-Piotrowska, G. (2008). Transport of radiocesium in mycelium and its translocation to fruitbodies of a saprophytic macromycete. Journal of Environmental Radioactivity, 99, 1200-1202.
  • Castro, L. P., Maihara, V. A., Silva, P. S. C., & Figueira, R. C. L. (2012). Artificial and natural radioactivity in edible mushrooms from Sao Paulo, Brazil. Journal of Environmental Radioactivity, 113, 150-154.
  • Changizi, V., Angaji, M., Zare, M. R., & Abbasnejad, K. (2012). Evaluation of 226Ra, 232Th, 137Cs and 40K “Agaricus bisporus” activity in cultivated edible mushroom formed in Tehran province-Iran. Iranian Journal of Medical Physics, 9, 239-244.
  • Falandysz, J., & Borovicka, J. (2013). Macro and trace mineral constituents and radionuclides in mushrooms: Health benefits and risks. Applied Microbiology and Biotechnology, 97, 477-501.
  • Gaso, M. I., Segoviaa, N., Herrera, T., Perez-Silva, E., Cervantes, M. L., Quintero, E., Palacios, J., & Acosta, E. (1998). Radiocesium accumulation in edible wild mushrooms from coniferous forests around the Nuclear Centre of Mexico. The Science of the Total Environment, 223, 119-129.
  • Gaso, M. I., Segovia, N., Morton, O., Cervantes, M. L., Godinez, L., Pena, P., & Acosta, E. (2000). 137Cs and relationships with major and trace elements in edible mushrooms from Mexico. Science of the Total Environment, 262, 73-89.
  • Gwynn, J. P., Nalbandyan, A., & Rudolfsen, G. (2013). 210Po, 210Pb, 40K and 137Cs in edible wild berries and mushrooms and ingestion doses to man from high consumption rates of these wild foods. Journal of Environmental Radioactivity, 116, 34-41.
  • IAEA. (2011). International Atomic Energy Agency. Safety Standards for Protecting People and the Environment, Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. General Safety Requirements. Vienna, Austria.
  • IAEA. (2016). International Atomic Energy Agency. Criteria for Radionuclide Activity Concentrations for Food and Drinking Water. Vienna, Austria.
  • ICRP. (2007). International Commission on Radiological Protection. Annals of the ICRP, The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37, 2-4.
  • Kalac, P. (2001). A review of edible mushroom radioactivity. Food Chemistry, 75, 29-35.
  • Kalac, P., & Svoboda, L. (2000). A review of trace element concentrations in edible mushrooms. Food Chemistry, 69, 273-281.
  • Kammerer, L., Hiersche, L., & Wirth, E. (1994). Uptake of radiocesium by different species of mushrooms. Journal of Environmental Radioactivity, 23, 135-150.
  • Karadeniz, Ö., & Yaprak, G. (2010). 137Cs, 40K, alkali–alkaline earth element and heavy metal concentrations in wild mushrooms from Turkey. Journal of Radioanalytical and Nuclear Chemistry, 285, 611-619.
  • Kuwahara, C., Fukumoto, A., Ohsone, A., Furuya, N., Shibata, H., Sugiyama, H., & Kato, F. (2005). Accumulation of radiocesium in wild mushrooms collected from a Japanese forest and cesium uptake by microorganisms isolated from the mushroom-growing soils. The Science of the Total Environment, 345, 165-173.
  • Lehto, J., Vaaramaa, K., & Leskinen, A. (2013). 137Cs, 239,240Pu and 241Am in boreal forest soil and their transfer into wild mushrooms and berries. Journal of Environmental Radioactivity, 116, 124-132.
  • Malinowska, E., Szefer, P., & Bojanowski, R. (2006). Radionuclides content in Xerocomus badius and other commercial mushrooms from several regions of Poland. Food Chemistry, 97, 19-24.
  • Mietelski, J. W., Dubchak, S., Blazeja, S., Anielska, T., & Turnau, K. (2010). 137Cs and 40K in fruiting bodies of different fungal species collected in a single forest in southern Poland. Journal of Environmental Radioactivity, 101, 706-711.
  • Pekşen, A., & Akdeniz, H. (2012). Organik ürün olarak doğa mantarları. Düzce Üniversitesi Orman Fakültesi Ormancılık Dergisi, 8, 34-40.
  • Phillips, R. (1994). Mushrooms and Other Fungi of Great Britain and Europe. Milan, Italy.
  • Rosa, M. M. L., Maihara, V. A., Taddei, M. H. T., Silva, M. A., & Ferreira, M. T. (2011). Determination of 228Th, 232Th, and 228Ra in wild mushroom from a naturally high radioactive region in Brazil. International Nuclear Atlantic Conference, Belo Horizonte, Brazil.
  • Taira, Y., Hayashidai, N., Brahmanandhan, G. M., Nagayama, Y., Yamashita, S., Takahashi, J., Gutenitc, A., Kazlovsky, A., Urazalin, M., & Takamura, N. (2011). Current concentration of artificial radionuclides and estimated radiation doses from 137Cs around the Chernobyl nuclear power plant, the Semipalatinsk nuclear testing site, and in Nagasaki. Journal of Radiation Research, 52, 88-95.
  • Taskin, H., Karavus, M., Ay, P., Topuzoglu, A., Hidiroglu, S., & Karahan, G. (2009). Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. Journal of Environmental Radioactivity, 100, 49-53.
  • UNSCEAR. (1988). United Nations Scientific Committee on the Effects of Atomic Radiation, Sources, Effects and Risk of Ionizing Radiation, United Nations, New York.
  • WHO. (1989). World Health Organization, Evaluation of Certain Food Additives and Contaminants, in: Thirty-third Report of the Joint FAO/WHO Expert Committee on Food Additives.
  • Yamaç, M., Yıldız, D., Sarıkürkcü, C., Çelikkollu, M., & Solak, M. H. (2007). Heavy metals in some edible mushrooms from the Central Anatolia, Turkey. Food Chemistry, 103, 263-267.
  • Yılmaz, A., Yıldız, S., Çelik, A., & Çevik, U. (2016). Determination of heavy metal and radioactivity in Agaricus campestris mushroom collected from Kahramanmaraş and Erzurum proviences. Turkish Journal of Agriculture - Food Science and Technology, 4, 208-215.
  • Yoshida, S., Muramatsu, Y., Dvornik, A. M., Zhuchenko, T. A., & Linkov, I. (2004). Equilibrium of radiocesium with stable cesium within the biological cycle of contaminated forest ecosystems. Journal of Environmental Radioactivity, 75, 301-313.

Determination of Radioactivity Levels in Different Mushroom Species from Turkey

Year 2021, , 30 - 41, 30.03.2021
https://doi.org/10.29133/yyutbd.797101

Abstract

Radioactivity in the environment occur due to natural, terrestrial, extra-terrestrial factors or caused by the human activity. Food stuffs that grown in the soil which containing radioactive elements may get deposited or absorbed in the foods. Wild growing mushrooms can accumulate many types of toxicological, nutritional and radioactive elements. So, mushrooms are considered as good bio-indicators to determine the environmental pollution caused by radiations. Knowing the levels of radioactivity in the food stuffs is of great importance for the protection of human health. In this study, the active concentrations of the naturally occurring 238U, 232Th, 40K nuclides and artificially occurring 137Cs nuclide were determined and annual effective doses and excess lifetime cancer risk values were calculated in mushrooms commonly consumed by the Turkish people. 15 types of mushroom samples were collected from different locations of Turkey. The results show that the activity concentrations of 238U, 232Th, 40K and 137Cs varied from 9.2±1.6 to 75.4±8.8 Bq kg-1, 10.9±1.6 to 76.3±8.9 Bq kg-1, 925.9±29.0 to 3848.0±73.2 Bq kg-1 and 6.1±1.1 to 2824.8±79.8 Bq kg-1, respectively. The mean total annual effective dose was found to be 11.5 μSv y-1. 40K radionuclide was the highest contributor to the total annual effective dose (5.35 μSv y-1). According to these values obtained, the mean excess lifetime cancer risk (ELCR) of mushrooms was determined as 4.6 x10-5 %.

References

  • Abbady, A. (2006). Level of natural radionuclides in foodstuffs and resultant annual ingestion radiation dose. Nuclear Science and Techniques, 17, 297-300.
  • Akça, S. (2011). Mantar çeşitlerinde elemental analiz ve doğal radyoaktivite ölçümü. Yüksek Lisans Tezi, Kahramanmaraş Sütçü İmam Üniversitesi Fen Bilimleri Enstitüsü, Kahramanmaraş.
  • Akça, S., Sögüt, Ö., Küçükönder, E., Karatepe, S., & Dogru, M. (2014). Radioactivity levels in some mushroom species and consequent doses. Asian Journal of Chemistry, 26, 879-882.
  • Baeza, A., Hernandez, S., Guillen, J., Moreno, G., Manjoon, J. L., & Pascuala, R. (2004). Radiocaesium and natural gamma emitters in mushrooms collected in Spain. Science of the Total Environment, 408, 84-91.
  • Baeza, A., Guillen, F. J., Salas, A., & Manjon, J. L. (2006). Distribution of radionuclides in different parts of a mushroom: Influence of the degree of maturity. Science of the Total Environment, 359, 255-266.
  • Bannai, T., Yoshida, S., Muramatsu, Y., & Suzuki, A. (2005). Uptake of radiocesium by hypha of Basidiomycetes radiotracer experiments. Journal of Nuclear and Radiochemical Sciences, 6, 111-113.
  • Bazala, M. A., Golda, K., & Bystrzejewska-Piotrowska, G. (2008). Transport of radiocesium in mycelium and its translocation to fruitbodies of a saprophytic macromycete. Journal of Environmental Radioactivity, 99, 1200-1202.
  • Castro, L. P., Maihara, V. A., Silva, P. S. C., & Figueira, R. C. L. (2012). Artificial and natural radioactivity in edible mushrooms from Sao Paulo, Brazil. Journal of Environmental Radioactivity, 113, 150-154.
  • Changizi, V., Angaji, M., Zare, M. R., & Abbasnejad, K. (2012). Evaluation of 226Ra, 232Th, 137Cs and 40K “Agaricus bisporus” activity in cultivated edible mushroom formed in Tehran province-Iran. Iranian Journal of Medical Physics, 9, 239-244.
  • Falandysz, J., & Borovicka, J. (2013). Macro and trace mineral constituents and radionuclides in mushrooms: Health benefits and risks. Applied Microbiology and Biotechnology, 97, 477-501.
  • Gaso, M. I., Segoviaa, N., Herrera, T., Perez-Silva, E., Cervantes, M. L., Quintero, E., Palacios, J., & Acosta, E. (1998). Radiocesium accumulation in edible wild mushrooms from coniferous forests around the Nuclear Centre of Mexico. The Science of the Total Environment, 223, 119-129.
  • Gaso, M. I., Segovia, N., Morton, O., Cervantes, M. L., Godinez, L., Pena, P., & Acosta, E. (2000). 137Cs and relationships with major and trace elements in edible mushrooms from Mexico. Science of the Total Environment, 262, 73-89.
  • Gwynn, J. P., Nalbandyan, A., & Rudolfsen, G. (2013). 210Po, 210Pb, 40K and 137Cs in edible wild berries and mushrooms and ingestion doses to man from high consumption rates of these wild foods. Journal of Environmental Radioactivity, 116, 34-41.
  • IAEA. (2011). International Atomic Energy Agency. Safety Standards for Protecting People and the Environment, Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. General Safety Requirements. Vienna, Austria.
  • IAEA. (2016). International Atomic Energy Agency. Criteria for Radionuclide Activity Concentrations for Food and Drinking Water. Vienna, Austria.
  • ICRP. (2007). International Commission on Radiological Protection. Annals of the ICRP, The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37, 2-4.
  • Kalac, P. (2001). A review of edible mushroom radioactivity. Food Chemistry, 75, 29-35.
  • Kalac, P., & Svoboda, L. (2000). A review of trace element concentrations in edible mushrooms. Food Chemistry, 69, 273-281.
  • Kammerer, L., Hiersche, L., & Wirth, E. (1994). Uptake of radiocesium by different species of mushrooms. Journal of Environmental Radioactivity, 23, 135-150.
  • Karadeniz, Ö., & Yaprak, G. (2010). 137Cs, 40K, alkali–alkaline earth element and heavy metal concentrations in wild mushrooms from Turkey. Journal of Radioanalytical and Nuclear Chemistry, 285, 611-619.
  • Kuwahara, C., Fukumoto, A., Ohsone, A., Furuya, N., Shibata, H., Sugiyama, H., & Kato, F. (2005). Accumulation of radiocesium in wild mushrooms collected from a Japanese forest and cesium uptake by microorganisms isolated from the mushroom-growing soils. The Science of the Total Environment, 345, 165-173.
  • Lehto, J., Vaaramaa, K., & Leskinen, A. (2013). 137Cs, 239,240Pu and 241Am in boreal forest soil and their transfer into wild mushrooms and berries. Journal of Environmental Radioactivity, 116, 124-132.
  • Malinowska, E., Szefer, P., & Bojanowski, R. (2006). Radionuclides content in Xerocomus badius and other commercial mushrooms from several regions of Poland. Food Chemistry, 97, 19-24.
  • Mietelski, J. W., Dubchak, S., Blazeja, S., Anielska, T., & Turnau, K. (2010). 137Cs and 40K in fruiting bodies of different fungal species collected in a single forest in southern Poland. Journal of Environmental Radioactivity, 101, 706-711.
  • Pekşen, A., & Akdeniz, H. (2012). Organik ürün olarak doğa mantarları. Düzce Üniversitesi Orman Fakültesi Ormancılık Dergisi, 8, 34-40.
  • Phillips, R. (1994). Mushrooms and Other Fungi of Great Britain and Europe. Milan, Italy.
  • Rosa, M. M. L., Maihara, V. A., Taddei, M. H. T., Silva, M. A., & Ferreira, M. T. (2011). Determination of 228Th, 232Th, and 228Ra in wild mushroom from a naturally high radioactive region in Brazil. International Nuclear Atlantic Conference, Belo Horizonte, Brazil.
  • Taira, Y., Hayashidai, N., Brahmanandhan, G. M., Nagayama, Y., Yamashita, S., Takahashi, J., Gutenitc, A., Kazlovsky, A., Urazalin, M., & Takamura, N. (2011). Current concentration of artificial radionuclides and estimated radiation doses from 137Cs around the Chernobyl nuclear power plant, the Semipalatinsk nuclear testing site, and in Nagasaki. Journal of Radiation Research, 52, 88-95.
  • Taskin, H., Karavus, M., Ay, P., Topuzoglu, A., Hidiroglu, S., & Karahan, G. (2009). Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. Journal of Environmental Radioactivity, 100, 49-53.
  • UNSCEAR. (1988). United Nations Scientific Committee on the Effects of Atomic Radiation, Sources, Effects and Risk of Ionizing Radiation, United Nations, New York.
  • WHO. (1989). World Health Organization, Evaluation of Certain Food Additives and Contaminants, in: Thirty-third Report of the Joint FAO/WHO Expert Committee on Food Additives.
  • Yamaç, M., Yıldız, D., Sarıkürkcü, C., Çelikkollu, M., & Solak, M. H. (2007). Heavy metals in some edible mushrooms from the Central Anatolia, Turkey. Food Chemistry, 103, 263-267.
  • Yılmaz, A., Yıldız, S., Çelik, A., & Çevik, U. (2016). Determination of heavy metal and radioactivity in Agaricus campestris mushroom collected from Kahramanmaraş and Erzurum proviences. Turkish Journal of Agriculture - Food Science and Technology, 4, 208-215.
  • Yoshida, S., Muramatsu, Y., Dvornik, A. M., Zhuchenko, T. A., & Linkov, I. (2004). Equilibrium of radiocesium with stable cesium within the biological cycle of contaminated forest ecosystems. Journal of Environmental Radioactivity, 75, 301-313.
There are 34 citations in total.

Details

Primary Language English
Subjects Horticultural Production
Journal Section Articles
Authors

Aysun Pekşen 0000-0002-9601-5041

Aslı Kurnaz 0000-0002-7910-3461

Nezahat Turfan 0000-0002-5753-0390

Beyhan Kibar 0000-0001-9253-5747

Publication Date March 30, 2021
Acceptance Date November 29, 2020
Published in Issue Year 2021

Cite

APA Pekşen, A., Kurnaz, A., Turfan, N., Kibar, B. (2021). Determination of Radioactivity Levels in Different Mushroom Species from Turkey. Yuzuncu Yıl University Journal of Agricultural Sciences, 31(1), 30-41. https://doi.org/10.29133/yyutbd.797101
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.