Research Article
BibTex RIS Cite

Bodur Yerel Fasulye Genotiplerinin Kuraklık Stresine Tolerans Düzeylerinin Araştırılması

Year 2021, , 62 - 70, 30.03.2021
https://doi.org/10.29133/yyutbd.825094

Abstract

Önemli gen kaynağı olan yerel çeşitler, ıslah çalışmalarında başlangıç materyali olarak kullanılmaktadır. Fasulye abiyotik strese duyarlı bir türdür. Bu nedenle stres koşullarında yapılan erken tarama testleri ıslah sürecinin doğru ve hızlı olarak yapılabilmesi için ıslahçılara kolaylık sağlayacaktır. Bu çalışmada, tuz tolerans indeksleri önceden belirlenmiş on beş genotip için erken dönem kuraklık stresi indeksi oluşturulmuştur. Bu amaçla genotipler ilk çiçeklenme dönemine kadar dört farklı kuraklık stresine maruz bırakılmıştır [%25 (I25), %50 (I50), %75 (I75) ve %100 (I100)]. Genotiplerin kuraklık adaptasyonunu belirlemek için kuraklıkla ilişkili bitki büyüme parametreleri olarak; sürgün uzunluğu (cm), kök uzunluğu (cm), sürgün yaş ve kuru ağırlığı (g), kök yaş ve kuru ağırlığı (g), yaprak genişliği ve uzunluğu (cm), gövde çapı (cm) ve stomatal iletkenlik ölçülmüştür. Daha sonra genotipler kuraklık stres indeksine göre sınıflandırılmıştır. Genotiplerin ve kuraklık stresinin incelenen tüm parametreler üzerinde istatistiksel olarak anlamlı bir etkiye sahip olduğu ve tüm özellikler için Genotip x Kuraklık etkileşiminin 0.01 düzeyinde anlamlı olduğu belirlenmiştir. Elde edilen kuraklık stresi indeksi verilerine göre genotiplerin üçünün (ADY4, AGB1 ve AGB5) orta derecede duyarlı, on iki tanesinin ise (AGun6, AGun19, AGun25, BKara1-A, Bkara2, BY4, BY24, ISGa1, ISGa7, ISGa10, IYoz10 ve IYoz14) duyarlı olduğu belirlenmiştir. Sonuç olarak, çalışılan genotipler kuraklığa tolerant olmamakla birlikte bu durum kuraklık tolerans indeksi kullanılarak erken dönemde belirlenmiştir. Bu çalışma seleksiyon indeksleri kullanılarak farklı sebze genotiplerinin erken dönemde sınıflandırılmasına bir örnek oluşturması açısından önem taşımaktadır.

References

  • Ahmad, S., Ahmad, R., Ashraf, M. Y., Ashraf, M., & Waraich, E. A. (2009). Sunflower (Helianthus annuus L.) response to drought stress at germination and seedling growth stages. Pakistan Journal of Botany, 41(2), 647-654.
  • Al-Ashkar, I. M, El-Kafafi, S. H. (2014). Identification of traits contributing salt tolerance in some doubled haploid wheat lines at seedling stage. Middle East Journal of Applied Sciences, 4(4), 1130-1140.
  • Asfaw, A. & Blair, M. W. (2014). Quantification of drought tolerance in Ethiopian common bean varieties. Agricultural Sciences, 5, 124–139. DOI:10.4236/as.2014.52016.
  • Asfaw, A., Almekinders, C., Blair, M. W., Struik, P. (2012.) Participatory approach in common bean breeding for drought tolerance for southern Ethiopia. Plant Breeding, 131, 125–134. doi.org/10.1111/j.1439-0523.2011.01921.x.
  • Ashraf, M. & Iram, A. (2005). Drought stress induced changes in some organic substances in nodules and other plant parts of two potential legumes differing in salt tolerance. Flora, 200. 535–546. doi.org/10.1016/j.flora.2005.06.005.
  • Ashraf, M.Y., K. Akhtar, F. Hussain and J. Iqbal. 2006. Screening of different accessions of three potential grass species from Cholistan desert for salt tolerance. Pakistan Journal of Botany, 38:1589-1597.
  • Assefa, T., Wu, J., Beebe, S. E., Rao, I. M., Marcomin, D. & Claude, R. J. (2015). Improving adaptation to drought stress in small red common bean: phenotypic differences and predicted genotypic effects on grain yield, yield components and harvest index. Euphytica, 203 (3), 477–489. doi:10.1007/s10681-014-1242-x.
  • Beebe, S. E., Rao, I. M., Cajiao, V. & Grajales, M. (2008). Selection for drought resistance in common bean also improves yield in phosphorus limited and favorable environments. Crop Science, 48:582-592. doi.org/10.2135/cropsci2007.07.0404.
  • Beebe, S. E., Rao, I. M., Blair, M. W. & Acosta-Gallegos, J. A. (2013). Phenotyping common beans for adaptation to drought. Frontiers in Physiology, 4, 35. doi:10.3389/fphys.2013.00035.
  • Blum, A. (2009). Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Research, 112(2), 119–123. doi:10.1016/j.fcr.2009.03.009.
  • Darkwa, K., Ambachew, D., Mohammed, H., Asfaw, A., & Blair, M. W. (2016). Evaluation of common bean (Phaseolus vulgaris L.) genotypes for drought stress adaptation in Ethiopia. The Crop Journal, 4(5), 367-376. doi.org/10.1016/j.cj.2016.06.007.
  • Dipp, C. C., Marchese, J. A., Woyann, L. G., Bosse, M. A., Roman, M. H., Gobatto, D. R., ... & Finatto, T. (2017). Drought stress tolerance in common bean: what about highly cultivated Brazilian genotypes?. Euphytica, 213(5), 102. DOI 10.1007/s10681-017-1893-5.
  • Farooq, M., Hussain, M., Wahid, A., & Siddique, K. H. M. (2012). Drought stress in plants: an overview. In Plant responses to drought stress (pp. 1-33). Springer, Berlin, Heidelberg. doi.org/10.1007/978-3-642-32653-0_1.
  • Jaleel, C. A., Manivannan, P., Wahid, A., Farooq, M., Al-Juburi, H. J., Somasundaram, R. & Panneerselvam, R. (2009). Drought stress in plants: a review on morphological characteristics and pigments composition. International Journal of Agriculture & Biology, 11(1), 100-105. ISSN Print: 1560–8530; ISSN Online: 1814–9596.
  • Khanzada, H., Wassan, G. M., He, H., Mason, A. S., Keerio, A. A., Khanzada, S., ... & Huang, Y. (2020). Differentially evolved drought stress indices determine the genetic variation of Brassica napus at seedling traits by genome-wide association mapping. Journal of Advanced Research, 24, 447-461. doi.org/10.1016/j.jare.2020.05.019.
  • Lanna, A. C., Mitsuzono, S. T., Terra, T. G. R., Vianello, R. P. & de Figueiredo Carvalho, M. A. (2016) Physiological characterization of common bean (Phaseolus vulgaris L.) genotypes, water-stress induced with contrasting response towards drought. Australian Journal of Crop Science, 10(1), 1. ISSN: 1835-2693.
  • Mortimore, M. (2005). Ecosystems and Human Well-being: Current State and Trends. (Current State ve Trends Assessment-Chapter 22, Millennium Ecosystem Assessment: Ed. Anderson, S., Cotula, L., Faccer, K., Hesse, C., Mwangi, A., Nyangena, W., Skinner, J. p, 139. ISBN 1-59726-040-1.
  • Negrão, S., Schmöckel, S. M. & Tester M. (2017). Evaluating physiological responses of plants to salinity stress. Annals of botany, 119(1): 1-11. doi.org/10.1093/aob/mcw191.
  • Neves, D. M., da Hora Almeida, L. A., Santana-Vieira, D. D. S., Freschi, L., Ferreira, C. F., dos Santos Soares Filho, W., ... & da Silva Gesteira, A. (2017). Recurrent water deficit causes epigenetic and hormonal changes in citrus plants. Scientific reports, 7(1), 1-11. DOI:10.1038/s41598-017-14161-x.
  • Önder, M., Ateş, M. K., Kahraman, A., & Ceyhan, E. (2012). Konya ilinde fasulye tarımında karşılaşılan problemler ve çözüm önerileri. International Journal of Agricultural and Natural Sciences, 5(1), 143-148. ISSN: 1308-3945, E-ISSN: 1308-027X.
  • Raza, A., Razzaq, A., Mehmood, S. S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants, 8(2), 34. doi.org/10.3390/plants8020034.
  • Rehman, A., Jingdong, L., Shahzad, B., Chandio, A. A., Hussain, I., Nabi, G., & Iqbal, M. S. (2015). Economic perspectives of major field crops of Pakistan: An empirical study. Pacific Science Review B: Humanities and Social Sciences, 1(3), 145-158. doi.org/10.1016/j.psrb.2016.09.002.
  • Saima, S., Li, G., & Wu, G. (2018). Effects of drought stress on hybrids of Vigna radiata at germination stage. Acta Biologica Hungarica, 69(4), 481-492. doi.org/10.1556/018.69.2018.4.9.
  • Salehi-Lisar, S. Y., & Bakhshayeshan-Agdam, H. (2016). Drought stress in plants: causes, consequences, and tolerance. In Drought Stress Tolerance in Plants, Vol 1 (pp. 1-16). Springer, Cham. doi.org/10.1007/978-3-319-28899-4_1.
  • Sallam, A., Mourad, A. M., Hussain, W. & Baenziger, P. S. (2018). Genetic variation in drought tolerance at seedling stage and grain yield in low rainfall environments in wheat (Triticum aestivum L.). Euphytica, 214(9), 169. doi.org/10.1007/s10681-018-2245-9.
  • Sánchez-Reinoso, A. D., Ligarreto-Moreno, G. A., & Restrepo-Díaz, H. (2020). Evaluation of drought indices to identify tolerant genotypes in common bean bush (Phaseolus vulgaris L.). Journal of Integrative Agriculture, 19 (1), 99-107. doi.org/10.1016/S2095-3119(19)62620-1.
  • Shamim, F., Farooq, K., & Waheed, A. (2014). Effect of different water regimes on biometric traits of some tolerant and sensitive tomato genotypes. The Journal of Animal and Plant Science, 24(4), 1178-1182. ISSN: 1018-7081.
  • Ulukapi, K. (2020). Assessment of the Genetic Structure and Salt Tolerance of Phaseolus vulgaris L. Landraces. SABRAO Journal of Breeding & Genetics, 52(3), 271-291. ISSN 1029-7073; eISSN 2224-8978.
  • Verslues, P. E., Lasky, J. R., Juenger, T. E., Liu, T. W. & Kumar, M. N. (2014). Genome-wide association mapping combined with reverse genetics identifies new effectors of low water potential-induced proline accumulation in Arabidopsis. Plant Physiology, 2014, 164, 144–159. doi.org/10.1104/pp.113.224014.

Investigation of Drought Tolerance of Dwarf Landrace Phaseolus vulgaris L. Genotypes

Year 2021, , 62 - 70, 30.03.2021
https://doi.org/10.29133/yyutbd.825094

Abstract

Landrace genotypes which are important gene resources, are used as starting material in breeding studies. Common beans are sensitive to abiotic stress. For this reason, early screening tests performed under stress conditions will provide convenience for breeders to perform the breeding process accurately and fast. In this study, an early-stage drought stress index was formed for fifteen genotypes whose salt tolerance indices were determined previously. For this purpose, genotypes were exposed to four different drought stresses until the first flowering period [25% (I25), 50% (I50), 75% (I75), and 100% (I100)]. As drought-related plant growth parameters to determine the drought adaptability of genotypes; shoot length (cm), root length (cm), shoot fresh and dry weight (g), root fresh and dry weight (g), leaf width and length (cm), stem diameter (cm) and stomatal conductance were measured. Later, genotypes were classified according to the drought stress index. It was determined that genotypes and drought stress had a statistically significant effect on all parameters examined, and Genotype x Drought interaction for all properties to be significant at the 0.01 level. According to the drought stress index data, three of the genotypes (ADY4, AGB1 and AGB5) were moderately sensitive and twelve (AGun6, AGun19, AGun25, BKara1-A, Bkara2, BY4, BY24, ISGa1, ISGa7, ISGa10, IYoz10 and IYoz14) were sensitive. In conclusion, although the studied genotypes were not drought tolerant, this was determined in the early stage using the drought tolerance index. This study is important as an example of the early classification of vegetable genotypes using drought tolerance indexes in future studies.

References

  • Ahmad, S., Ahmad, R., Ashraf, M. Y., Ashraf, M., & Waraich, E. A. (2009). Sunflower (Helianthus annuus L.) response to drought stress at germination and seedling growth stages. Pakistan Journal of Botany, 41(2), 647-654.
  • Al-Ashkar, I. M, El-Kafafi, S. H. (2014). Identification of traits contributing salt tolerance in some doubled haploid wheat lines at seedling stage. Middle East Journal of Applied Sciences, 4(4), 1130-1140.
  • Asfaw, A. & Blair, M. W. (2014). Quantification of drought tolerance in Ethiopian common bean varieties. Agricultural Sciences, 5, 124–139. DOI:10.4236/as.2014.52016.
  • Asfaw, A., Almekinders, C., Blair, M. W., Struik, P. (2012.) Participatory approach in common bean breeding for drought tolerance for southern Ethiopia. Plant Breeding, 131, 125–134. doi.org/10.1111/j.1439-0523.2011.01921.x.
  • Ashraf, M. & Iram, A. (2005). Drought stress induced changes in some organic substances in nodules and other plant parts of two potential legumes differing in salt tolerance. Flora, 200. 535–546. doi.org/10.1016/j.flora.2005.06.005.
  • Ashraf, M.Y., K. Akhtar, F. Hussain and J. Iqbal. 2006. Screening of different accessions of three potential grass species from Cholistan desert for salt tolerance. Pakistan Journal of Botany, 38:1589-1597.
  • Assefa, T., Wu, J., Beebe, S. E., Rao, I. M., Marcomin, D. & Claude, R. J. (2015). Improving adaptation to drought stress in small red common bean: phenotypic differences and predicted genotypic effects on grain yield, yield components and harvest index. Euphytica, 203 (3), 477–489. doi:10.1007/s10681-014-1242-x.
  • Beebe, S. E., Rao, I. M., Cajiao, V. & Grajales, M. (2008). Selection for drought resistance in common bean also improves yield in phosphorus limited and favorable environments. Crop Science, 48:582-592. doi.org/10.2135/cropsci2007.07.0404.
  • Beebe, S. E., Rao, I. M., Blair, M. W. & Acosta-Gallegos, J. A. (2013). Phenotyping common beans for adaptation to drought. Frontiers in Physiology, 4, 35. doi:10.3389/fphys.2013.00035.
  • Blum, A. (2009). Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Research, 112(2), 119–123. doi:10.1016/j.fcr.2009.03.009.
  • Darkwa, K., Ambachew, D., Mohammed, H., Asfaw, A., & Blair, M. W. (2016). Evaluation of common bean (Phaseolus vulgaris L.) genotypes for drought stress adaptation in Ethiopia. The Crop Journal, 4(5), 367-376. doi.org/10.1016/j.cj.2016.06.007.
  • Dipp, C. C., Marchese, J. A., Woyann, L. G., Bosse, M. A., Roman, M. H., Gobatto, D. R., ... & Finatto, T. (2017). Drought stress tolerance in common bean: what about highly cultivated Brazilian genotypes?. Euphytica, 213(5), 102. DOI 10.1007/s10681-017-1893-5.
  • Farooq, M., Hussain, M., Wahid, A., & Siddique, K. H. M. (2012). Drought stress in plants: an overview. In Plant responses to drought stress (pp. 1-33). Springer, Berlin, Heidelberg. doi.org/10.1007/978-3-642-32653-0_1.
  • Jaleel, C. A., Manivannan, P., Wahid, A., Farooq, M., Al-Juburi, H. J., Somasundaram, R. & Panneerselvam, R. (2009). Drought stress in plants: a review on morphological characteristics and pigments composition. International Journal of Agriculture & Biology, 11(1), 100-105. ISSN Print: 1560–8530; ISSN Online: 1814–9596.
  • Khanzada, H., Wassan, G. M., He, H., Mason, A. S., Keerio, A. A., Khanzada, S., ... & Huang, Y. (2020). Differentially evolved drought stress indices determine the genetic variation of Brassica napus at seedling traits by genome-wide association mapping. Journal of Advanced Research, 24, 447-461. doi.org/10.1016/j.jare.2020.05.019.
  • Lanna, A. C., Mitsuzono, S. T., Terra, T. G. R., Vianello, R. P. & de Figueiredo Carvalho, M. A. (2016) Physiological characterization of common bean (Phaseolus vulgaris L.) genotypes, water-stress induced with contrasting response towards drought. Australian Journal of Crop Science, 10(1), 1. ISSN: 1835-2693.
  • Mortimore, M. (2005). Ecosystems and Human Well-being: Current State and Trends. (Current State ve Trends Assessment-Chapter 22, Millennium Ecosystem Assessment: Ed. Anderson, S., Cotula, L., Faccer, K., Hesse, C., Mwangi, A., Nyangena, W., Skinner, J. p, 139. ISBN 1-59726-040-1.
  • Negrão, S., Schmöckel, S. M. & Tester M. (2017). Evaluating physiological responses of plants to salinity stress. Annals of botany, 119(1): 1-11. doi.org/10.1093/aob/mcw191.
  • Neves, D. M., da Hora Almeida, L. A., Santana-Vieira, D. D. S., Freschi, L., Ferreira, C. F., dos Santos Soares Filho, W., ... & da Silva Gesteira, A. (2017). Recurrent water deficit causes epigenetic and hormonal changes in citrus plants. Scientific reports, 7(1), 1-11. DOI:10.1038/s41598-017-14161-x.
  • Önder, M., Ateş, M. K., Kahraman, A., & Ceyhan, E. (2012). Konya ilinde fasulye tarımında karşılaşılan problemler ve çözüm önerileri. International Journal of Agricultural and Natural Sciences, 5(1), 143-148. ISSN: 1308-3945, E-ISSN: 1308-027X.
  • Raza, A., Razzaq, A., Mehmood, S. S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants, 8(2), 34. doi.org/10.3390/plants8020034.
  • Rehman, A., Jingdong, L., Shahzad, B., Chandio, A. A., Hussain, I., Nabi, G., & Iqbal, M. S. (2015). Economic perspectives of major field crops of Pakistan: An empirical study. Pacific Science Review B: Humanities and Social Sciences, 1(3), 145-158. doi.org/10.1016/j.psrb.2016.09.002.
  • Saima, S., Li, G., & Wu, G. (2018). Effects of drought stress on hybrids of Vigna radiata at germination stage. Acta Biologica Hungarica, 69(4), 481-492. doi.org/10.1556/018.69.2018.4.9.
  • Salehi-Lisar, S. Y., & Bakhshayeshan-Agdam, H. (2016). Drought stress in plants: causes, consequences, and tolerance. In Drought Stress Tolerance in Plants, Vol 1 (pp. 1-16). Springer, Cham. doi.org/10.1007/978-3-319-28899-4_1.
  • Sallam, A., Mourad, A. M., Hussain, W. & Baenziger, P. S. (2018). Genetic variation in drought tolerance at seedling stage and grain yield in low rainfall environments in wheat (Triticum aestivum L.). Euphytica, 214(9), 169. doi.org/10.1007/s10681-018-2245-9.
  • Sánchez-Reinoso, A. D., Ligarreto-Moreno, G. A., & Restrepo-Díaz, H. (2020). Evaluation of drought indices to identify tolerant genotypes in common bean bush (Phaseolus vulgaris L.). Journal of Integrative Agriculture, 19 (1), 99-107. doi.org/10.1016/S2095-3119(19)62620-1.
  • Shamim, F., Farooq, K., & Waheed, A. (2014). Effect of different water regimes on biometric traits of some tolerant and sensitive tomato genotypes. The Journal of Animal and Plant Science, 24(4), 1178-1182. ISSN: 1018-7081.
  • Ulukapi, K. (2020). Assessment of the Genetic Structure and Salt Tolerance of Phaseolus vulgaris L. Landraces. SABRAO Journal of Breeding & Genetics, 52(3), 271-291. ISSN 1029-7073; eISSN 2224-8978.
  • Verslues, P. E., Lasky, J. R., Juenger, T. E., Liu, T. W. & Kumar, M. N. (2014). Genome-wide association mapping combined with reverse genetics identifies new effectors of low water potential-induced proline accumulation in Arabidopsis. Plant Physiology, 2014, 164, 144–159. doi.org/10.1104/pp.113.224014.
There are 29 citations in total.

Details

Primary Language English
Subjects Horticultural Production
Journal Section Articles
Authors

Kamile Ulukapı 0000-0001-8184-8967

Ayşe Gül Nasırcılar 0000-0002-2602-804X

Publication Date March 30, 2021
Acceptance Date December 27, 2020
Published in Issue Year 2021

Cite

APA Ulukapı, K., & Nasırcılar, A. G. (2021). Investigation of Drought Tolerance of Dwarf Landrace Phaseolus vulgaris L. Genotypes. Yuzuncu Yıl University Journal of Agricultural Sciences, 31(1), 62-70. https://doi.org/10.29133/yyutbd.825094

Creative Commons License
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi CC BY 4.0 lisanslıdır.