Research Article
BibTex RIS Cite

Şiddetli Kuraklık Koşulları Altındaki Cicer arietinum (Nohut) Bitkisinde Mikoriza Aşılamasının Bazı Fizyolojik ve Biyokimyasal Parametreler Üzerine Olan Etkileri

Year 2021, , 597 - 605, 15.09.2021
https://doi.org/10.29133/yyutbd.870384

Abstract

Bu çalışmada kuraklık koşulları altındaki nohut bitkilerinde mikorizal simbiyozisin meydana getirdiği fizyolojik ve biyokimyasal değişiklikler hem kök hem de yaprakta araştırılmıştır. Kuraklık stresi ile birlikte yaprak su potansiyeli azalmışken, mikorizal simbiyozis yaprak su potansiyelinde belirgin bir artışa neden olmuştur. Bununla birlikte kuraklık stresi altında mikoriza uygulaması bitkinin gelişimi için oldukça önemli olan elementlerin miktarında kök ve yaprakta artışa neden olmuştur. Çalışmamızda kuraklık ile birlikte yükselen prolin konsantrasyonu ve MDA içeriği mikoriza uygulamasıyla birlikte azalmıştır. Ayrıca antioksidan enzimlerden katalazın aktivitesi mikoriza uygulamasıyla birlikte artarken, süperoksit dismutaz aktivitesi ise düşmüştür. Genel olarak enzim aktiviteleri yaprakta daha yüksek bulunmuşken, diğer analizlerde kök ve yaprak arasında belirgin bir desen elde edilmemiştir. Yapılan çalışma kuraklığın şiddetine bağlı olarak mikorizal simbiyozisin nohut bitkisinde meydana getirdiği yanıtların değişebileceğini göstermektedir, özellikle mikorizal simbiyozis ile antioksidan enzim aktiviteleri ve prolin içerik desenleri arasındaki ilişki konularında daha fazla çalışma yapılması gerektiğini ortaya koymaktadır. Bununla birlikte bu simbiyozisin kuraklık altında tane verimine etkilerini belirleyene kadar çalışmaların sürdürülmesi daha kapsamlı sonuçların elde edilmesini sağlayabilir.

Supporting Institution

Mersin Üniversitesi

Project Number

BAP-2017-2-AP4-2345

References

  • Abdelmoneim, T. S., Moussa, T. A. A., Almaghrabi, O. A., Alzahrani, H. S., & Abdelbagi, I. (2014). Increasing plant tolerance to drought stress by inoculation with arbuscular mycorrhizal fungi. J. Life Sci. 11, 10-17.
  • Aebi, H. E., Bergmayer, J., & Grabl, M. (1983). Catalase in: Methods of enzymatic analysis. Eds. Verlag Chemie, Weinheim. 3, 273-286.
  • Ahanger, M. A., Moad-Talab, N., Abd-Allah, E. F., Ahmad, P., & Hajiboland, R. (2016). Plant growth under drought stress: significance of mineral nutrients. In “Water stress and crop plants: a sustainable approach.” Ed. Ahmad P. Wiley Blackwell. 649–668.
  • Aroca, R., Vernieri, P., & Ruiz-Lozano, J. M. (2008). Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. Journal of Experimental Botany, 59, 2029-2041.
  • Bagyaraj, D. J., Sharma, M. P., & Maiti, D. (2015). Phosphorus nutrition of crops through arbuscular mycorrhizal fungi. Curr. Sci. 108(7), 1288-1293.
  • Bates L. S., Waldren R.P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207.
  • Begum, N., Ahanger, M. A., Su, Y. Y., Lei, Y. F., Mustafa, N. S. A., Ahmad, P., & Zhang L. X. (2019). Improved drought tolerance by AMF inoculation in maize (Zea mays) involves physiological and biochemical implications. Plants, 8, 579.
  • Beyer, W.F., & Fridowich, I. (1987). Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry, 161, 559-566.
  • Canci, H., & Toker, C. (2009). Evaluation of yield criteria for drought and heat resistance in chickpea (Cicer arietinum L.). Journal of Agronomy and Crop Science, 195, 47-54.
  • Chang, W., Sui, X., Fan, X., Jia, T., & Song, F. (2018). Arbuscular mycorrhizal symbiosis modulates antioxidant response and ion distribution in salt-stressed Elaeagnus angustifolia seedlings. Front. Microbiol. 9, 652.
  • Chun, S .C., & Chandrasekaran, M. (2018). Proline accumulation influenced by osmotic stress in arbuscular mycorrhizal symbiotic plants. Front. Microbiol. 9, 2525.
  • Çevik, S., Güzel Değer, A., Yıldızlı, A., Gök, A., & Unyayar, S. (2019). Proteomic and physiological analyses of dl-cyclopentane-1,2,3-triol-treated barley under drought stress. Plant Mol Biol Rep 37, 237-251.
  • Diagne, N., Ngom, M., Djighaly, P., Fall, D., Hocher, V., & Svistoonoff, S. (2020). Roles of Arbuscular Mycorrhizal Fungi on Plant Growth and Performance: Importance in Biotic and Abiotic Stressed Regulation. Diversity, 12, 370.
  • Duc, N. H., Csintalan, Z., & Posta, K. (2018). Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants. Plant Physiol. Biochem. 132, 297–307.
  • Garg, N., & Baher, N. (2013). Role of arbuscular mycorrhizal symbiosis inproline biosynthesis and metabolism of Cicer arietinum L.(chickpea) genotypes under salt stress. J Plant Growth Regul. 32, 767-778.
  • Hasanuzzaman, M., Bhuyan, M. H. M., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., Fujita, M., & Fotopoulos, V. (2020a). Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants, 9, 681.
  • Ibrahim, M. H. & Jaafar H. Z. E. (2012). Primary, secondary metabolites, H2O2, malondialdehyde and photosynthetic responses of Orthosiphon stamineus Benth. to different irradiance levels. Molecules, 17, 1159-1176
  • Kaya, C., Ashraf, M., Sonmez, O., Aydemir, S., Tuna, A.L., & Cullu, M. A. (2009). The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Scientia Horticulturae, 121, 1-6.
  • Keyvan, S. (2010). The effect of drought stress on yield, relative water content, proline, soluble carbohydrates and chlorophyll of bread wheat cultivars. J. Animal Plant Sci. 8(3), 1051-1060.
  • Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351-358.
  • Ortas, I. (2012). The effect of mycorrhizal fungal inoculation on plant yield, nutrient uptake and inoculation effectiveness under long-term field conditions. Field Crops Res. 125, 35–48.
  • Pandey, A., Chakraborty, S., Datta, A., & Chakraborty, N. (2008). Proteomics approach to identify dehydration responsive nuclear proteins from Chickpea (Cicer arietinum L.). Molecular & Cellular Proteomics. 7(1), 88-107.
  • Sohrabi, Y., Heidari, G., Weisany, W., Ghasemi Golezani, K., & Mohammadi, K. (2012). Some physiological responses of chickpea cultivars to arbuscular mycorrhiza under drought stress. Russ. J. Plant Physiol. 59, 708-716.
  • Wu, Q. S., Xia, R. X., & Zou, Y. N. (2008). Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. European journal of soil biology, 44(1), 122-128.

Effects of Severe Drought Stress on Some Physiological and Biochemical Parameters of AMF Inoculated C. arietinum

Year 2021, , 597 - 605, 15.09.2021
https://doi.org/10.29133/yyutbd.870384

Abstract

In this study, physiological and biochemical changes caused by mycorrhizal symbiosis in chickpea plants under drought conditions were investigated in both root and leaf. Drought stress reduced leaf water potential, but mycorrhizal symbiosis caused a significant increase in leaf water potential. However, the application of mycorrhiza under drought stress caused an increase in the amount of elements that are very important for the development of the plant in the root and leaf. In our study, drought increased the proline concentration and MDA content, while mycorrhiza application decreased them in both leaf and root. In addition, while mycorrhizal application increased the activity of catalase, it decreased the activity of superoxide dismutase. In general, enzyme activities were found to be higher in the leaf, but no distinct pattern was obtained between root and leaf in other analyzes. The study shows that the responses of mycorrhizal symbiosis in chickpea plants may change depending on the severity of the drought. Especially antioxidant enzyme activities and proline content patterns reveal that more comprehensive studies should be conducted on these issues. However, continuing studies until determining the effects of AMF symbiosis on grain yield under drought may provide more comprehensive results.

Project Number

BAP-2017-2-AP4-2345

References

  • Abdelmoneim, T. S., Moussa, T. A. A., Almaghrabi, O. A., Alzahrani, H. S., & Abdelbagi, I. (2014). Increasing plant tolerance to drought stress by inoculation with arbuscular mycorrhizal fungi. J. Life Sci. 11, 10-17.
  • Aebi, H. E., Bergmayer, J., & Grabl, M. (1983). Catalase in: Methods of enzymatic analysis. Eds. Verlag Chemie, Weinheim. 3, 273-286.
  • Ahanger, M. A., Moad-Talab, N., Abd-Allah, E. F., Ahmad, P., & Hajiboland, R. (2016). Plant growth under drought stress: significance of mineral nutrients. In “Water stress and crop plants: a sustainable approach.” Ed. Ahmad P. Wiley Blackwell. 649–668.
  • Aroca, R., Vernieri, P., & Ruiz-Lozano, J. M. (2008). Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. Journal of Experimental Botany, 59, 2029-2041.
  • Bagyaraj, D. J., Sharma, M. P., & Maiti, D. (2015). Phosphorus nutrition of crops through arbuscular mycorrhizal fungi. Curr. Sci. 108(7), 1288-1293.
  • Bates L. S., Waldren R.P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207.
  • Begum, N., Ahanger, M. A., Su, Y. Y., Lei, Y. F., Mustafa, N. S. A., Ahmad, P., & Zhang L. X. (2019). Improved drought tolerance by AMF inoculation in maize (Zea mays) involves physiological and biochemical implications. Plants, 8, 579.
  • Beyer, W.F., & Fridowich, I. (1987). Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry, 161, 559-566.
  • Canci, H., & Toker, C. (2009). Evaluation of yield criteria for drought and heat resistance in chickpea (Cicer arietinum L.). Journal of Agronomy and Crop Science, 195, 47-54.
  • Chang, W., Sui, X., Fan, X., Jia, T., & Song, F. (2018). Arbuscular mycorrhizal symbiosis modulates antioxidant response and ion distribution in salt-stressed Elaeagnus angustifolia seedlings. Front. Microbiol. 9, 652.
  • Chun, S .C., & Chandrasekaran, M. (2018). Proline accumulation influenced by osmotic stress in arbuscular mycorrhizal symbiotic plants. Front. Microbiol. 9, 2525.
  • Çevik, S., Güzel Değer, A., Yıldızlı, A., Gök, A., & Unyayar, S. (2019). Proteomic and physiological analyses of dl-cyclopentane-1,2,3-triol-treated barley under drought stress. Plant Mol Biol Rep 37, 237-251.
  • Diagne, N., Ngom, M., Djighaly, P., Fall, D., Hocher, V., & Svistoonoff, S. (2020). Roles of Arbuscular Mycorrhizal Fungi on Plant Growth and Performance: Importance in Biotic and Abiotic Stressed Regulation. Diversity, 12, 370.
  • Duc, N. H., Csintalan, Z., & Posta, K. (2018). Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants. Plant Physiol. Biochem. 132, 297–307.
  • Garg, N., & Baher, N. (2013). Role of arbuscular mycorrhizal symbiosis inproline biosynthesis and metabolism of Cicer arietinum L.(chickpea) genotypes under salt stress. J Plant Growth Regul. 32, 767-778.
  • Hasanuzzaman, M., Bhuyan, M. H. M., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., Fujita, M., & Fotopoulos, V. (2020a). Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants, 9, 681.
  • Ibrahim, M. H. & Jaafar H. Z. E. (2012). Primary, secondary metabolites, H2O2, malondialdehyde and photosynthetic responses of Orthosiphon stamineus Benth. to different irradiance levels. Molecules, 17, 1159-1176
  • Kaya, C., Ashraf, M., Sonmez, O., Aydemir, S., Tuna, A.L., & Cullu, M. A. (2009). The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Scientia Horticulturae, 121, 1-6.
  • Keyvan, S. (2010). The effect of drought stress on yield, relative water content, proline, soluble carbohydrates and chlorophyll of bread wheat cultivars. J. Animal Plant Sci. 8(3), 1051-1060.
  • Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351-358.
  • Ortas, I. (2012). The effect of mycorrhizal fungal inoculation on plant yield, nutrient uptake and inoculation effectiveness under long-term field conditions. Field Crops Res. 125, 35–48.
  • Pandey, A., Chakraborty, S., Datta, A., & Chakraborty, N. (2008). Proteomics approach to identify dehydration responsive nuclear proteins from Chickpea (Cicer arietinum L.). Molecular & Cellular Proteomics. 7(1), 88-107.
  • Sohrabi, Y., Heidari, G., Weisany, W., Ghasemi Golezani, K., & Mohammadi, K. (2012). Some physiological responses of chickpea cultivars to arbuscular mycorrhiza under drought stress. Russ. J. Plant Physiol. 59, 708-716.
  • Wu, Q. S., Xia, R. X., & Zou, Y. N. (2008). Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. European journal of soil biology, 44(1), 122-128.
There are 24 citations in total.

Details

Primary Language English
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Articles
Authors

Sertan Çevik 0000-0003-1259-7863

Project Number BAP-2017-2-AP4-2345
Publication Date September 15, 2021
Acceptance Date May 28, 2021
Published in Issue Year 2021

Cite

APA Çevik, S. (2021). Effects of Severe Drought Stress on Some Physiological and Biochemical Parameters of AMF Inoculated C. arietinum. Yuzuncu Yıl University Journal of Agricultural Sciences, 31(3), 597-605. https://doi.org/10.29133/yyutbd.870384

Creative Commons License
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi CC BY 4.0 lisanslıdır.