Research Article
BibTex RIS Cite

Veri Bağımlı Yaklaşımlarla Coğrafi Çevresel Faktörler Dikkate Alınarak Buğday Tarımı için Alan Kullanım Uygunluğunun Değerlendirmesi

Year 2021, , 528 - 542, 15.09.2021
https://doi.org/10.29133/yyutbd.898307

Abstract

Temel çevresel faktörler dikkate alınarak, standart sapma tabanlı çok ölçütlü değerlendirme (ÇÖD) ve yapay sinir ağları (YSA) olarak iki teknik, Van Bölgesi’ndeki buğday tarımına uygun alanların belirlenmesi için araştırılmıştır. İklim verileri (uzun dönemli en yüksek, en düşük, ortalama sıcaklıklar, toplam yağış ve güneş radyasyonu), yükseklik, tepe gölgelikleri (güneşlenme), eğim, toprak derinliği, alansal erişilebilirlik ve arazi örtüsü ve kullanımı verileri buğday tarımı için uygun alanların belirlenmesinde kullanılmıştır. Bütün kullanılan girdi verileri, sezonluk buğday tarımı yapılan alanlar temel alınarak ağırlıklandırılmıştır. ÇÖD ve YSA aynı girdi verileri kullanılarak performans değerledirmesi için karşılaştırılmıştır. Toplamda 228 buğday parselinin 171’i eğitim verisi ve 57 parseli ise test verisi olarak kullanılmıştır. Göreceli çalışma karakteristiği (GÇK), doğruluk analizi için uygulanmıştır. ÇÖD ve YSA tekniklerinin GÇK doğruluk katsayıları sırasıyla; 0.875 ve 0.71 olarak elde edilmiştir. Çalışma sonuçlarına göre; Van İli arazilerinin % 15’inin buğday tarımına çok uygun olduğu ancak bu alanların % 67’sinin tarım için kullanıldığı, geri kalan alanların % 28’inin çayır-mera, % 4’ünün açık alan ve % 1’inin ise diğer alanlardan oluştuğu belirlenmiştir.

Thanks

Van tarım İl Müdürlüğü'ne buğday ekim alanları verileriyle ilgili desteklerinden dolayı teşekkür ederiz.

References

  • Arnell, N. W. (1999). Climate Change and Global Water Resources. Global Environ. Change 9, 31 – 49.
  • Barton, M. H., Buchberger, S. G., Lange, M. J. (1999). Estimation of error and compliance in surveys by kriging. J. Surv. Eng. 125, 87–108.
  • Bilgic, H., Hakki, E. E., Pandey, A., Khan, M. K., Akkaya, M. S. (2016). Ancient DNA from 8400 Year-Old Çatalhöyük Wheat: Implications for the Origin of Neolithic Agriculture. PLoS ONE 11(3), e0151974.
  • Bunruamkaew, K., Murayama, Y. (2011). Site suitability evaluation for ecotourism using GIS&AHP: A case study of Surat Thani province, Thailand. Proced. Social and Behavioral Sci. 21, 269–278.
  • FAO. (2002). Food and Agriculture Organization of the United Nations, World Agriculture: towards 2015 – 2030 summary report. Rome.
  • FAO. (2018). Food and Agriculture Organization of UN, Global Information and Early Warning System (GIEWS) country briefs of Turkey.
  • Kalogirou, S. (2002). Expert systems and GIS: an application of land suitability evaluation. Computers Environment and Urban Syst. 26, 89 – 112.
  • Kan, M., Küçükçongar, M., Keser, M., Morgounov, A., Muminjanov, H., Özdemir, F., Qualset, C. (2015). Wheat Landraces in Farmers’ Fields in Turkey: National Survey, Collection, and Conservation, 2009-2014. Food and Agriculture Organization of the United Nations, Ankara. ISBN: 978-92-5-109048-0.
  • Karagöz, A., Pilanalı, N., Polat, T. (2006). Agro-Morphological Characterization of Some Wild Wheat (Aegilops L. and Triticum L.) Species. Turkish Journal of Agriculture and Forestry 30, 387 – 398.
  • Kavzoglu, T., Sahin, E.K., Colkesen, I. (2014). Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11, 425 – 439.
  • Malczewski, J. (2007). GIS-based multicriteria decision analysis: a survey of the literature. Int. J. of Geog. Inf. Sci. 20(7), 703 – 726.
  • Mosadeghi, R., Warnken, J., Tomlinson, R., Mirfenderesk, H. (2015). Comparison of fuzzy-AHP and AHP in spatial multi-criteria decision making model for urban land-use planning. Computers Environment and Urban Syst. 49, 54–65.
  • Parry, M., Rosenzweig, C., Iglesias, A., Fisher, G., Livermore, M. (1999). Climate Change and World Food Security: A New Assessments. Global Enviromental Change 9, 51 – 67.
  • Pontius, R. G., Schneider, L. C. (2001). Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agric. Ecosystems Environ. 85, 239 – 248.
  • Rumelhart, D E, Hinton, G. E, Williams, R. J. (1986). Learning internal representations by error propagation. In: Rumelhart DE, McClelland JL, editors. Parallel distributed processing: explorations in the microstructure of cognition, volume 1: foundations. Cambridge, MA: The MIT Press; 318-362.
  • Saaty, T. (1980). The Analytical Hierarchy Process. New York: John Wiley.
  • Saaty, T. (2008). Relative measurement and its generalization in decision making: why pairwise comparisons are central in mathematics for the measurement of intangible factors e the analytic hierarchy/network process. Review of the Royal Spanish Aca. of Sci. Series A Math. 102(2), 251–318.
  • Sarkar, A., Ghosh, A., Banik, P. (2014). Multi-criteria land evaluation for suitability analysis of wheat: a case study of a watershed in eastern plateau region, India. Geospatial Inf. Sci. 17(2), 119-128.
  • Satir, O., Berberoglu, S., Donmez, C. (2016). Mapping regional forest fire probability using artificial neural network model in a Mediterranean forest ecosystem. Geomat. Nat. Hazards and Risk 7(5), 1645–1658.
  • Satir, O., Berberoglu, S. (2016). Crop yield prediction under soil salinity using satellite derived vegetation indices. Field Crops Research 192, 134–143.
  • Satir, O., Erdogan, M.A. (2016). Monitoring the land use/cover changes and habitat quality using Landsat dataset and landscape metrics under the immigration effect in subalpine eastern Turkey. Environ Earth Sci. 75, 1118.
  • Şatır, O. (2013). Determining the agricultural land use suitability using remote sensing and geographical information system in Lower Seyhan Plane. In: PhD Thesis. Cukurova University Natural and Applied Sciences Ins, Adana, Turkey. Şatir, O. (2016). Mapping the Land-Use Suitability for Urban Sprawl Using Remote Sensing and GIS Under Different Scenarios, in: Ergen, M. (Ed.), Sustainable Urbanization. INTECH, London, pp. 205 – 226.
  • Şatır, O., Alp, Ş., Bostan, P., Baylan, E., Yeler, O., Aşur, F. (2017). Periodic land use cover change detection in Van Lake Basin in half century. Yuzucunu Yil University scientific research office project final report, project number: 2014-ZF-B220, Van Turkey. TMSS. (2015). Turkish meteorological state service database. 2006 – 2015 long term maximum, minimum and mean temperature, total annual precipitation and solar radiation datasets for Eastern Turkey.
  • TSI. (2013). Turkish Statistical Institute. Population records of the Turkey.
  • TSI. (2018). Turkish Statistical Institute. Crop production statistics for Van Province, Turkey.
  • TSI. (2020). Turkish Statistical Institute. Population records of the Van Province, Turkey.
  • UN (United Nations). (2013). United Nations, Department of Economic and Social Affairs, Population Division, Population Estimates and Projections Section, World population prospects: the 2012 revision. http://esa.un.org/unpd/wpp/Excel-Data/population.htm. Accessed on: 05.04.2013.
  • USDA. (2018). United States Department of Agriculture Foreign Agricultural Service, reports of Grain: World markets and trade, https://apps.fas.usda.gov/psdonline/circulars/grain.pdf, Accesed on 20.07.2018.
  • WB (World Bank). (2013). World Bank data catalogue, agricultural land (% of land area). http://data.worldbank.org/indicator/AG.LND.AGRI.ZS/. Accessed on: 05.04.2013.
  • Yalew, S. G., Griensven, A., Mul, M. L., Zaag, P. (2016). Land suitability analysis for agriculture in the Abbay basin using remote sensing, GIS and AHP techniques. Model Earth Syst. Environ. 2, 101.

Evaluation of Land Use Suitability for Wheat Cultivation Considering Geo-Environmental Factors by Data Dependent Approaches

Year 2021, , 528 - 542, 15.09.2021
https://doi.org/10.29133/yyutbd.898307

Abstract

Two techniques were investigated to be standard deviation based weighting Multi Criteria Assessment (MCA), and Artificial Neural Network (ANN) considering base environmental factors to define wheat cultivation suitability in Van region. Climate data (long term annual, maximum and minimum temperature, total mean precipitation and solar radiation), physical factors such as elevation, hillshade, slope, soil depth, accessibility to the fields and land use cover were used to produce wheat suitability map. All inputs were weighted with reference to existing wheat areas. MCA and ANN approaches were applied using same dataset to compare the performance of the two techniques. In total, 228 wheat parcels were used as training (171 parcels) and testing (57 parcels) data. Relative Operational Characteristic (ROC) was applied for accuracy assessment. ROC values of the MCA technique which was depended on existing wheat lands, and ANN techniques were derived to be 0.875 and 0.71 respectively. Results showed that 15% of the research area was very suitable for wheat farm, and today, only 67% of very suitable areas were used to be agriculture. Other areas were currently used as grassland (28%), bare ground (4%), and other (1%).

References

  • Arnell, N. W. (1999). Climate Change and Global Water Resources. Global Environ. Change 9, 31 – 49.
  • Barton, M. H., Buchberger, S. G., Lange, M. J. (1999). Estimation of error and compliance in surveys by kriging. J. Surv. Eng. 125, 87–108.
  • Bilgic, H., Hakki, E. E., Pandey, A., Khan, M. K., Akkaya, M. S. (2016). Ancient DNA from 8400 Year-Old Çatalhöyük Wheat: Implications for the Origin of Neolithic Agriculture. PLoS ONE 11(3), e0151974.
  • Bunruamkaew, K., Murayama, Y. (2011). Site suitability evaluation for ecotourism using GIS&AHP: A case study of Surat Thani province, Thailand. Proced. Social and Behavioral Sci. 21, 269–278.
  • FAO. (2002). Food and Agriculture Organization of the United Nations, World Agriculture: towards 2015 – 2030 summary report. Rome.
  • FAO. (2018). Food and Agriculture Organization of UN, Global Information and Early Warning System (GIEWS) country briefs of Turkey.
  • Kalogirou, S. (2002). Expert systems and GIS: an application of land suitability evaluation. Computers Environment and Urban Syst. 26, 89 – 112.
  • Kan, M., Küçükçongar, M., Keser, M., Morgounov, A., Muminjanov, H., Özdemir, F., Qualset, C. (2015). Wheat Landraces in Farmers’ Fields in Turkey: National Survey, Collection, and Conservation, 2009-2014. Food and Agriculture Organization of the United Nations, Ankara. ISBN: 978-92-5-109048-0.
  • Karagöz, A., Pilanalı, N., Polat, T. (2006). Agro-Morphological Characterization of Some Wild Wheat (Aegilops L. and Triticum L.) Species. Turkish Journal of Agriculture and Forestry 30, 387 – 398.
  • Kavzoglu, T., Sahin, E.K., Colkesen, I. (2014). Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11, 425 – 439.
  • Malczewski, J. (2007). GIS-based multicriteria decision analysis: a survey of the literature. Int. J. of Geog. Inf. Sci. 20(7), 703 – 726.
  • Mosadeghi, R., Warnken, J., Tomlinson, R., Mirfenderesk, H. (2015). Comparison of fuzzy-AHP and AHP in spatial multi-criteria decision making model for urban land-use planning. Computers Environment and Urban Syst. 49, 54–65.
  • Parry, M., Rosenzweig, C., Iglesias, A., Fisher, G., Livermore, M. (1999). Climate Change and World Food Security: A New Assessments. Global Enviromental Change 9, 51 – 67.
  • Pontius, R. G., Schneider, L. C. (2001). Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agric. Ecosystems Environ. 85, 239 – 248.
  • Rumelhart, D E, Hinton, G. E, Williams, R. J. (1986). Learning internal representations by error propagation. In: Rumelhart DE, McClelland JL, editors. Parallel distributed processing: explorations in the microstructure of cognition, volume 1: foundations. Cambridge, MA: The MIT Press; 318-362.
  • Saaty, T. (1980). The Analytical Hierarchy Process. New York: John Wiley.
  • Saaty, T. (2008). Relative measurement and its generalization in decision making: why pairwise comparisons are central in mathematics for the measurement of intangible factors e the analytic hierarchy/network process. Review of the Royal Spanish Aca. of Sci. Series A Math. 102(2), 251–318.
  • Sarkar, A., Ghosh, A., Banik, P. (2014). Multi-criteria land evaluation for suitability analysis of wheat: a case study of a watershed in eastern plateau region, India. Geospatial Inf. Sci. 17(2), 119-128.
  • Satir, O., Berberoglu, S., Donmez, C. (2016). Mapping regional forest fire probability using artificial neural network model in a Mediterranean forest ecosystem. Geomat. Nat. Hazards and Risk 7(5), 1645–1658.
  • Satir, O., Berberoglu, S. (2016). Crop yield prediction under soil salinity using satellite derived vegetation indices. Field Crops Research 192, 134–143.
  • Satir, O., Erdogan, M.A. (2016). Monitoring the land use/cover changes and habitat quality using Landsat dataset and landscape metrics under the immigration effect in subalpine eastern Turkey. Environ Earth Sci. 75, 1118.
  • Şatır, O. (2013). Determining the agricultural land use suitability using remote sensing and geographical information system in Lower Seyhan Plane. In: PhD Thesis. Cukurova University Natural and Applied Sciences Ins, Adana, Turkey. Şatir, O. (2016). Mapping the Land-Use Suitability for Urban Sprawl Using Remote Sensing and GIS Under Different Scenarios, in: Ergen, M. (Ed.), Sustainable Urbanization. INTECH, London, pp. 205 – 226.
  • Şatır, O., Alp, Ş., Bostan, P., Baylan, E., Yeler, O., Aşur, F. (2017). Periodic land use cover change detection in Van Lake Basin in half century. Yuzucunu Yil University scientific research office project final report, project number: 2014-ZF-B220, Van Turkey. TMSS. (2015). Turkish meteorological state service database. 2006 – 2015 long term maximum, minimum and mean temperature, total annual precipitation and solar radiation datasets for Eastern Turkey.
  • TSI. (2013). Turkish Statistical Institute. Population records of the Turkey.
  • TSI. (2018). Turkish Statistical Institute. Crop production statistics for Van Province, Turkey.
  • TSI. (2020). Turkish Statistical Institute. Population records of the Van Province, Turkey.
  • UN (United Nations). (2013). United Nations, Department of Economic and Social Affairs, Population Division, Population Estimates and Projections Section, World population prospects: the 2012 revision. http://esa.un.org/unpd/wpp/Excel-Data/population.htm. Accessed on: 05.04.2013.
  • USDA. (2018). United States Department of Agriculture Foreign Agricultural Service, reports of Grain: World markets and trade, https://apps.fas.usda.gov/psdonline/circulars/grain.pdf, Accesed on 20.07.2018.
  • WB (World Bank). (2013). World Bank data catalogue, agricultural land (% of land area). http://data.worldbank.org/indicator/AG.LND.AGRI.ZS/. Accessed on: 05.04.2013.
  • Yalew, S. G., Griensven, A., Mul, M. L., Zaag, P. (2016). Land suitability analysis for agriculture in the Abbay basin using remote sensing, GIS and AHP techniques. Model Earth Syst. Environ. 2, 101.
There are 30 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Articles
Authors

Onur Şatır 0000-0002-0666-7784

Süha Berberoğlu 0000-0002-1547-6680

Publication Date September 15, 2021
Acceptance Date June 2, 2021
Published in Issue Year 2021

Cite

APA Şatır, O., & Berberoğlu, S. (2021). Evaluation of Land Use Suitability for Wheat Cultivation Considering Geo-Environmental Factors by Data Dependent Approaches. Yuzuncu Yıl University Journal of Agricultural Sciences, 31(3), 528-542. https://doi.org/10.29133/yyutbd.898307

Creative Commons License
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi CC BY 4.0 lisanslıdır.