Research Article
BibTex RIS Cite

Optimization of Media Composition for Maximum Growth of Probiotic Lactobacillus fermentum NBC-08 Using Response Surface Methodology

Year 2022, , 69 - 80, 31.03.2022
https://doi.org/10.29133/yyutbd.993781

Abstract

In this study, it was aimed to determine the medium where Lactobacillus fermentum microorganisms with probiotic properties grow most efficiently by using Response Surface Method (RSM). Studies have been conducted on a 500 ml erlenmeyer scale, the medium optimization of the Lactobacillus fermentum strain was carried out according to the Central Composite Design (CCD) included in RSM. The effects of glucose, yeast extract, inorganic salts, and Tween 80 were investigated on the growth rate of the L. fermentum NBC-08 strain. Samples were taken at regular intervals from the erlenmeyer flask and the number of viable cells was measured by planting them in petri agar medium. In the study, the number of viable cells log10 (cfu/ml) was chosen as the response variable. As a result of the study, it was concluded that glucose and yeast extract are absolutely essential components in the medium. The optimum medium composition was found as 96.06 g/L glucose, 40.76 g L-1 yeast extract, 19.43 g L-1 inorganic salts, and 11.01 ml/L Tween 80. The production of the maximum L. fermentum strain was determined as 10.75 log10 (cfu ml-1). It is predicted that this study will make positive contributions to the fermentation conditions and medium optimization studies for production of lactic acid bacteria

Supporting Institution

TAGEM

Project Number

TAGEM-18/AR-GE/24

References

  • Anvari, M., Khayati, G., Rostami, S. (2014). Optimisation of medium composition for probiotic biomass production using response surface methodology. J Dairy Res. 81, 59-64.
  • Avonts, L., Van Uytven, E., De Vuyst, L. (2004). Cell growth and bacteriocin production of probiotic Lactobacillus strains in different media. International Dairy Journal 14 947–955. Belova, I.V., Tochilina, A.G., Solovyeva, I.V., Efimov, E.I., Gorlova, I.S., Ivanova, T.P., Zhirnov, V.A. (2016). Lactobacillus fermentum 90 TC-4 taxonomic status confirmation using whole genome sequencing and MALDI TOF mass spectrum. Russ J Genet+. 52, 907-913.
  • Boricha, A.A., Shekh, S.L., Pithva, S.P., Ambalam, P.S., Vyas, B.R.M. (2019). In vitro evaluation of probiotic properties of Lactobacillus species of food and human origin. Lwt-Food Sci Technol. 106, 201-208.
  • Bove, P., Russo, P., Capozzi, V., Gallone, A., Spano, G., Fiocco, D. (2013). Lactobacillus plantarum passage through an oro-gastro-intestinal tract simulator: Carrier matrix effect and transcriptional analysis of genes associated to stress and probiosis. Microbiol Res. 168, 351-359.
  • Djekrif-Dakhmouche S, Gheribi-Aoulmi Z, Meraihi Z, Bennamoun L. (2006). Application of a statistical design to the optimization of culture medium for α-amylase production by Aspergillus niger ATCC 16404 grown on orange waste powder. Journal of Food Engineering ;73(2):190–197.
  • Farezvidal, M.E., Fernandezvivas, A., Arias, J.M. (1992). Production of Alpha-Amylase by Myxococcus-Coralloides-D. Journal of Applied Bacteriology. 73, 148-156.
  • Gao, X., Qiao, S.Y. and Lu, W.Q. (2009). Determination of an economical medium for growth of Lactobacillus fermentum using response surface methodology. The Society for Applied Microbiology, Letters in Applied Microbiology 49 556–561.
  • Geckil, H., Gencer, S., Uckun, M. (2004). Vitreoscilla hemoglobin expressing Enterobacter aerogenes and Pseudomonas aeruginosa respond differently to carbon catabolite and oxygen repression for production of L-asparaginase, an enzyme used in cancer therapy. Enzyme Microb Tech. 35, 182-189.
  • Iranmanesh, M., Hamid, E., Mojgani, N. (2014). Antibacterial activity and cholesterol assimilation of lactic acid bacteria isolated from traditional Iranian dairy products. Lwt-Food Sci Technol. 58, 355-359.
  • Kaewnopparat, S., Dangmanee, N., Kaewnopparat, N., Srichana, T., Chulasiri, M., Settharaksa, S. (2013). In vitro probiotic properties of Lactobacillus fermentum SK5 isolated from vagina of a healthy woman. Anaerobe. 22, 6-13.
  • Kanmani, P., Kumar, R.S., Yuvaraj, N., Paari, K.A., Pattukumar, V., Arul, V. (2012). Application of response surface methodology in the optimisation of a growth medium for enhanced natural preservative bacteriocin production by a probiotic bacterium. Nat Prod Res. 26, 1539-1543.
  • Lee, N.K., Park, Y.L., Choe, G.J., Chang, H.I., Paik, H.D. (2010). Medium Optimization for the Production of Probiotic Lactobacillus acidophilus A12 Using Response Surface Methodology. Korean J Food Sci An. 30, 359-364.
  • Liew, S.L., Ariff, A.B., Raha, A.R., Ho, Y.W. (2005). Optimization of medium composition for the production of a probiotic microorganism, Lactobacillus rhamnosus, using response surface methodology. Int J Food Microbiol. 102, 137-142.
  • Liu, H.R., Zhang, D., Zhang, X., Zhou, C.Z., Zhou, P., Zhi, Y.E. (2020). Medium Optimization for Spore Production of a Straw-Cellulose Degrading Actinomyces Strain under Solid-State Fermentation Using Response Surface Method. Sustainability-Basel. 12.
  • Long, J., Zhao, X., Liang, F., Liu, N., Sun, Y.Y., Xi, Y.Z. (2018). Optimization of fermentation conditions for an Escherichia coli strain engineered using the response surface method to produce a novel therapeutic DNA vaccine for rheumatoid arthritis. J Biol Eng. 12.
  • Marco, M.L., Pavan, S., Kleerebezem, M. (2006) Towards understanding molecular modes of probiotic action. Curr Opin Biotech. 17, 204-210.
  • Mona, S., Kaushik, A., Kaushik, C.P. (2011). Waste biomass of Nostoc linckia as adsorbent of crystal violet dye: Optimization based on statistical model. Int Biodeter Biodegr. 65, 513-521.
  • Myers, R.H., Montgomery, D.C. (2002). Response Surface Methodology, Process and Product Optimization Using Designed Experiments. Second Edition.
  • Ozkan, E.R., Demirci, T., Ozturk, H.I., Akin, N. (2020). Screening Lactobacillus strains from artisanal Turkish goatskin casing Tulum cheeses produced by nomads via molecular and in vitro probiotic characteristics. J Sci Food Agr.
  • Pithva, S., Shekh, S., Dave, J., Vyas, B.R.M. (2014). Probiotic Attributes of Autochthonous Lactobacillus rhamnosus Strains of Human Origin. Appl Biochem Biotech. 173, 259-277.
  • Ramos, C.L., Thorsen, L., Schwan, R.F., Jespersen, L. (2013). Strain-specific probiotics properties of Lactobacillus fermentum, Lactobacillus plantarum and Lactobacillus brevis isolates from Brazilian food products. Food Microbiol. 36, 22-29.
  • Rehm, J., Reed, G., Kennedy, J.F. (1987) Biotechnology, Vch. New York, 7a, 5-100.
  • Ricci, A., Allende, A., Bolton, D., Chemaly, M., Davies, R., Lindqvist, R., Norrung, B., Robertson, L., Ru, G., Escamez, P.S.F., Sanaa, M., Simmons, M., Skandamis, P., Snary, E., Speybroeck, N., Ter Kuile, B., Threlfall, J., Wahlstrom, H., Cocconcelli, P.S., Peixe, L., Maradona, A., Suarez, I., Vlak, J., Barizzone, F., Correia, S., Herman, L., (2018). Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 7: suitability of taxonomic units notified to EFSA until September 2017. Efsa J.16.
  • Rodrigues, L., Teixeira, J., Oliveira, R., van der Mei, H.C. (2006). Response surface optimization of the medium components for the production of biosurfactants by probiotic bacteria. Process Biochem. 41, 1-10.
  • Shamekhi, F., Shuhaimi, M., Ariff, A.B., Yazid, A.M. (2012). Optimization of a cryoprotective medium for infant formula probiotic applications using response surface methodology. Ann Microbiol. 62, 911-921.
  • Shang, Z.F., Fan, D.D., Deng, J.J., Ma, P., Ma, X.X., Mi, Y. (2013). Optimization of Fermentation Medium for Cell Yield of Recombinant Pichia pastoris during Growth Stage using Response Surface Methodology. J Pure Appl Microbio. 7, 1207-1212.
  • Stephenie, W., Kabeir, B.M., Shuhaimi, M., Rosfarizan, M., Yazid, A.M. (2007). Growth optimization of a probiotic candidate, Bifidobacterium pseudocatenulatum G4, in milk medium using response surface methodology. Biotechnol Bioproc E. 12, 106-113.
  • Teame, T., Wang, A.R., Xie, M.X., Zhang, Z., Yang, Y.L., Ding, Q.W., Gao, C.C., Olsen, R.E., Ran, C., Zhou, Z.G. (2020). Paraprobiotics and Postbiotics of Probiotic Lactobacilli, Their Positive Effects on the Host and Action Mechanisms. A Review. Front Nutr. 7.
  • Thite, V.S., Nerurkar, A.S., Baxi, N.N. (2020). Optimization of concurrent production of xylanolytic and pectinolytic enzymes by Bacillus safensis M35 and Bacillus altitudinis J208 using agro-industrial biomass through Response Surface Methodology. Sci Rep-Uk. 10.
  • Ülger, C. (1997) Production of Bacillus subtilis and Bacillus amyloliquefaciens alpha-amylase in aqueous two phase systems. Hacettepe Ünv. Fen Bilimleri Enstitüsü. Doktora Tezi, Ankara.
  • Venkateswarulu, T.C., Prabhakar, K.V., Kumar, R.B. (2017). Optimization of nutritional components of medium by response surface methodology for enhanced production of lactase. 3 Biotech. 7.
  • Wu, W.J., Ahn, B.Y. (2018). Statistical Optimization of Medium Components by Response Surface Methodology to Enhance Menaquinone-7 (Vitamin K-2) Production by Bacillus subtilis. J Microbiol Biotechn. 28, 902-908.
  • Yang, F.F., Long, C., Wei, Z.L., Long, L.J. (2020). Optimization of medium using response surface methodology to enhance the growth of Effrenium voratum (Symbiodiniaceae, Dinophyceae). J Phycol. 56, 1208-1215.
  • Yun, J.S., Ryu, H.W. (2001). Lactic acid production and carbon catabolite repression from single and mixed sugars using Enterococcus faecalis RKY1. Process Biochem. 37, 235-240.

Cevap Yüzey Yöntemi Kullanılarak Probiyotik Lactobacillus fermentum NBC-08 Maksimum Büyümesi İçin Ortam Bileşiminin Optimizasyonu

Year 2022, , 69 - 80, 31.03.2022
https://doi.org/10.29133/yyutbd.993781

Abstract

Bu çalışmada probiyotik özelliklere sahip Lactobacillus fermentum mikroorganizmasının en verimli olarak büyüdüğü optimimum besi yeri bileşimi Cevap Yüzey Yöntemi (CYY) kullanılarak belirlenmiştir. Çalışmalar 500 ml hacminde erlen ölçeğinde yapılmış olup Lactobacillus fermentum suşunun besi yeri optimizasyonu CYY içerisinde yer alan Merkezi Kompozit Tasarım (MKT)’a göre gerçekleştirilmiştir. L. fermentum NBC-08 suşunun büyüme miktarı üzerine glikoz, yeast extract, inorganik tuzlar ve Tween-80’in etkisi incelenmiştir. Erlenlerden belirli aralıklarla numuneler alınmış ve petri agar ortamına ekilerek canlı hücre sayılarına bakılmıştır. Çalışmada cevap değişkeni olarak canlı hücre sayısı log10 (cfu/ml) seçilmiştir. Çalışma sonucunda besi ortamında glikoz ve maya ekstraktının kesinlikle bulunması gereken bileşenler olduğu sonucu ortaya çıkmıştır. Optimum besi yeri bileşimi 96.06 g/L glikoz, 40.76 g/L yeast ekstrakt, 19.43 g/L inorganik tuzlar ve 11.01 ml/L Tween 80 olarak bulunmuştur. Maksimum L. fermentum suşunun üretimi ise 10.75 log10 (cfu/ml) şeklinde bulunmuştur. Bu çalışmanın laktik asit bakterilerinin fermantasyon yolu ile üretilmesi ve probiyotik suşların besi yeri optimizasyonu çalışmalarına olumlu katkılar yapacağı ön görülmektedir.

Project Number

TAGEM-18/AR-GE/24

References

  • Anvari, M., Khayati, G., Rostami, S. (2014). Optimisation of medium composition for probiotic biomass production using response surface methodology. J Dairy Res. 81, 59-64.
  • Avonts, L., Van Uytven, E., De Vuyst, L. (2004). Cell growth and bacteriocin production of probiotic Lactobacillus strains in different media. International Dairy Journal 14 947–955. Belova, I.V., Tochilina, A.G., Solovyeva, I.V., Efimov, E.I., Gorlova, I.S., Ivanova, T.P., Zhirnov, V.A. (2016). Lactobacillus fermentum 90 TC-4 taxonomic status confirmation using whole genome sequencing and MALDI TOF mass spectrum. Russ J Genet+. 52, 907-913.
  • Boricha, A.A., Shekh, S.L., Pithva, S.P., Ambalam, P.S., Vyas, B.R.M. (2019). In vitro evaluation of probiotic properties of Lactobacillus species of food and human origin. Lwt-Food Sci Technol. 106, 201-208.
  • Bove, P., Russo, P., Capozzi, V., Gallone, A., Spano, G., Fiocco, D. (2013). Lactobacillus plantarum passage through an oro-gastro-intestinal tract simulator: Carrier matrix effect and transcriptional analysis of genes associated to stress and probiosis. Microbiol Res. 168, 351-359.
  • Djekrif-Dakhmouche S, Gheribi-Aoulmi Z, Meraihi Z, Bennamoun L. (2006). Application of a statistical design to the optimization of culture medium for α-amylase production by Aspergillus niger ATCC 16404 grown on orange waste powder. Journal of Food Engineering ;73(2):190–197.
  • Farezvidal, M.E., Fernandezvivas, A., Arias, J.M. (1992). Production of Alpha-Amylase by Myxococcus-Coralloides-D. Journal of Applied Bacteriology. 73, 148-156.
  • Gao, X., Qiao, S.Y. and Lu, W.Q. (2009). Determination of an economical medium for growth of Lactobacillus fermentum using response surface methodology. The Society for Applied Microbiology, Letters in Applied Microbiology 49 556–561.
  • Geckil, H., Gencer, S., Uckun, M. (2004). Vitreoscilla hemoglobin expressing Enterobacter aerogenes and Pseudomonas aeruginosa respond differently to carbon catabolite and oxygen repression for production of L-asparaginase, an enzyme used in cancer therapy. Enzyme Microb Tech. 35, 182-189.
  • Iranmanesh, M., Hamid, E., Mojgani, N. (2014). Antibacterial activity and cholesterol assimilation of lactic acid bacteria isolated from traditional Iranian dairy products. Lwt-Food Sci Technol. 58, 355-359.
  • Kaewnopparat, S., Dangmanee, N., Kaewnopparat, N., Srichana, T., Chulasiri, M., Settharaksa, S. (2013). In vitro probiotic properties of Lactobacillus fermentum SK5 isolated from vagina of a healthy woman. Anaerobe. 22, 6-13.
  • Kanmani, P., Kumar, R.S., Yuvaraj, N., Paari, K.A., Pattukumar, V., Arul, V. (2012). Application of response surface methodology in the optimisation of a growth medium for enhanced natural preservative bacteriocin production by a probiotic bacterium. Nat Prod Res. 26, 1539-1543.
  • Lee, N.K., Park, Y.L., Choe, G.J., Chang, H.I., Paik, H.D. (2010). Medium Optimization for the Production of Probiotic Lactobacillus acidophilus A12 Using Response Surface Methodology. Korean J Food Sci An. 30, 359-364.
  • Liew, S.L., Ariff, A.B., Raha, A.R., Ho, Y.W. (2005). Optimization of medium composition for the production of a probiotic microorganism, Lactobacillus rhamnosus, using response surface methodology. Int J Food Microbiol. 102, 137-142.
  • Liu, H.R., Zhang, D., Zhang, X., Zhou, C.Z., Zhou, P., Zhi, Y.E. (2020). Medium Optimization for Spore Production of a Straw-Cellulose Degrading Actinomyces Strain under Solid-State Fermentation Using Response Surface Method. Sustainability-Basel. 12.
  • Long, J., Zhao, X., Liang, F., Liu, N., Sun, Y.Y., Xi, Y.Z. (2018). Optimization of fermentation conditions for an Escherichia coli strain engineered using the response surface method to produce a novel therapeutic DNA vaccine for rheumatoid arthritis. J Biol Eng. 12.
  • Marco, M.L., Pavan, S., Kleerebezem, M. (2006) Towards understanding molecular modes of probiotic action. Curr Opin Biotech. 17, 204-210.
  • Mona, S., Kaushik, A., Kaushik, C.P. (2011). Waste biomass of Nostoc linckia as adsorbent of crystal violet dye: Optimization based on statistical model. Int Biodeter Biodegr. 65, 513-521.
  • Myers, R.H., Montgomery, D.C. (2002). Response Surface Methodology, Process and Product Optimization Using Designed Experiments. Second Edition.
  • Ozkan, E.R., Demirci, T., Ozturk, H.I., Akin, N. (2020). Screening Lactobacillus strains from artisanal Turkish goatskin casing Tulum cheeses produced by nomads via molecular and in vitro probiotic characteristics. J Sci Food Agr.
  • Pithva, S., Shekh, S., Dave, J., Vyas, B.R.M. (2014). Probiotic Attributes of Autochthonous Lactobacillus rhamnosus Strains of Human Origin. Appl Biochem Biotech. 173, 259-277.
  • Ramos, C.L., Thorsen, L., Schwan, R.F., Jespersen, L. (2013). Strain-specific probiotics properties of Lactobacillus fermentum, Lactobacillus plantarum and Lactobacillus brevis isolates from Brazilian food products. Food Microbiol. 36, 22-29.
  • Rehm, J., Reed, G., Kennedy, J.F. (1987) Biotechnology, Vch. New York, 7a, 5-100.
  • Ricci, A., Allende, A., Bolton, D., Chemaly, M., Davies, R., Lindqvist, R., Norrung, B., Robertson, L., Ru, G., Escamez, P.S.F., Sanaa, M., Simmons, M., Skandamis, P., Snary, E., Speybroeck, N., Ter Kuile, B., Threlfall, J., Wahlstrom, H., Cocconcelli, P.S., Peixe, L., Maradona, A., Suarez, I., Vlak, J., Barizzone, F., Correia, S., Herman, L., (2018). Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 7: suitability of taxonomic units notified to EFSA until September 2017. Efsa J.16.
  • Rodrigues, L., Teixeira, J., Oliveira, R., van der Mei, H.C. (2006). Response surface optimization of the medium components for the production of biosurfactants by probiotic bacteria. Process Biochem. 41, 1-10.
  • Shamekhi, F., Shuhaimi, M., Ariff, A.B., Yazid, A.M. (2012). Optimization of a cryoprotective medium for infant formula probiotic applications using response surface methodology. Ann Microbiol. 62, 911-921.
  • Shang, Z.F., Fan, D.D., Deng, J.J., Ma, P., Ma, X.X., Mi, Y. (2013). Optimization of Fermentation Medium for Cell Yield of Recombinant Pichia pastoris during Growth Stage using Response Surface Methodology. J Pure Appl Microbio. 7, 1207-1212.
  • Stephenie, W., Kabeir, B.M., Shuhaimi, M., Rosfarizan, M., Yazid, A.M. (2007). Growth optimization of a probiotic candidate, Bifidobacterium pseudocatenulatum G4, in milk medium using response surface methodology. Biotechnol Bioproc E. 12, 106-113.
  • Teame, T., Wang, A.R., Xie, M.X., Zhang, Z., Yang, Y.L., Ding, Q.W., Gao, C.C., Olsen, R.E., Ran, C., Zhou, Z.G. (2020). Paraprobiotics and Postbiotics of Probiotic Lactobacilli, Their Positive Effects on the Host and Action Mechanisms. A Review. Front Nutr. 7.
  • Thite, V.S., Nerurkar, A.S., Baxi, N.N. (2020). Optimization of concurrent production of xylanolytic and pectinolytic enzymes by Bacillus safensis M35 and Bacillus altitudinis J208 using agro-industrial biomass through Response Surface Methodology. Sci Rep-Uk. 10.
  • Ülger, C. (1997) Production of Bacillus subtilis and Bacillus amyloliquefaciens alpha-amylase in aqueous two phase systems. Hacettepe Ünv. Fen Bilimleri Enstitüsü. Doktora Tezi, Ankara.
  • Venkateswarulu, T.C., Prabhakar, K.V., Kumar, R.B. (2017). Optimization of nutritional components of medium by response surface methodology for enhanced production of lactase. 3 Biotech. 7.
  • Wu, W.J., Ahn, B.Y. (2018). Statistical Optimization of Medium Components by Response Surface Methodology to Enhance Menaquinone-7 (Vitamin K-2) Production by Bacillus subtilis. J Microbiol Biotechn. 28, 902-908.
  • Yang, F.F., Long, C., Wei, Z.L., Long, L.J. (2020). Optimization of medium using response surface methodology to enhance the growth of Effrenium voratum (Symbiodiniaceae, Dinophyceae). J Phycol. 56, 1208-1215.
  • Yun, J.S., Ryu, H.W. (2001). Lactic acid production and carbon catabolite repression from single and mixed sugars using Enterococcus faecalis RKY1. Process Biochem. 37, 235-240.
There are 34 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Articles
Authors

Akif Emre Kavak 0000-0001-7022-4614

Veyis Selen 0000-0003-0016-0840

Faruk Tamtürk This is me 0000-0003-2050-8250

Project Number TAGEM-18/AR-GE/24
Publication Date March 31, 2022
Acceptance Date February 10, 2022
Published in Issue Year 2022

Cite

APA Kavak, A. E., Selen, V., & Tamtürk, F. (2022). Optimization of Media Composition for Maximum Growth of Probiotic Lactobacillus fermentum NBC-08 Using Response Surface Methodology. Yuzuncu Yıl University Journal of Agricultural Sciences, 32(1), 69-80. https://doi.org/10.29133/yyutbd.993781

Creative Commons License
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi CC BY 4.0 lisanslıdır.