BibTex RIS Cite

Geliştirilen Bazı Kestane (Cucurbita maxima) ve Bal Kabağı (Cucurbita moschata) Hatlarında Tuzluluğa Tolerans

Year 2016, Volume: 26 Issue: 2, 183 - 195, 31.05.2016

Abstract

Tuzluluk, bitki büyümesinde, gelişiminde ve verimliliğinde düşüşlere neden olan en önemli çevresel faktörlerden birisidir. Sunulan bu çalışmada, seleksiyon ile öne çıkan kestane (Cucurbita maxima) ve bal kabağı (Cucurbita moschata) hatlarında tuzluluk stresine karşı genotipik farklılığın belirlenmesi amaçlanmıştır. Çalışmada 3 bal kabağı (G9, 14BO01 ve 14YE02) ve 4 kestane kabağı (57Sİ21, 55ÇA15, 57Sİ06 ve G14) hattı kullanılmıştır. Tohumlar 2:1 oranında  torf:perlit karışımında çimlendirilmiştir. Tohum ekiminden 21 gün sonra, fideler perlit içeren plastik saksılara aktarılmıştır. 2 hafta sonra tuz uygulamalarına başlanmış ve NaCl 4 farklı EC değerinde (4, 8, 12 ve 16 dS m–1) uygulanmıştır. Kestane ve bal kabaklarının strese tepkileri bitki gelişiminin erken döneminde incelenmiş, bu amaçla klorofil içeriği (SPAD değeri), stoma yoğunluğu (stoma/mm2) ve stoma boyutları (mm) belirlenmiştir. Sonuçlar, artan tuz dozlarında SPAD değerleri ile stoma boyutlarının azaldığını ancak stoma yoğunluğunun arttığını ortaya koymuştur. Sonuç olarak, kestane ve bal kabağı genotipleri tuza tolerans açısından geniş bir varyasyon ortaya koymuşlardır. Kestane kabakları bal kabaklarına göre daha tolerant bulunmuş, kestane kabaklarında 55ÇA15 ve 57Sİ21, bal kabaklarında ise G9 genotipi orta derecede tolerant olarak sınıflandırılmıştır.

References

  • Acar R, Yorgancılar M, Atalay E, Yaman C (2011). Farklı Tuz Uygulamalarının Bezelyede (Pisum sativum L.) Bağıl Su İçeriği, Klorofil ve Bitki Gelişimine Etkisi. Selçuk Tarım ve Gıda Bilimleri Dergisi 25 (3): 42-46.
  • Açıkgöz N, Gevrek MN (1994). Investigations on salt tolerance of rice mutants. Tr. J. Agriculture and Forestry 18: 179-186.
  • Ahmad P, Jhon R, Sarwat M, Umar S (2008). Responses of proline, lipid peroxidation and antioxidative enzymes in two varieties of Pisum sativum L. under salt stress. Int. J. Plant Production, 2: 353-366.
  • Al-Aghabary K, Zhu ZJ, Shi QH (2004). Influence of silicon supply on chlorophyll content, chlorophyll fluorescence and antioxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition. 27: 2101-2115.
  • Alian AA, Altman A, Heuer B (2000). Genotypic differences in salinity and water stress tolerance of fresh market tomato cultivars. Plant Sci., 152: 59-65.
  • Anonim (2013). Tarımsal Yapılar ve Üretim. www.tuik.gov.tr
  • Ashraf M (2004). Some important physiological selection criteria for salt tolerance in plants. Flora, 199: 361–376.
  • Ashraf M, Haris PJC (2005). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166: 316 p.
  • Asraf M, Foolad MR (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Envir. and Exp. Bot., 59: 206-216.
  • Ashraf M, Ali Q (2008). Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environ. Exp. Bot., 63: 266-273.
  • Babourina O, Leonova T, Shabala S (2000). Effect of sudden salt stress on ion fluxes in intact wheat suspension cell. Annals of Botany, 85, 759-767.
  • Balkaya A, Kurtar ES, Yanmaz R, Özbakır M (2008). Karadeniz Bölgesi’nde kışlık kabak türlerinde (Kestane kabağı Cucurbita maxima Duchesne ve Bal kabağı Cucurbita moschata Duchesne) gen kaynaklarının toplanması, karakterizasyonu ve değerlendirilmesi. 104 O 144 Nolu Tubitak Projesi Kesin Sonuç Raporu, Ankara.
  • Bayat RA, Kuşvuran Ş, Ellialtıoğlu Ş, Üstün AS (2014). Tuz Stresi Altındaki Genç Kabak (Cucurbita pepo L. ve C. moschata Poir.) Bitkilerine Uygulanan Prolin’in, Antioksidatif Enzim Aktiviteleri Üzerine Etkisi. Turk Tarım ve Doğa Bilimleri Dergisi 1(1): 25–33.
  • Baysal FG, Tıpırdamaz R (2010). Physiological and antioxidant response of three cultivars of cucumber (Cucumis sativus L.) to salinity. Tubitak Turk J Biol, 34:287-296.
  • Beinsan C, Camen D, Sumalan R, Babau M (2009). Study concerning salt stress effect on leaf area dynamics and chlorophyll content in four bean local landraces from Banat area. 44th Croatian & 4th International Symposium on Agriculture, 416-419.
  • Botti C, Palzkill D, Muñoz D, Prat L (1998). Morphological and anatomical characterization of six jojoba clones at saline and non- saline sites. Industrial Crops and Products 9:53-62.
  • Camilla P, Stefano M, Shabalab S (2012). Physiology of acclimation to salinity stress in pea (Pisum sativum). Environmental and Experimental Botany 84: 44– 51.
  • Carcamo HJ, Bustos RM, Fernandez FE, Bastias EI (2012). Mitigating effect of salicylic acid in the anatomy of the leaf of Zea mays L. lluteño ecotype from the Lluta Valley (Arica-Chile) under NaCl stress. IDESIA (Chile), 30(3): 55-63.
  • Caro M, Cruz V, Cuartero J, Estañ MT, Bolarín MC (1991). Salinity tolerance of normal-fruited and cherry tomato cultivars. Plant & Soil 136:249-255.
  • Ciobanu IP, Sumalan R (2009). The Effects of the Salinity Stress on the Growing Rates and Physiological Characteristics to the Lycopersicum esculentum Specie. Bulletin UASVM Horticulture, 66(2).
  • Chaves MM, Flexas J, Pinheiro C (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot., 103(4): 551–560.
  • Colla G, Rouphael Y, Cardarelli M, Massa D, Salerno A, Rea E (2006). Yield, fruit quality and mineral composition of grafted melon plants grown under saline conditions. J. of Horticultural Science and Biotechnology. 81(1): 146-152.
  • Cuartero J, Fernández-Muñoz R (1999). Tomato and salinity. Scientia Horticulturae 78,83–125.
  • Cuartero J, Yeo AR, Flowers T (1992). Selection of donors for salt-tolerance in tomato using physiological traits. New Phytology, 121, 63-69.
  • Dasgan HY, Aktas H, Abak K, Cakmak I (2002). Determination of screening techniques to salinity tolerance in tomato and investigation of genotypes responses. Plant Sci. 163: 695-703.
  • Delfine S, Alvino A, Villani MC, Loreto F (1999). Restriction to carbon dioxide conductance and photosynthesis in spinach leaves recovering from salt stress. Plant Physiol. 119, 1101-1106.
  • Demir E, Seckin DB, Ozdener Y (2013). Biochemical Effects of Arsenic Stress In The Leaves of Halophyte Cakile maritima (Scop.) Plants Under Salinity. Fresenius Environmental Bulletin, 22 (12), 3465-3473.
  • Downton WJS, Grant WJR, Robinson SP (1985). Photosynthetic and stomatal responses of spinach leaves to salt stress. Plant Physiology. 77: 85-88.
  • El-Shraiy AM, Mostafa MA, Zaghlool SA, Shehata SAM (2011). Physiological Aspect of Nacl-salt Stress Tolerant among Cucurbitaceous Cultivars. Australian Journal of Basic and Applied Sciences, 5(11): 62-71.
  • Ergene A (1982). Toprak Bilgisi. Atatürk Üniv. Ziraat Fakültesi Yayınları, Erzurum.
  • Ertekin F (2010). Kabakta yeşil aksam ve kök bölgesindeki iyon dağılımının tuz stresine toleransın belirlenmesinde kullanım olanakları üzerine bir araştırma. Ankara Üniv. Fen Bil. Ens. Yüksek Lisans Tezi, 98 s.
  • Florina F, Giancarla V, Cerasela P, Sofia P (2013) . The effect of salt stress on chlorophyll content in several Romanian tomato varieties. JOURNAL of Horticulture, Forestry and Biotechnology, 17(1): 363- 367.
  • Gan Y, Zhou L, Shen ZJ, Shen ZX, Zhang YO, Wang GX (2010). Stomatal clustering, a new marker for environmental perception and adaptation in terrestrial plants. Botanical Studies 51: 325-336.
  • Graifenberg A, Botrini L, Giustiniani L, Lipucci di Paola M (1996). Yield, growth and elemental content of zucchini squash grown under saline-sodic conditions. J. Hort. Sci. 71, 305-311.
  • Greenway H, Munns R (1980). Mechanisms of salt tolerance in nonhallophytes. Ann. Rev. Plant Physiol. 31, 149-190.
  • Hoagland DR, Arnon DI (1938). The Water Culture Method for Growing Plants Without Soil. Circ. Calif. Agr. Exp. Sta., 347-461.
  • Huang Y, Bie Z, Liu P, Niu M, Zhen A, Liu Z, Lei B, Gu D, Lu C, Wang B (2013). Reciprocal grafting between cucumber and pumpkin demonstrates the roles of the rootstock in the determination of cucumber salt tolerance and sodium accumulation. Scientia Horticulturae 149: 47–54.
  • Kaya C, Tuna AL, Ashraf M, Altunlu H (2007). Improved salt tolerance of melon (Cucumis melo L.) by the addition of proline and potassium nitrate. Environmental and Experimental Botany 60: 397-403.
  • Kaymakanova M, Stoeva N, Mincheva T (2009). Salinity and its effects on the pyhsiological response of bean. Journal Central European Agr. 9(4): 749-756.
  • Kuşvuran Ş, Ellialtıoğlu Ş, Abak K, Yaşar F (2007). Bazı Kavun (Cucumis sp.) Genotiplerinin Tuz Stresine Tepkileri. Ankara Üniv. Zirat Fak. Tarım Bilimleri Dergisi, 13(4): 395-404.
  • Kuşvuran S, Yasar F, Abak K, Ellialtıoğlu S (2008). Tuz stresi altında yetistirilen tuza tolerant ve duyarlı Cucumis sp.’nin bazı genotiplerinde lipid peroksidasyonu, klorofil ve iyon miktarlarında meydana gelen değisimler. Yüzüncü Yıl Üniv., Ziraat Fakültesi, Tarım Bilimleri Dergisi (J. Agric. Sci.), 18 (1): 13-20.
  • Kuşvuran Ş (2010). Kavunlarda Kuraklık ve Tuzluluğa Toleransın Fizyolojik Mekanizmaları Arasındaki Bağlantılar (Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Bahçe Bitkileri Anabilim Dalı, Doktora Tezi, Mart, 2010, 355s
  • Kusvuran Ş, Ellialtioglu Ş, Yasar F, Abak K (2012). Antioxidative enzyme activities in the leaves and callus tissues of salt-tolerant and salt-susceptible melon varieties under salinity. African Journal of Biotechnology Vol. 11(3), pp. 635-641.
  • Kwiatkowski J, King CR (1998). Salinity mapping for resource management. Canada, Alberta.
  • Levitt J (1972). Response of plants to environmental stresses, Vol.II, 2nd ed. Academic Press, New York, pp:607.
  • Levitt J (1980). Responses of Plants to Environmental Stresses. Volume II, 2nd ed. Academic Press, New York.
  • Marschner H (1995). Mineral Nutrition of High Plants. Academic Press, London.
  • Matsubara S (1989). Studies on Salt Tolerance of Vegetables-3. Salt tolerance of rootstocks. Agric Bull, Okayama Univ 73:17-25.
  • Munns R (2005). Genes and salt tolerance: bringing them together. New Phytol., 167: 645-663.
  • Nazarbeygi E, Yazdi HL, Naseri R, Soleimani R (2011). The effects of different levels of salinity on proline and A-, B- chlorophylls in canola. Amer-Eurasian J. Agric. Environ. Sci., 10(1): 70-74.
  • Neelam M, Ajay KG (2005). Effect of salt stress on proline metabolism in two high yielding genotypes of green gram, Plant Science, 331-339.
  • Özdemir S, Engin M (1995). Nohut bitkisinin bitki gelişimi ve simbiyotik sistemi üzerine NaCL konsantrasyonlarının etkisi. Türk Tar. ve Orm. Derg. 19, 145-150.
  • Parida A, Das AB, Das P (2002). NaCl stress causes changes in photosynthetic pigments. Proteins and other metabolic components in the leaves of a true mangrove, Bruguiera Parviflora, in hydroponic cultivars. Journal of Plant Biology 45, 28-36.
  • Patel R, Prasher S, Bonnell R, Boughton R (2002). Development of comprehensive soil salinity index. J. Irrig. Drain. Engg., 128: 185-188.
  • Robinson J, Very AA, Sanders D, Mansfield TA (1997). How can stoma contribute to salt tolerance? Annals of Botany, 80: 387-393.
  • Rousselle F (1992). Techniques d’estimation nombre de chloroplastes,. In: J. Jahier (eds.). Techniques de Cytogénétiques Végétale, INRA Publ., Paris.
  • Sevengor S (2010). Investigations on antioxydant enzyme activities under in vitro and in vivo conditions to obtain salt tolerance in squash (Cucurbita pepo L.). Ph.D.Thesis, Ankara University, Graduate School of Natural and Applied Sciences, Ankara, p. 179.
  • Sevengor S, Yasar F, Kusvuran S, Ellialtioglu S (2011). The effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidative enzymes of pumpkin seedling. African J. of Agric. Res. 6(21):4920-4924.
  • Santos CV (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae 103: 93-99.
  • Shalaby EE, Epstein E, Qualset OC (1993). Variation in salt tolerance among some wheat and triticale genotypes. J. Agron. Crop. Sci., 171:298-304.
  • Solmaz İ, Sari N, Dasgan Y, Aktas H, Yetisir H, Unlu H (2011). The effect of salinity on stomata and leaf characteristics of dihaploid melon lines and their hybrids. Journal of Food, Agriculture & Environment, 9: 3-4.
  • Srivastava DS (2002). The role of conservation in expanding biodiversity research. Oikos, 98(2), 351-360.
  • Stepien P, Klobus G (2006). Water relations and photosynthesis in Cucumis sativus L. Leaves under salt stress. Biologia Plantarum. 50: 610-616.
  • Sudhir P, Murthy SDS (2004). Effects of salt stress on basic processes of photosynthesis, Photosynthetica, 481-486.
  • Taiz L, Zeiger E (2002). Plant Physiology, Third Edition. Sinauer Associates, Sunderland, MA. 690 p.
  • Terry R (1997). Soil Salinity. Aghrt 282 Class Lectures.
  • Tester M, Davenport R (2003). Na+ Tolerance and Na + transport in higher plants. Annals of Botany, 91: 503-527.
  • Wei G, Zhu Y, Liu Z, Yang L, Zhang G (2007). Growth and ion distribution in grafted eggplant seedling under NaCl stress. Acta Botanica Boreali-Occidentalia Sinica 27: 1172-1178.
  • Ünlükara A, Kurunç A, Kesmez GD, Yurtseven E, Suarez DL (2010). Effects of Salinity on Eggplant (Solanum Melongena L.) Growth and Evapotranspiration. Irrigation and Drainage 59: 203-214.
  • Uygur V, Yetişir H (2006). Phosphorous Uptake of Gourds Species and Watermelon under Different Salt Stres. Journal of Agronomy 5 (3): 466-470.
  • Uygur V, Yetisir H (2009). Effects of rootstocks on some growth parameters, phosphorous and nitrogen uptake watermelon under salt stress. Journal of plant nutrition 32 (4), 629-643
  • Villora G, Pulgar G, Moreno DA, Romero L (1997). Salinity treatments and their effect on nutrient concentration in zucchini plants (Cucurbitia pepo L. var. moschata) Aust. J.Exp. Agric. 37, 605-608.
  • Yang L, Zhu Y, Hu C, Liu Z, Wei G (2006). Effects of salt stress on biomass formation and ion partition in hydroponically-cultured grafted cucumber. Acta Botanica Boreali-Occidentalia Sinica. 26: 2500-2505.
  • Yuan H, Zhilong B, Pengyi L, Mengliang N, Ai Z, Zhixiong L, Bo L, Dongjun G, Chao L, Baitian W (2013). Reciprocal grafting between cucumber and pumpkin demonstrates the roles of the rootstock in the determination of cucumber salt tolerance and sodium accumulation. Scientia Horticulturae 149: 47–54
  • Yanmaz R, Düzeltir B (2003). Çekirdek Kabağı Yetiştiriciliği. Ekin Dergisi Yayınları, Yayın No 26; 22-24s.
  • Yasar F (2007). Effects of salt stress on ion and lipid peroxidation content in green bean genotypes. Asian J. Biochem . 19: 1165-1169.
  • Yasar F, Ellialtioglu S, Yildiz K (2008). Effect of salt stress on antioxidant defense systems, lipid peroxidation, and chlorophyll content in green bean. Russian J. Plant Physiol., 55(6): 782-786.
  • Yıldırım E, Turan M, Güvenç İ (2008). Effect of foliar salicylic acid applications on growth, chlorophyll and mineral content of cucumber (Cucumis sativus L.) grown under salt stress. Journal of Plant Nutrition. 31: 593-612.
  • Yıldız M, Terzi H, Cenkçi S, Arıkan Terzi ES, Urusak B (2010). Bitkilerde tuzluluğa toleransın fizyolojik ve biyokimyasal markörleri. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi, 1 (1): 1-33.
  • Yıldız S (2014). Aşılı hıyar fidesi üretiminde anaç olarak kullanılacak bazı kabak (Cucurbita spp.) genetik kaynaklarının tuzluluğa tolerans seviyelerinin belirlenmesi. OMÜ Fen Bilimleri Ens. Yüksek Lisans Tezi.
  • Zhao GQ, Ma BL, Ren CZ (2007). Growth, gas exchange, chlorophyll fluorescence and ion content of naked oat in response to salinity. Crop Sci., 47 (1): 123–131.

Screening for Salinity Tolerance in Developed Winter Squash (Cucurbita maxima) and Pumpkin (Cucurbita moschata) Lines

Year 2016, Volume: 26 Issue: 2, 183 - 195, 31.05.2016

Abstract

Salinity is one of the major environmental factors that cause reduction in plant growth, development and productivity. One screening study was performed in order to determine the genotypical differences of selected promising winter squash (Cucurbita maxima) and pumpkin (Cucurbita moschata) lines for salt stress. In this study, three pumpkin lines (G9, 14BO01 and 14YE02) and four winter squash (57SI21, 55CA15, 57SI06 and G14) lines were used. Seeds were germinated in a mixture of peat:perlite of 2:1 ratio. After 21 days of sowing, seedlings were transferred to plastic pots containing a perlite. Two weeks later, salt treatment started and NaCl concentration was applied at 4 different EC values (4, 8, 12 ve 16 dS m–1). Stress responses of winter squash and pumpkin lines were evaluated in early plant development stage, in this way chlorophyll content (SPAD value), stoma density (stoma mm-2) and stoma dimensions (mm) were determined. The results indicated that stomata intensity increased, while stomata density and SPAD value decreased in saline condition. In conclusion, the winter squash and pumpkin lines showed large variation in their response to salt tolerance. Winter squash lines were found as salt tolerant than pumpkin lines. 55CA15 and 57SI21 in winter squash, G9 in pumpkin were classified as mildly tolerant.

References

  • Acar R, Yorgancılar M, Atalay E, Yaman C (2011). Farklı Tuz Uygulamalarının Bezelyede (Pisum sativum L.) Bağıl Su İçeriği, Klorofil ve Bitki Gelişimine Etkisi. Selçuk Tarım ve Gıda Bilimleri Dergisi 25 (3): 42-46.
  • Açıkgöz N, Gevrek MN (1994). Investigations on salt tolerance of rice mutants. Tr. J. Agriculture and Forestry 18: 179-186.
  • Ahmad P, Jhon R, Sarwat M, Umar S (2008). Responses of proline, lipid peroxidation and antioxidative enzymes in two varieties of Pisum sativum L. under salt stress. Int. J. Plant Production, 2: 353-366.
  • Al-Aghabary K, Zhu ZJ, Shi QH (2004). Influence of silicon supply on chlorophyll content, chlorophyll fluorescence and antioxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition. 27: 2101-2115.
  • Alian AA, Altman A, Heuer B (2000). Genotypic differences in salinity and water stress tolerance of fresh market tomato cultivars. Plant Sci., 152: 59-65.
  • Anonim (2013). Tarımsal Yapılar ve Üretim. www.tuik.gov.tr
  • Ashraf M (2004). Some important physiological selection criteria for salt tolerance in plants. Flora, 199: 361–376.
  • Ashraf M, Haris PJC (2005). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166: 316 p.
  • Asraf M, Foolad MR (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Envir. and Exp. Bot., 59: 206-216.
  • Ashraf M, Ali Q (2008). Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environ. Exp. Bot., 63: 266-273.
  • Babourina O, Leonova T, Shabala S (2000). Effect of sudden salt stress on ion fluxes in intact wheat suspension cell. Annals of Botany, 85, 759-767.
  • Balkaya A, Kurtar ES, Yanmaz R, Özbakır M (2008). Karadeniz Bölgesi’nde kışlık kabak türlerinde (Kestane kabağı Cucurbita maxima Duchesne ve Bal kabağı Cucurbita moschata Duchesne) gen kaynaklarının toplanması, karakterizasyonu ve değerlendirilmesi. 104 O 144 Nolu Tubitak Projesi Kesin Sonuç Raporu, Ankara.
  • Bayat RA, Kuşvuran Ş, Ellialtıoğlu Ş, Üstün AS (2014). Tuz Stresi Altındaki Genç Kabak (Cucurbita pepo L. ve C. moschata Poir.) Bitkilerine Uygulanan Prolin’in, Antioksidatif Enzim Aktiviteleri Üzerine Etkisi. Turk Tarım ve Doğa Bilimleri Dergisi 1(1): 25–33.
  • Baysal FG, Tıpırdamaz R (2010). Physiological and antioxidant response of three cultivars of cucumber (Cucumis sativus L.) to salinity. Tubitak Turk J Biol, 34:287-296.
  • Beinsan C, Camen D, Sumalan R, Babau M (2009). Study concerning salt stress effect on leaf area dynamics and chlorophyll content in four bean local landraces from Banat area. 44th Croatian & 4th International Symposium on Agriculture, 416-419.
  • Botti C, Palzkill D, Muñoz D, Prat L (1998). Morphological and anatomical characterization of six jojoba clones at saline and non- saline sites. Industrial Crops and Products 9:53-62.
  • Camilla P, Stefano M, Shabalab S (2012). Physiology of acclimation to salinity stress in pea (Pisum sativum). Environmental and Experimental Botany 84: 44– 51.
  • Carcamo HJ, Bustos RM, Fernandez FE, Bastias EI (2012). Mitigating effect of salicylic acid in the anatomy of the leaf of Zea mays L. lluteño ecotype from the Lluta Valley (Arica-Chile) under NaCl stress. IDESIA (Chile), 30(3): 55-63.
  • Caro M, Cruz V, Cuartero J, Estañ MT, Bolarín MC (1991). Salinity tolerance of normal-fruited and cherry tomato cultivars. Plant & Soil 136:249-255.
  • Ciobanu IP, Sumalan R (2009). The Effects of the Salinity Stress on the Growing Rates and Physiological Characteristics to the Lycopersicum esculentum Specie. Bulletin UASVM Horticulture, 66(2).
  • Chaves MM, Flexas J, Pinheiro C (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot., 103(4): 551–560.
  • Colla G, Rouphael Y, Cardarelli M, Massa D, Salerno A, Rea E (2006). Yield, fruit quality and mineral composition of grafted melon plants grown under saline conditions. J. of Horticultural Science and Biotechnology. 81(1): 146-152.
  • Cuartero J, Fernández-Muñoz R (1999). Tomato and salinity. Scientia Horticulturae 78,83–125.
  • Cuartero J, Yeo AR, Flowers T (1992). Selection of donors for salt-tolerance in tomato using physiological traits. New Phytology, 121, 63-69.
  • Dasgan HY, Aktas H, Abak K, Cakmak I (2002). Determination of screening techniques to salinity tolerance in tomato and investigation of genotypes responses. Plant Sci. 163: 695-703.
  • Delfine S, Alvino A, Villani MC, Loreto F (1999). Restriction to carbon dioxide conductance and photosynthesis in spinach leaves recovering from salt stress. Plant Physiol. 119, 1101-1106.
  • Demir E, Seckin DB, Ozdener Y (2013). Biochemical Effects of Arsenic Stress In The Leaves of Halophyte Cakile maritima (Scop.) Plants Under Salinity. Fresenius Environmental Bulletin, 22 (12), 3465-3473.
  • Downton WJS, Grant WJR, Robinson SP (1985). Photosynthetic and stomatal responses of spinach leaves to salt stress. Plant Physiology. 77: 85-88.
  • El-Shraiy AM, Mostafa MA, Zaghlool SA, Shehata SAM (2011). Physiological Aspect of Nacl-salt Stress Tolerant among Cucurbitaceous Cultivars. Australian Journal of Basic and Applied Sciences, 5(11): 62-71.
  • Ergene A (1982). Toprak Bilgisi. Atatürk Üniv. Ziraat Fakültesi Yayınları, Erzurum.
  • Ertekin F (2010). Kabakta yeşil aksam ve kök bölgesindeki iyon dağılımının tuz stresine toleransın belirlenmesinde kullanım olanakları üzerine bir araştırma. Ankara Üniv. Fen Bil. Ens. Yüksek Lisans Tezi, 98 s.
  • Florina F, Giancarla V, Cerasela P, Sofia P (2013) . The effect of salt stress on chlorophyll content in several Romanian tomato varieties. JOURNAL of Horticulture, Forestry and Biotechnology, 17(1): 363- 367.
  • Gan Y, Zhou L, Shen ZJ, Shen ZX, Zhang YO, Wang GX (2010). Stomatal clustering, a new marker for environmental perception and adaptation in terrestrial plants. Botanical Studies 51: 325-336.
  • Graifenberg A, Botrini L, Giustiniani L, Lipucci di Paola M (1996). Yield, growth and elemental content of zucchini squash grown under saline-sodic conditions. J. Hort. Sci. 71, 305-311.
  • Greenway H, Munns R (1980). Mechanisms of salt tolerance in nonhallophytes. Ann. Rev. Plant Physiol. 31, 149-190.
  • Hoagland DR, Arnon DI (1938). The Water Culture Method for Growing Plants Without Soil. Circ. Calif. Agr. Exp. Sta., 347-461.
  • Huang Y, Bie Z, Liu P, Niu M, Zhen A, Liu Z, Lei B, Gu D, Lu C, Wang B (2013). Reciprocal grafting between cucumber and pumpkin demonstrates the roles of the rootstock in the determination of cucumber salt tolerance and sodium accumulation. Scientia Horticulturae 149: 47–54.
  • Kaya C, Tuna AL, Ashraf M, Altunlu H (2007). Improved salt tolerance of melon (Cucumis melo L.) by the addition of proline and potassium nitrate. Environmental and Experimental Botany 60: 397-403.
  • Kaymakanova M, Stoeva N, Mincheva T (2009). Salinity and its effects on the pyhsiological response of bean. Journal Central European Agr. 9(4): 749-756.
  • Kuşvuran Ş, Ellialtıoğlu Ş, Abak K, Yaşar F (2007). Bazı Kavun (Cucumis sp.) Genotiplerinin Tuz Stresine Tepkileri. Ankara Üniv. Zirat Fak. Tarım Bilimleri Dergisi, 13(4): 395-404.
  • Kuşvuran S, Yasar F, Abak K, Ellialtıoğlu S (2008). Tuz stresi altında yetistirilen tuza tolerant ve duyarlı Cucumis sp.’nin bazı genotiplerinde lipid peroksidasyonu, klorofil ve iyon miktarlarında meydana gelen değisimler. Yüzüncü Yıl Üniv., Ziraat Fakültesi, Tarım Bilimleri Dergisi (J. Agric. Sci.), 18 (1): 13-20.
  • Kuşvuran Ş (2010). Kavunlarda Kuraklık ve Tuzluluğa Toleransın Fizyolojik Mekanizmaları Arasındaki Bağlantılar (Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Bahçe Bitkileri Anabilim Dalı, Doktora Tezi, Mart, 2010, 355s
  • Kusvuran Ş, Ellialtioglu Ş, Yasar F, Abak K (2012). Antioxidative enzyme activities in the leaves and callus tissues of salt-tolerant and salt-susceptible melon varieties under salinity. African Journal of Biotechnology Vol. 11(3), pp. 635-641.
  • Kwiatkowski J, King CR (1998). Salinity mapping for resource management. Canada, Alberta.
  • Levitt J (1972). Response of plants to environmental stresses, Vol.II, 2nd ed. Academic Press, New York, pp:607.
  • Levitt J (1980). Responses of Plants to Environmental Stresses. Volume II, 2nd ed. Academic Press, New York.
  • Marschner H (1995). Mineral Nutrition of High Plants. Academic Press, London.
  • Matsubara S (1989). Studies on Salt Tolerance of Vegetables-3. Salt tolerance of rootstocks. Agric Bull, Okayama Univ 73:17-25.
  • Munns R (2005). Genes and salt tolerance: bringing them together. New Phytol., 167: 645-663.
  • Nazarbeygi E, Yazdi HL, Naseri R, Soleimani R (2011). The effects of different levels of salinity on proline and A-, B- chlorophylls in canola. Amer-Eurasian J. Agric. Environ. Sci., 10(1): 70-74.
  • Neelam M, Ajay KG (2005). Effect of salt stress on proline metabolism in two high yielding genotypes of green gram, Plant Science, 331-339.
  • Özdemir S, Engin M (1995). Nohut bitkisinin bitki gelişimi ve simbiyotik sistemi üzerine NaCL konsantrasyonlarının etkisi. Türk Tar. ve Orm. Derg. 19, 145-150.
  • Parida A, Das AB, Das P (2002). NaCl stress causes changes in photosynthetic pigments. Proteins and other metabolic components in the leaves of a true mangrove, Bruguiera Parviflora, in hydroponic cultivars. Journal of Plant Biology 45, 28-36.
  • Patel R, Prasher S, Bonnell R, Boughton R (2002). Development of comprehensive soil salinity index. J. Irrig. Drain. Engg., 128: 185-188.
  • Robinson J, Very AA, Sanders D, Mansfield TA (1997). How can stoma contribute to salt tolerance? Annals of Botany, 80: 387-393.
  • Rousselle F (1992). Techniques d’estimation nombre de chloroplastes,. In: J. Jahier (eds.). Techniques de Cytogénétiques Végétale, INRA Publ., Paris.
  • Sevengor S (2010). Investigations on antioxydant enzyme activities under in vitro and in vivo conditions to obtain salt tolerance in squash (Cucurbita pepo L.). Ph.D.Thesis, Ankara University, Graduate School of Natural and Applied Sciences, Ankara, p. 179.
  • Sevengor S, Yasar F, Kusvuran S, Ellialtioglu S (2011). The effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidative enzymes of pumpkin seedling. African J. of Agric. Res. 6(21):4920-4924.
  • Santos CV (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae 103: 93-99.
  • Shalaby EE, Epstein E, Qualset OC (1993). Variation in salt tolerance among some wheat and triticale genotypes. J. Agron. Crop. Sci., 171:298-304.
  • Solmaz İ, Sari N, Dasgan Y, Aktas H, Yetisir H, Unlu H (2011). The effect of salinity on stomata and leaf characteristics of dihaploid melon lines and their hybrids. Journal of Food, Agriculture & Environment, 9: 3-4.
  • Srivastava DS (2002). The role of conservation in expanding biodiversity research. Oikos, 98(2), 351-360.
  • Stepien P, Klobus G (2006). Water relations and photosynthesis in Cucumis sativus L. Leaves under salt stress. Biologia Plantarum. 50: 610-616.
  • Sudhir P, Murthy SDS (2004). Effects of salt stress on basic processes of photosynthesis, Photosynthetica, 481-486.
  • Taiz L, Zeiger E (2002). Plant Physiology, Third Edition. Sinauer Associates, Sunderland, MA. 690 p.
  • Terry R (1997). Soil Salinity. Aghrt 282 Class Lectures.
  • Tester M, Davenport R (2003). Na+ Tolerance and Na + transport in higher plants. Annals of Botany, 91: 503-527.
  • Wei G, Zhu Y, Liu Z, Yang L, Zhang G (2007). Growth and ion distribution in grafted eggplant seedling under NaCl stress. Acta Botanica Boreali-Occidentalia Sinica 27: 1172-1178.
  • Ünlükara A, Kurunç A, Kesmez GD, Yurtseven E, Suarez DL (2010). Effects of Salinity on Eggplant (Solanum Melongena L.) Growth and Evapotranspiration. Irrigation and Drainage 59: 203-214.
  • Uygur V, Yetişir H (2006). Phosphorous Uptake of Gourds Species and Watermelon under Different Salt Stres. Journal of Agronomy 5 (3): 466-470.
  • Uygur V, Yetisir H (2009). Effects of rootstocks on some growth parameters, phosphorous and nitrogen uptake watermelon under salt stress. Journal of plant nutrition 32 (4), 629-643
  • Villora G, Pulgar G, Moreno DA, Romero L (1997). Salinity treatments and their effect on nutrient concentration in zucchini plants (Cucurbitia pepo L. var. moschata) Aust. J.Exp. Agric. 37, 605-608.
  • Yang L, Zhu Y, Hu C, Liu Z, Wei G (2006). Effects of salt stress on biomass formation and ion partition in hydroponically-cultured grafted cucumber. Acta Botanica Boreali-Occidentalia Sinica. 26: 2500-2505.
  • Yuan H, Zhilong B, Pengyi L, Mengliang N, Ai Z, Zhixiong L, Bo L, Dongjun G, Chao L, Baitian W (2013). Reciprocal grafting between cucumber and pumpkin demonstrates the roles of the rootstock in the determination of cucumber salt tolerance and sodium accumulation. Scientia Horticulturae 149: 47–54
  • Yanmaz R, Düzeltir B (2003). Çekirdek Kabağı Yetiştiriciliği. Ekin Dergisi Yayınları, Yayın No 26; 22-24s.
  • Yasar F (2007). Effects of salt stress on ion and lipid peroxidation content in green bean genotypes. Asian J. Biochem . 19: 1165-1169.
  • Yasar F, Ellialtioglu S, Yildiz K (2008). Effect of salt stress on antioxidant defense systems, lipid peroxidation, and chlorophyll content in green bean. Russian J. Plant Physiol., 55(6): 782-786.
  • Yıldırım E, Turan M, Güvenç İ (2008). Effect of foliar salicylic acid applications on growth, chlorophyll and mineral content of cucumber (Cucumis sativus L.) grown under salt stress. Journal of Plant Nutrition. 31: 593-612.
  • Yıldız M, Terzi H, Cenkçi S, Arıkan Terzi ES, Urusak B (2010). Bitkilerde tuzluluğa toleransın fizyolojik ve biyokimyasal markörleri. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi, 1 (1): 1-33.
  • Yıldız S (2014). Aşılı hıyar fidesi üretiminde anaç olarak kullanılacak bazı kabak (Cucurbita spp.) genetik kaynaklarının tuzluluğa tolerans seviyelerinin belirlenmesi. OMÜ Fen Bilimleri Ens. Yüksek Lisans Tezi.
  • Zhao GQ, Ma BL, Ren CZ (2007). Growth, gas exchange, chlorophyll fluorescence and ion content of naked oat in response to salinity. Crop Sci., 47 (1): 123–131.
There are 81 citations in total.

Details

Journal Section Articles
Authors

Ertan Sait Kurtar

Ahmet Balkaya

Dilek Kandemir

Publication Date May 31, 2016
Published in Issue Year 2016 Volume: 26 Issue: 2

Cite

APA Kurtar, E. S., Balkaya, A., & Kandemir, D. (2016). Screening for Salinity Tolerance in Developed Winter Squash (Cucurbita maxima) and Pumpkin (Cucurbita moschata) Lines. Yuzuncu Yıl University Journal of Agricultural Sciences, 26(2), 183-195.
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.