Research Article
BibTex RIS Cite

Toprakta Laktik Asit ve Fumarik Asit Salgılayan Önemli Bazı Fosfat Çözücü Fungusların Belirlenmesi

Year 2020, Volume: 30 Issue: 3, 585 - 592, 30.09.2020
https://doi.org/10.29133/yyutbd.689363

Abstract

Bu çalışma, Amasya ilindeki farklı tarım alanlarında yetişen farklı bitkilerin rizosfer kısmındaki topraktan fosfor (P) çözen fungusların izolasyonu, mikroskobik tanılanması ve organik asit sentezlerinin belirlenmesi amacı ile yapılmıştır. Rizosfer toprağından NBRIP (National Botanical Research Institute’s Phosphate) katı besiyeri kullanılarak 8 farklı fosfor çözen fungus izole edilmiştir. Funguslar spor karakteristik özelliklerinegöre cins düzeyinde Botrytis spp., Alternaria spp. Rhizopus spp., Penicillium spp., Fusarium spp., Trichoderma spp., Aspergillus spp. ve Cladosporium spp. olarak belirlenmiştir. İzolatlar arasında nicel olarak en yüksek oranda P çözen izolatın 52.98 mg/ml ile Penicillium spp izolatı belirlenirken en düşük miktarda P çözen 29.8 mg/ml ile Cladosporium spp. izolatı belirlenmiştir. Aynı zamanda fungus izolatlarının salgıladıkları toplam Laktik ve Fumarik organik asit miktarlarının çözünen P ile doğru orantılı ve pH ile ters orantılı olduğu belirlenmiştir. İzolatlar arasında en yüksek oranda organik asit sentezleyen 12.475 mg/ml ile Penicillium spp. izolatı olurken, en düşük oranda 10.268 mg/ml ile Cladosporium spp. izolatı belirlenmiştir. Sonuç olarak bu çalışmada fungusların çözdüğü P ile sentezledikleri toplam organik asit miktarı ile ilişkili olduğu belirlenmiştir.

Supporting Institution

Amasya Üniversitesi

Project Number

FMP BAP 18-0373

Thanks

Bu çalışma Amasya Üniversitesi Bilimsel Araştırma Projeleri birimi tarafından FMP BAP 18-0373 no’lu proje kapsamında desteklenmiştir.

References

  • Anil, K., & Lakshmi, T. (2010). Phosphate solubilization potential and phosphatase activity of rhizospheric Trichoderma spp. Brazilian Journal of Microbiology 41, 787.
  • Bar-Yosef, B., Rogers, R., Wolfram, J., and Richman, E. (1999). Pseudomonas cepacia–mediated rock phosphate solubilization in kaolinite and montmorillonite suspensions. Soil Science Society of America Journal 63, 1703-1708.
  • Barton, C. J. (1948). Photometric analysis of phosphate rock. Analytical Chemistry 20, 1068-1073.
  • Berthelin, J., Leyval, C., Laheurte, F., & Giudici, P. d. (1991). Involvement of roots and rhizosphere microflora in the chemical weathering of soil minerals.
  • Bevilacqua, A., & Califano, A. (1989). Determination of organic acids in dairy products by high performance liquid chromatography. Journal of Food Science 54, 1076-1076.
  • Chuang, C.-C., Kuo, Y.-L., Chao, C.-C., & Chao, W.-L. (2007). Solubilization of inorganic phosphates and plant growth promotion by Aspergillus niger. Biology and Fertility of Soils 43, 575-584.
  • Gupta, R., Sıngal, R., Shankar, A., Kuhad, R. C., & Saxena, R. K. (1994). A modified plate assay for screening phosphate solubilizing microorganisms. The Journal of General and Applied Microbiology 40, 255-260.
  • Halder, A., Mishra, A., & Chakrabartty, P. (1991). Solubilization of inorganic phosphates by Bradyrhizobium. Indian journal of Experimental Biology 29, 28-31.
  • Holford, I. (1997). Soil phosphorus: its measurement, and its uptake by plants. Soil Research 35, 227-240.
  • Kaushık, B., Kumar, D., Israrahmad, P. P., & Sıngh, K. (2019). Phosphorus Availability to Crops Through Phosphate-Solubilizing Microorganisms. Biofertilizers and Biopesticides in Sustainable Agriculture, 237.
  • Khatoon, N., Md, M. K., & Khan, M. M. (2014). Isolation of potential thermotolerant phosphate solubilizing fungal strains from agricultural soils. J. Environ. Res. Develop 8, 853-858.
  • Marra, L. M., de Oliveira-Longatti, S. M., Soares, C. R. F. S., Olivares, F. L., & Moreira, F. M. d. S. (2019). The amount of phosphate solubilization depends on the strain, C-source, organic acids and type of phosphate. Geomicrobiology Journal 36, 232-242.
  • Nautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters 170, 265-270.
  • Onyia, C. E., & Anyanwu, C. U. (2013). Comparative study on solubilization of tri-calcium phosphate (TCP) by phosphate solubilizing fungi (PSF) isolated from Nsukka pepper plant rhizosphere and root free soil.
  • Paul, E. A. (2014). "Soil microbiology, ecology and biochemistry," Academic press.
  • Pradhan, N., & Sukla, L. (2006). Solubilization of inorganic phosphates by fungi isolated from agriculture soil. African Journal of Biotechnology 5.
  • Richa, G., Khosla, B., & Reddy, M. S. (2007). Improvement of maize plant growth by phosphate solubilizing fungi in rock phosphate amended soils. World Journal of Agricultural Sciences 3, 481-484.
  • Samson, R., Hoekstra, E., & Frisvad, J. (2004). Introduction to Food-and Airborne Fungi, Laboratory Manual Series 2. Food and Indoor Fungi, 389pp.
  • Scervino, J., Papinutti, V., Godoy, M., Rodriguez, M., Della Monica, I., Recchi, M., Pettinari, M., & Godeas, A. (2011). Medium pH, carbon and nitrogen concentrations modulate the phosphate solubilization efficiency of Penicillium purpurogenum through organic acid production. Journal of Applied Microbiology 110, 1215-1223.
  • Schachtman, D. P., Reid, R. J., & Ayling, S. M. (1998). Phosphorus uptake by plants: from soil to cell. Plant physiology 116, 447-453.
  • Spss, I. (2011). IBM SPSS statistics for Windows, version 20.0. New York: IBM Corp 440.
  • Sujatha, E., Girisham, S., & Reddy, S. (2004). Phosphate solubilization by thermophilic microorganisms. Indian Journal of Microbiology 44, 101-104.
  • Tambekar, P., & Wate, S. (2007). Study of phosphate solubilization efficiencies of fungi and bacteria isolated from saline belt of Puma river basin. Research Journal of Agriculture and Biological Sciences 3, 701-703.
  • Vazquez, P., Holguin, G., Puente, M., Lopez-Cortes, A., & Bashan, Y. (2000). Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biology and Fertility of Soils 30, 460-468.
  • Wakelin, S. A., Warren, R. A., Harvey, P. R., & Ryder, M. H. (2004). Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biology and Fertility of Soils 40, 36-43.
  • White, P. F., Nesbitt, H. J., Ros, C., Seng, V., & Lor, B. (1999). Local rock phosphate deposits are a good source of phosphorus fertilizer for rice production in Cambodia. Soil Science and Plant Nutrition 45, 51-63.
  • Xiao, C., Chi, R., He, H., Qiu, G., Wang, D., & Zhang, W. (2009). Isolation of phosphate-solubilizing fungi from phosphate mines and their effect on wheat seedling growth. Applied Biochemistry and Biotechnology 159, 330-342.

Determination of Some Important Phosphorus Solubilising Fungi Secreting Lactic Acid and Fumaric Acid in Soil

Year 2020, Volume: 30 Issue: 3, 585 - 592, 30.09.2020
https://doi.org/10.29133/yyutbd.689363

Abstract

This study was carried out with the aim of isolation, microscopic identification and determination of organic acid synthesis of phosphorus (P) solubilising fungi from rhizosphere soil part of different plants grown in different agricultural areas in Amasya province. Eight different phosphorus- solubilising fungi were isolated from the rhizosphere soil using NBRIP (National Botanical Research Institute's Phosphate) solid medium. Fungi were identified at the genus level as Botrytis spp., Alternaria spp. Rhizopus spp., Penicillium spp., Fusarium spp., Trichoderma spp., Aspergillus spp. and Cladosporium spp. according to spore characteristics. Penicillium spp isolate was determined quantitatively the highest rate of P soluble isolates with 52.98 mg/ml and Cladosporium spp. isolate the lowest amount of P dissolving with 29.8 mg/ml. At the same time, the total amount of Lactic and Fumaric organic acid secreted by fungus isolates is directly proportional to P and inversely proportional to pH. It was determined Penicillium spp isolate with 12.475 mg/ml, which synthesizes the highest amount of organic acid, while Cladosporium spp. with the lowest rate of 10.268 mg/ml. As a result, it was determined that the identified fungi were associated with the total amount of organic acid they synthesized with the P solubilising.

Project Number

FMP BAP 18-0373

References

  • Anil, K., & Lakshmi, T. (2010). Phosphate solubilization potential and phosphatase activity of rhizospheric Trichoderma spp. Brazilian Journal of Microbiology 41, 787.
  • Bar-Yosef, B., Rogers, R., Wolfram, J., and Richman, E. (1999). Pseudomonas cepacia–mediated rock phosphate solubilization in kaolinite and montmorillonite suspensions. Soil Science Society of America Journal 63, 1703-1708.
  • Barton, C. J. (1948). Photometric analysis of phosphate rock. Analytical Chemistry 20, 1068-1073.
  • Berthelin, J., Leyval, C., Laheurte, F., & Giudici, P. d. (1991). Involvement of roots and rhizosphere microflora in the chemical weathering of soil minerals.
  • Bevilacqua, A., & Califano, A. (1989). Determination of organic acids in dairy products by high performance liquid chromatography. Journal of Food Science 54, 1076-1076.
  • Chuang, C.-C., Kuo, Y.-L., Chao, C.-C., & Chao, W.-L. (2007). Solubilization of inorganic phosphates and plant growth promotion by Aspergillus niger. Biology and Fertility of Soils 43, 575-584.
  • Gupta, R., Sıngal, R., Shankar, A., Kuhad, R. C., & Saxena, R. K. (1994). A modified plate assay for screening phosphate solubilizing microorganisms. The Journal of General and Applied Microbiology 40, 255-260.
  • Halder, A., Mishra, A., & Chakrabartty, P. (1991). Solubilization of inorganic phosphates by Bradyrhizobium. Indian journal of Experimental Biology 29, 28-31.
  • Holford, I. (1997). Soil phosphorus: its measurement, and its uptake by plants. Soil Research 35, 227-240.
  • Kaushık, B., Kumar, D., Israrahmad, P. P., & Sıngh, K. (2019). Phosphorus Availability to Crops Through Phosphate-Solubilizing Microorganisms. Biofertilizers and Biopesticides in Sustainable Agriculture, 237.
  • Khatoon, N., Md, M. K., & Khan, M. M. (2014). Isolation of potential thermotolerant phosphate solubilizing fungal strains from agricultural soils. J. Environ. Res. Develop 8, 853-858.
  • Marra, L. M., de Oliveira-Longatti, S. M., Soares, C. R. F. S., Olivares, F. L., & Moreira, F. M. d. S. (2019). The amount of phosphate solubilization depends on the strain, C-source, organic acids and type of phosphate. Geomicrobiology Journal 36, 232-242.
  • Nautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters 170, 265-270.
  • Onyia, C. E., & Anyanwu, C. U. (2013). Comparative study on solubilization of tri-calcium phosphate (TCP) by phosphate solubilizing fungi (PSF) isolated from Nsukka pepper plant rhizosphere and root free soil.
  • Paul, E. A. (2014). "Soil microbiology, ecology and biochemistry," Academic press.
  • Pradhan, N., & Sukla, L. (2006). Solubilization of inorganic phosphates by fungi isolated from agriculture soil. African Journal of Biotechnology 5.
  • Richa, G., Khosla, B., & Reddy, M. S. (2007). Improvement of maize plant growth by phosphate solubilizing fungi in rock phosphate amended soils. World Journal of Agricultural Sciences 3, 481-484.
  • Samson, R., Hoekstra, E., & Frisvad, J. (2004). Introduction to Food-and Airborne Fungi, Laboratory Manual Series 2. Food and Indoor Fungi, 389pp.
  • Scervino, J., Papinutti, V., Godoy, M., Rodriguez, M., Della Monica, I., Recchi, M., Pettinari, M., & Godeas, A. (2011). Medium pH, carbon and nitrogen concentrations modulate the phosphate solubilization efficiency of Penicillium purpurogenum through organic acid production. Journal of Applied Microbiology 110, 1215-1223.
  • Schachtman, D. P., Reid, R. J., & Ayling, S. M. (1998). Phosphorus uptake by plants: from soil to cell. Plant physiology 116, 447-453.
  • Spss, I. (2011). IBM SPSS statistics for Windows, version 20.0. New York: IBM Corp 440.
  • Sujatha, E., Girisham, S., & Reddy, S. (2004). Phosphate solubilization by thermophilic microorganisms. Indian Journal of Microbiology 44, 101-104.
  • Tambekar, P., & Wate, S. (2007). Study of phosphate solubilization efficiencies of fungi and bacteria isolated from saline belt of Puma river basin. Research Journal of Agriculture and Biological Sciences 3, 701-703.
  • Vazquez, P., Holguin, G., Puente, M., Lopez-Cortes, A., & Bashan, Y. (2000). Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biology and Fertility of Soils 30, 460-468.
  • Wakelin, S. A., Warren, R. A., Harvey, P. R., & Ryder, M. H. (2004). Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biology and Fertility of Soils 40, 36-43.
  • White, P. F., Nesbitt, H. J., Ros, C., Seng, V., & Lor, B. (1999). Local rock phosphate deposits are a good source of phosphorus fertilizer for rice production in Cambodia. Soil Science and Plant Nutrition 45, 51-63.
  • Xiao, C., Chi, R., He, H., Qiu, G., Wang, D., & Zhang, W. (2009). Isolation of phosphate-solubilizing fungi from phosphate mines and their effect on wheat seedling growth. Applied Biochemistry and Biotechnology 159, 330-342.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Articles
Authors

İdris Bektaş 0000-0001-7409-4837

Project Number FMP BAP 18-0373
Publication Date September 30, 2020
Acceptance Date August 6, 2020
Published in Issue Year 2020 Volume: 30 Issue: 3

Cite

APA Bektaş, İ. (2020). Toprakta Laktik Asit ve Fumarik Asit Salgılayan Önemli Bazı Fosfat Çözücü Fungusların Belirlenmesi. Yuzuncu Yıl University Journal of Agricultural Sciences, 30(3), 585-592. https://doi.org/10.29133/yyutbd.689363
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.