Investigation of Effect of Ultrasound Pretreatment on Drying and Rehydration Characteristics and Microstructure of Apple Slices
Year 2020,
Volume: 30 Issue: Ek sayı (Additional issue), 950 - 962, 31.12.2020
Senem Tüfekçi
,
Sami Gökhan Özkal
Abstract
In this study, the effects of ultrasound pretreatment on hot air drying and rehydration characteristics and microstructure changes of apple slices were examined. Slices of apple cv. Granny Smith having 5 mm thickness were used as the material. Pretreatments with ultrasound application were done by an ultrasonic generator with 20 kHz frequency. Effect of pretreatment time (10, 20, 30 min) and amplitude (55 and 100 %) were evaluated. Drying experiments were performed in a cabinet drier at 60°C with 0.3 m.s-1 constant air velocity. Application of ultrasound pretreatment decreased the drying time of apple slices in some conditions. Amongst the five thin layer drying models tested, the Page and Modified Page models found to be the best fitting models for the expression of the drying of apple slices. Microstructural changes caused by ultrasound pretreatment enhanced the rehydration ability of dried apples. As the pretreatment time and ultrasound amplitude increased, the rehydration ratio had an increasing trend. Peleg model represented the rehydration kinetics of the samples successfully. Changes in the microstructure of the apple samples caused by the ultrasound pretreatment were clearly observed with scanning electron microscopy images. Structural changes, caused by ultrasound pretreatment in apple tissues, resulted in low shrinkage values.
Supporting Institution
Pamukkale Üniversitesi
Project Number
PAUBAP 2012FBE060
Thanks
This project was supported by Pamukkale University with No: PAUBAP 2012FBE060.
References
- Andres, A., Bilbao, C., & Fito, P. (2014). Drying kinetics of apple cylinders under combined hot air–microwave dehydration. Journal of Food Engineering, 63(1), 71-78. doi: 10.1016/S0260-8774(03)00284-X
- Banaszak, J., & Pawłowski, A. (2018). Influence of ultrasound assist during hot air drying on properties of dried apple crisps. Chemical and Process Engineering, 39(3), 263-270. doi: 10.24425/122948
- Contreras, C., Martín-Esparza, M. E., Chiralt, A., & Martínez-Navarrete, N. (2008). Influence of microwave application on convective drying: Effects on drying kinetics, and optical and mechanical properties of apple and strawberry. Journal of Food Engineering, 88(1), 55-64. doi: 10.1016/j.jfoodeng.2008.01.014
- Cruz, A. C., Guiné, R. P., & Gonçalves, J. C. (2015). Drying kinetics and product quality for convective drying of apples (cvs. Golden Delicious and Granny Smith). International Journal of Fruit Science, 15(1), 54-78. doi: 10.1080/15538362.2014.931166
- Cunningham, S. E., Mcminn, W. A. M., Magee, T. R. A., & Richardson, P. S. (2008). Experimental study of rehydration kinetics of potato cylinders. food and bioproducts processing, 86(1), 15-24. doi: 10.1016/j.fbp.2007.10.008
- Demiray, E., & Tulek, Y. (2014). Drying characteristics of garlic (Allium sativum L) slices in a convective hot air dryer. Heat and Mass Transfer, 50(6), 779-786. doi: 10.1007/s00231-013-1286-9
- Deng, Y., & Zhao, Y. (2008). Effect of pulsed vacuum and ultrasound osmopre-treatments on glass transition temperature, texture, microstructure and calcium penetration of dried apples (Fuji). LWT-Food Science and Technology, 41(9), 1575-1585. doi: 10.1016/j.lwt.2007.10.018
- Dehghannya, J., Gorbani, R., & Ghanbarzadeh, B. (2016). Shrinkage of Mirabelle plum during hot air drying as influenced by ultrasound-assisted osmotic dehydration. International journal of food properties, 19(5), 1093-1103. doi: 10.1080/10942912.2015.1055362
- Fernandes, F. A., Gallão, M. I., & Rodrigues, S. (2009). Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. Journal of Food Engineering, 90(2), 186-190. doi: 10.1016/j.jfoodeng.2008.06.021
- Garcia-Perez, J. V., Ortuño, C., Puig, A., Carcel, J. A., & Perez-Munuera, I. (2012). Enhancement of water transport and microstructural changes induced by high-intensity ultrasound application on orange peel drying. Food and Bioprocess Technology, 5(6), 2256-2265. Doi: 10.1007/s11947-011-0645-0
- Garcia-Perez, J. V., Cárcel, J. A., Benedito, J., & Mulet, A. (2007). Power ultrasound mass transfer enhancement in food drying. Food and Bioproducts Processing, 85(3), 247-254. doi: 10.1205/fbp07010
- Jambrak, A. R., Mason, T. J., Paniwnyk, L., & Lelas, V. (2007). Accelerated drying of button mushrooms, Brussels sprouts and cauliflower by applying power ultrasound and its rehydration properties. Journal of Food Engineering, 81(1), 88-97. doi: 10.1016/jfoodeng.2006.10.009
- Knorr, D., Zenker, M., Heinz, V., & Lee, D. U. (2004). Applications and potential of ultrasonics in food processing. Trends in Food Science & Technology, 15(5), 261-266. doi: 10.1016/j.tifs.2003.12.001
- Lv, W., Lv, H., Jin, X., Cui, Z., & Su, D. (2019). Effects of ultrasound-assisted methods on the drying processes and quality of apple slices in microwave drying. Drying Technology, 1-11. doi: 10.1080/07373937.2019.1666274
- Mierzwa, D., & Kowalski, S. J. (2016). Ultrasound-assisted osmotic dehydration and convective drying of apples: Process kinetics and quality issues. Chemical and Process Engineering, 37(3), 383-391. doi: 10.1515/cpe-2016-0031
- Moreno, C., Brines, C., Mulet, A., Rosselló, C., & Cárcel, J. A. (2017). Antioxidant potential of atmospheric freeze-dried apples as affected by ultrasound application and sample surface. Drying Technology, 35(8), 957-968. doi: 10.1080/07373937.2016.1256890
- Nowacka, M., Wiktor, A., Śledź, M., Jurek, N., & Witrowa-Rajchert, D. (2012). Drying of ultrasound pretreated apple and its selected physical properties. Journal of Food Engineering, 113(3), 427-433. doi: 10.1016/j.jfoodeng.2012.06.013
- Rastogi, N. K. (2011). Opportunities and challenges in application of ultrasound in food processing. Critical reviews in food science and nutrition, 51(8), 705-722. doi: 10.1080/10408391003770583
- Ren, Z., & Bai, Y. (2018, August). Ultrasound Pretreatment of Apple Slice Prior to Vacuum Freeze Drying. In 2nd International Conference on Material Science, Energy and Environmental Engineering (MSEEE 2018). Atlantis Press. doi: 10.2991/mseee-18.2018.20
- Ricce, C., Rojas, M. L., Miano, A. C., Siche, R., & Augusto, P. E. D. (2016). Ultrasound pre-treatment enhances the carrot drying and rehydration. Food Research International, 89, 701-708. Doi: 10.1016/j.foodres.2016.09.030
- Sabarez, H. T., Keuhbauch, S., & Knoerzer, K. (2018, September). Ultrasound assisted low temperature drying of food materials. In IDS 2018. 21st International Drying Symposium Proceedings (pp. 1245-1250). Editorial Universitat Politècnica de València. doi: 10.4995/IDS2018.2018.7329
- Sacilik, K., & Elicin, A. K. (2006). The thin layer drying characteristics of organic apple slices. Journal of Food Engineering, 73(3), 281-289. doi: 10.1016/j.jfoodeng.2005.03.024
- Stadnik, J., Dolatowski, Z. J., & Baranowska, H. M. (2008). Effect of ultrasound treatment on water holding properties and microstructure of beef (m. semimembranosus) during ageing. LWT-Food Science and Technology, 41(10), 2151-2158. doi: 10.1016/j.lwt.2007.12.003
- Vega-Gálvez, A., Di Scala, K., Rodríguez, K., Lemus-Mondaca, R., Miranda, M., López, J., & Perez-Won, M. (2009). Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum, L. var. Hungarian). Food Chemistry, 117(4), 647-653. doi:10.1016/j.foodchem.2009.04.066
Ultrases Ön İşleminin Elma Dilimlerinin Kurutma ve Rehidrasyon Karakteristikleri ile Mikroyapısına Etkisinin Araştırılması
Year 2020,
Volume: 30 Issue: Ek sayı (Additional issue), 950 - 962, 31.12.2020
Senem Tüfekçi
,
Sami Gökhan Özkal
Abstract
Bu çalışmada, ultrasonik ön işlem uygulamasının elma dilimlerinin sıcak hava ile kurutulması, rehidrasyon özellikleri ve mikro yapısında meydana gelen değişikler üzerine etkisi araştırılmıştır. Materyal olarak 5 mm kalınlığında Granny Smith elma çeşidinin dilimleri kullanılmıştır. Ultrases ön işlemi 20 kHz frekanslı ultrases üreticisi ile yapılmıştır. Ultrases ön işleminin etkisi seçilen süre (10, 20, 30 dakika) ve genlik (% 55 ve % 100) değerlerinde incelenmiştir. Kurutma deneyleri kabin kurutucuda 60 °C’de ve 0.3 m.s-1 sabit hava hızında gerçekleştirilmiştir. Ultrases ön işlemi, bazı koşullarda elma dilimlerinin kuruma süresini kısaltmıştır. Denenen beş ince tabaka kurutma modeli arasından Page ve Modifiye Page modelleri elma dilimlerinin kurutulmasını ifade eden en uygun modeller olarak bulunmuştur. Ultrases ön işleminin neden olduğu mikroyapısal değişiklikler, kurutulmuş elmaların rehidrasyon kabiliyetini arttırmıştır. Ön işlem süresi ve ultrases genliği arttıkça rehidrasyon oranı artış eğiliminde olmuştur. Peleg modeli örneklerin rehidrasyon kinetiğini başarılı biçimde temsil etmiştir. Ultrases ön işlemi ile elma örneklerinin mikroyapısında meydana gelen değişimler taramalı elektron mikroskobu görüntüleri ile açık bir şekilde gözlemlenmiştir. Ultrases ön işlemi ile elma dokusunda meydana gelen yapısal değişiklikler düşük büzüşme oranı değerleri olarak sonuçlanmıştır.
Project Number
PAUBAP 2012FBE060
References
- Andres, A., Bilbao, C., & Fito, P. (2014). Drying kinetics of apple cylinders under combined hot air–microwave dehydration. Journal of Food Engineering, 63(1), 71-78. doi: 10.1016/S0260-8774(03)00284-X
- Banaszak, J., & Pawłowski, A. (2018). Influence of ultrasound assist during hot air drying on properties of dried apple crisps. Chemical and Process Engineering, 39(3), 263-270. doi: 10.24425/122948
- Contreras, C., Martín-Esparza, M. E., Chiralt, A., & Martínez-Navarrete, N. (2008). Influence of microwave application on convective drying: Effects on drying kinetics, and optical and mechanical properties of apple and strawberry. Journal of Food Engineering, 88(1), 55-64. doi: 10.1016/j.jfoodeng.2008.01.014
- Cruz, A. C., Guiné, R. P., & Gonçalves, J. C. (2015). Drying kinetics and product quality for convective drying of apples (cvs. Golden Delicious and Granny Smith). International Journal of Fruit Science, 15(1), 54-78. doi: 10.1080/15538362.2014.931166
- Cunningham, S. E., Mcminn, W. A. M., Magee, T. R. A., & Richardson, P. S. (2008). Experimental study of rehydration kinetics of potato cylinders. food and bioproducts processing, 86(1), 15-24. doi: 10.1016/j.fbp.2007.10.008
- Demiray, E., & Tulek, Y. (2014). Drying characteristics of garlic (Allium sativum L) slices in a convective hot air dryer. Heat and Mass Transfer, 50(6), 779-786. doi: 10.1007/s00231-013-1286-9
- Deng, Y., & Zhao, Y. (2008). Effect of pulsed vacuum and ultrasound osmopre-treatments on glass transition temperature, texture, microstructure and calcium penetration of dried apples (Fuji). LWT-Food Science and Technology, 41(9), 1575-1585. doi: 10.1016/j.lwt.2007.10.018
- Dehghannya, J., Gorbani, R., & Ghanbarzadeh, B. (2016). Shrinkage of Mirabelle plum during hot air drying as influenced by ultrasound-assisted osmotic dehydration. International journal of food properties, 19(5), 1093-1103. doi: 10.1080/10942912.2015.1055362
- Fernandes, F. A., Gallão, M. I., & Rodrigues, S. (2009). Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. Journal of Food Engineering, 90(2), 186-190. doi: 10.1016/j.jfoodeng.2008.06.021
- Garcia-Perez, J. V., Ortuño, C., Puig, A., Carcel, J. A., & Perez-Munuera, I. (2012). Enhancement of water transport and microstructural changes induced by high-intensity ultrasound application on orange peel drying. Food and Bioprocess Technology, 5(6), 2256-2265. Doi: 10.1007/s11947-011-0645-0
- Garcia-Perez, J. V., Cárcel, J. A., Benedito, J., & Mulet, A. (2007). Power ultrasound mass transfer enhancement in food drying. Food and Bioproducts Processing, 85(3), 247-254. doi: 10.1205/fbp07010
- Jambrak, A. R., Mason, T. J., Paniwnyk, L., & Lelas, V. (2007). Accelerated drying of button mushrooms, Brussels sprouts and cauliflower by applying power ultrasound and its rehydration properties. Journal of Food Engineering, 81(1), 88-97. doi: 10.1016/jfoodeng.2006.10.009
- Knorr, D., Zenker, M., Heinz, V., & Lee, D. U. (2004). Applications and potential of ultrasonics in food processing. Trends in Food Science & Technology, 15(5), 261-266. doi: 10.1016/j.tifs.2003.12.001
- Lv, W., Lv, H., Jin, X., Cui, Z., & Su, D. (2019). Effects of ultrasound-assisted methods on the drying processes and quality of apple slices in microwave drying. Drying Technology, 1-11. doi: 10.1080/07373937.2019.1666274
- Mierzwa, D., & Kowalski, S. J. (2016). Ultrasound-assisted osmotic dehydration and convective drying of apples: Process kinetics and quality issues. Chemical and Process Engineering, 37(3), 383-391. doi: 10.1515/cpe-2016-0031
- Moreno, C., Brines, C., Mulet, A., Rosselló, C., & Cárcel, J. A. (2017). Antioxidant potential of atmospheric freeze-dried apples as affected by ultrasound application and sample surface. Drying Technology, 35(8), 957-968. doi: 10.1080/07373937.2016.1256890
- Nowacka, M., Wiktor, A., Śledź, M., Jurek, N., & Witrowa-Rajchert, D. (2012). Drying of ultrasound pretreated apple and its selected physical properties. Journal of Food Engineering, 113(3), 427-433. doi: 10.1016/j.jfoodeng.2012.06.013
- Rastogi, N. K. (2011). Opportunities and challenges in application of ultrasound in food processing. Critical reviews in food science and nutrition, 51(8), 705-722. doi: 10.1080/10408391003770583
- Ren, Z., & Bai, Y. (2018, August). Ultrasound Pretreatment of Apple Slice Prior to Vacuum Freeze Drying. In 2nd International Conference on Material Science, Energy and Environmental Engineering (MSEEE 2018). Atlantis Press. doi: 10.2991/mseee-18.2018.20
- Ricce, C., Rojas, M. L., Miano, A. C., Siche, R., & Augusto, P. E. D. (2016). Ultrasound pre-treatment enhances the carrot drying and rehydration. Food Research International, 89, 701-708. Doi: 10.1016/j.foodres.2016.09.030
- Sabarez, H. T., Keuhbauch, S., & Knoerzer, K. (2018, September). Ultrasound assisted low temperature drying of food materials. In IDS 2018. 21st International Drying Symposium Proceedings (pp. 1245-1250). Editorial Universitat Politècnica de València. doi: 10.4995/IDS2018.2018.7329
- Sacilik, K., & Elicin, A. K. (2006). The thin layer drying characteristics of organic apple slices. Journal of Food Engineering, 73(3), 281-289. doi: 10.1016/j.jfoodeng.2005.03.024
- Stadnik, J., Dolatowski, Z. J., & Baranowska, H. M. (2008). Effect of ultrasound treatment on water holding properties and microstructure of beef (m. semimembranosus) during ageing. LWT-Food Science and Technology, 41(10), 2151-2158. doi: 10.1016/j.lwt.2007.12.003
- Vega-Gálvez, A., Di Scala, K., Rodríguez, K., Lemus-Mondaca, R., Miranda, M., López, J., & Perez-Won, M. (2009). Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum, L. var. Hungarian). Food Chemistry, 117(4), 647-653. doi:10.1016/j.foodchem.2009.04.066