Research Article
BibTex RIS Cite

Characterization of Iranian Olive Oils based on Biophenolic Minor Polar Compounds and their Contribution to Organoleptic Properties

Year 2021, Volume: 31 Issue: 2, 365 - 376, 30.06.2021
https://doi.org/10.29133/yyutbd.880140

Abstract

The presence of several minor compounds, such as biophenols, are associated with the quality, health benefits and sensory characteristics of olive oil. The objectives of this study were to compare the profile of the individual phenolic compounds of major brands of olive oils produced in Iran and to correlate the minor polar biophenolic compounds with sensorial properties and finally discriminate the samples. In order to define similarities and differences between Iranian virgin olive oils, profiles of their biophenolic compounds have been investigated using HPLC, analysis of variances and principal component analysis (PCA). Samples of olive oil were notably varied in terms of individual biophenolic compounds and total phenolic content (TPC). Hydroxytyrosol, tyrosol, oleuropein, luteolin, apigenin, and ligstroside aglycone (aldehyde and hydroxylic form) were detected in all samples, whereas caffeic acid was not found in any brands. Based on the differentiating made by PCA, samples were categorized into two distinct groups (TPC<300 and TPC>300 mg tyrosol/kg of olive oil). The analysis of the main components resulted in a model that describes 86% of the total variance discriminating them from the minor biophenolic compounds of the examined olive oils. This analysis can be considered for assessing the quality and commercial needs related to preferences on olive oil.

Supporting Institution

Agricultural Engineering Research Institute

References

  • Alkan, D., F. Tokatli and B. Ozen. (2012). Phenolic characterization and geographical classification of commercial extra virgin olive oils produced in Turkey. Journal of the American Oil Chemists' Society, 89(2): 261-268.
  • Amanpour, A., H. Kelebek and S. Selli. (2019). LC‐DAD‐ESI‐MS/MS–based phenolic profiling and antioxidant activity in Turkish cv. Nizip Yaglik olive oils from different maturity olives. Journal of Mass Spectrometry, 54(3): 227-238.
  • Andrewes, P., J. L. H. C. Busch, T. de Joode, A. Groenewegen and H. Alexandre. (2003). Sensory Properties of Virgin Olive Oil Polyphenols:  Identification of Deacetoxy-ligstroside Aglycon as a Key Contributor to Pungency. Journal of Agricultural and Food Chemistry, 51(5): 1415-1420.
  • Beauchamp, G. K., R. S. J. Keast, D. Morel, J. Lin, J. Pika, Q. Han, C.-H. Lee, A. B. Smith and P. A. S. Breslin. (2005). Ibuprofen-like activity in extra-virgin olive oil. Nature, 437(7055): 45-46.
  • Bendini, A., L. Cerretani, A. Carrasco-Pancorbo, A. M. Gómez-Caravaca, A. Segura-Carretero, A. Fernández-Gutiérrez and G. Lercker. (2007). Phenolic molecules in virgin olive oils: a survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade Alessandra. Molecules, 12(8): 1679-1719.
  • Boskou, G. Blekas and M. Tsimidou. (2005). Phenolic compounds in olive oil and olives. Current Topics in Nutraceutical Research, 3(2): 125-136.
  • Boskou, D., G. Blekas and M. Tsimidou (2006). Olive oil composition. Olive Oil, Elsevier: 41-72.
  • EFSA Panel on Dietetic Products, N. and Allergies (2012). Scientific Opinion on the substantiation of a health claim related to polyphenols in olive and maintenance of normal blood HDL cholesterol concentrations (ID 1639, further assessment) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA Journal, 10(8): 2848.
  • Franco, M. N., T. Galeano-Díaz, J. Sánchez, C. De Miguel and D. Martín-Vertedor. (2014). Total phenolic compounds and tocopherols profiles of seven olive oil varieties grown in the south-west of Spain. Journal of oleo science, 63(2): 115-125.
  • García-González, D. L., N. Tena and R. Aparicio. (2010). "Quality Characterization of the New Virgin Olive Oil Var. Sikitita by Phenols and Volatile Compounds. Journal of Agricultural and Food Chemistry, 58(14): 8357-8364.
  • García, J. M., K. Yousfi, R. Mateos, M. Olmo and A. Cert. (2001). "Reduction of oil bitterness by heating of olive (Olea europaea) fruits. Journal of agricultural and food chemistry, 49(9): 4231-4235.
  • IOC. (2017). Determination of biophenols in olive oils by HPLC, (COI)T.20/Doc No 29/Rev.1.
  • IOC. (2018a). Sensory analysis of olive oil method for the organoleptic assessment of virgin olive oil, (COI)T.20/Doc No 15/Rev.10
  • IOC. (2018b). Trade standard applying to olive oils and olive-pomace oils. COI/T.15/NC No 3/Rev. 12.
  • Lerma-García, M. J., C. Lantano, E. Chiavaro, L. Cerretani, J. M. Herrero-Martínez and E. F. Simó-Alfonso. (2009). Classification of extra virgin olive oils according to their geographical origin using phenolic compound profiles obtained by capillary electrochromatography. Food Research International, 42(10): 1446-1452.
  • Ocakoglu, D., F. Tokatli, B. Ozen and F. Korel. (2009). Distribution of simple phenols, phenolic acids and flavonoids in Turkish monovarietal extra virgin olive oils for two harvest years. Food Chemistry,113(2): 401-410.
  • Olivero-David, R., C. Mena, M. A. Pérez-Jimenez, B. Sastre, S. Bastida, G. Márquez-Ruiz and F. J. Sánchez-Muniz. (2014). Influence of Picual Olive Ripening on Virgin Olive Oil Alteration and Stability during Potato Frying. Journal of Agricultural and Food Chemistry, 62(48): 11637-11646.
  • Pandey, K. B. and S. I. Rizvi. (2009). Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxidative Medicine and Cellular Longevity, 2(5).
  • Piravi-Vanak, Z., J. B. Ghasemi, M. Ghavami, H. Ezzatpanah and E. Zolfonoun. (2012). The Influence of Growing Region on Fatty Acids and Sterol Composition of Iranian Olive Oils by Unsupervised Clustering Methods. Journal of the American Oil Chemists' Society, 89(3): 371-378.
  • Ranalli, A., G. Modesti, M. Patumi and G. Fontanazza. (2000). The compositional quality and sensory properties of virgin olive oil from a new olive cultivar — I-77. Food Chemistry, 69(1): 37-46.
  • Reboredo-Rodríguez, P., C. González-Barreiro, B. Cancho-Grande, T. Y. Forbes-Hernández, M. Gasparrini, S. Afrin, D. Cianciosi, A. Carrasco-Pancorbo, J. Simal-Gándara and F. Giampieri. (2018). Characterization of phenolic extracts from Brava extra virgin olive oils and their cytotoxic effects on MCF-7 breast cancer cells. Food and chemical toxicology, 119: 73-85.
  • Rodrigues, N., S. Casal, T. Pinho, A. M. Peres, A. Bento, P. Baptista and J. A. Pereira. (2019). Ancient olive trees as a source of olive oils rich in phenolic compounds. Food Chemistry, 276: 231-239.
  • Rodríguez-López, P., Lozano-Sanchez, J., Borrás-Linares, I., Emanuelli, T., Menéndez, J.A. and Segura-Carretero, A. (2020). Structure–Biological Activity Relationships of Extra-Virgin Olive Oil Phenolic Compounds: Health Properties and Bioavailability. Antioxidants, 9(8): p.685.
  • Servili, M., B. Sordini, S. Esposto, S. Urbani, G. Veneziani, I. Di Maio, R. Selvaggini and A. Taticchi. (2014). Biological Activities of Phenolic Compounds of Extra Virgin Olive Oil. Antioxidants, 3(1): 1-23.
  • Shavakhi, F., H. C. Boo, A. Osman and H. M. Ghazali. (2011). Application of zNose™ for classification of enzymatically-macerated and steamed pumpkin using principal component analysis. International Food Research Journal, 18: 311-318.
  • Shavakhi, F., P. Moradi and A. Rahmani. (2020). Quality classification of some of the Iranian olive oils using chemometric tools. Iranian journal of Biosystem engineering, 51(2).
  • Squeo, G., F. Caponio, V. M. Paradiso, C. Summo, A. Pasqualone, I. Khmelinskii and E. Sikorska. (2019). Evaluation of total phenolic content in virgin olive oil using fluorescence excitation–emission spectroscopy coupled with chemometrics. Journal of the Science of Food and Agriculture, 99(5): 2513-2520.
  • Tresserra-Rimbau, A. and R. M. Lamuela-Raventos. (2017). "22 Olives and olive oil: a Mediterranean source of polyphenols. Olives and Olive Oil as Functional Foods: Bioactivity, Chemistry and Processing: 417.
  • Vinha, A. F., F. Ferreres, B. M. Silva, P. c. Valentão, A. Gonçalves, J. A. Pereira, M. B. Oliveira, R. M. Seabra and P. B. Andrade. (2005). Phenolic profiles of Portuguese olive fruits (Olea europaea L.): Influences of cultivar and geographical origin. Food Chemistry, 89(4): 561-568.
  • Vitaglione, P., M. Savarese, A. Paduano, L. Scalfi, V. Fogliano and R. Sacchi. (2015). Healthy Virgin Olive Oil: A Matter of Bitterness. Critical Reviews in Food Science and Nutrition, 55(13): 1808-1818.

İran Zeytinyağlarının Biyofenolik Minör Polar Bileşiklerine Göre Karakterizasyonu ve Organoleptik Özelliklere Katkıları

Year 2021, Volume: 31 Issue: 2, 365 - 376, 30.06.2021
https://doi.org/10.29133/yyutbd.880140

Abstract

Biyofenoller gibi birkaç küçük bileşiğin varlığı, zeytinyağının kalitesi, sağlık üzerine yararları ve duyusal özellikleriyle ilişkilidir. Bu çalışmanın amacı, İran'daki başlıca zeytinyağı markalarının bireysel fenolik bileşiklerinin profilini karşılaştırmak ve küçük polar biyofenolik bileşikleri duyusal özelliklerle ilişkilendirmek ve son olarak örnekleri ayırt etmekti. İran sızma zeytinyağları arasındaki benzerlik ve farklılıkları tanımlamak için, bunların biyofenolik bileşiklerinin profilleri HPLC, varyans analizi ve temel bileşen analizi (PCA) kullanılarak incelenmiştir. Zeytinyağı numuneleri, ayrı ayrı biyofenolik bileşikler ve toplam fenolik içerik (TPC) açısından önemli ölçüde farklıydı. Tüm örneklerde hidroksitirosol, tirosol, oleuropein, luteolin, apigenin ve ligstrosit aglycone (aldehit ve hidroksilik form) tespit edilirken, hiçbir markada kafeik asit bulunmadı. PCA ile yapılan farklılaştırmaya dayalı olarak, numuneler iki farklı gruba ayrıldı (TPC <300 ve TPC> 300 mg tirozol / kg zeytinyağı). Ana bileşenlerin analizi, onları incelenen zeytinyağlarının küçük biyofenolik bileşiklerinden ayıran toplam varyansın % 86'sını tanımlayan bir modelle sonuçlandı. Bu analiz, zeytinyağı tercihleriyle ilgili kalite ve ticari ihtiyaçları değerlendirmek için düşünülebilir.

References

  • Alkan, D., F. Tokatli and B. Ozen. (2012). Phenolic characterization and geographical classification of commercial extra virgin olive oils produced in Turkey. Journal of the American Oil Chemists' Society, 89(2): 261-268.
  • Amanpour, A., H. Kelebek and S. Selli. (2019). LC‐DAD‐ESI‐MS/MS–based phenolic profiling and antioxidant activity in Turkish cv. Nizip Yaglik olive oils from different maturity olives. Journal of Mass Spectrometry, 54(3): 227-238.
  • Andrewes, P., J. L. H. C. Busch, T. de Joode, A. Groenewegen and H. Alexandre. (2003). Sensory Properties of Virgin Olive Oil Polyphenols:  Identification of Deacetoxy-ligstroside Aglycon as a Key Contributor to Pungency. Journal of Agricultural and Food Chemistry, 51(5): 1415-1420.
  • Beauchamp, G. K., R. S. J. Keast, D. Morel, J. Lin, J. Pika, Q. Han, C.-H. Lee, A. B. Smith and P. A. S. Breslin. (2005). Ibuprofen-like activity in extra-virgin olive oil. Nature, 437(7055): 45-46.
  • Bendini, A., L. Cerretani, A. Carrasco-Pancorbo, A. M. Gómez-Caravaca, A. Segura-Carretero, A. Fernández-Gutiérrez and G. Lercker. (2007). Phenolic molecules in virgin olive oils: a survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade Alessandra. Molecules, 12(8): 1679-1719.
  • Boskou, G. Blekas and M. Tsimidou. (2005). Phenolic compounds in olive oil and olives. Current Topics in Nutraceutical Research, 3(2): 125-136.
  • Boskou, D., G. Blekas and M. Tsimidou (2006). Olive oil composition. Olive Oil, Elsevier: 41-72.
  • EFSA Panel on Dietetic Products, N. and Allergies (2012). Scientific Opinion on the substantiation of a health claim related to polyphenols in olive and maintenance of normal blood HDL cholesterol concentrations (ID 1639, further assessment) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA Journal, 10(8): 2848.
  • Franco, M. N., T. Galeano-Díaz, J. Sánchez, C. De Miguel and D. Martín-Vertedor. (2014). Total phenolic compounds and tocopherols profiles of seven olive oil varieties grown in the south-west of Spain. Journal of oleo science, 63(2): 115-125.
  • García-González, D. L., N. Tena and R. Aparicio. (2010). "Quality Characterization of the New Virgin Olive Oil Var. Sikitita by Phenols and Volatile Compounds. Journal of Agricultural and Food Chemistry, 58(14): 8357-8364.
  • García, J. M., K. Yousfi, R. Mateos, M. Olmo and A. Cert. (2001). "Reduction of oil bitterness by heating of olive (Olea europaea) fruits. Journal of agricultural and food chemistry, 49(9): 4231-4235.
  • IOC. (2017). Determination of biophenols in olive oils by HPLC, (COI)T.20/Doc No 29/Rev.1.
  • IOC. (2018a). Sensory analysis of olive oil method for the organoleptic assessment of virgin olive oil, (COI)T.20/Doc No 15/Rev.10
  • IOC. (2018b). Trade standard applying to olive oils and olive-pomace oils. COI/T.15/NC No 3/Rev. 12.
  • Lerma-García, M. J., C. Lantano, E. Chiavaro, L. Cerretani, J. M. Herrero-Martínez and E. F. Simó-Alfonso. (2009). Classification of extra virgin olive oils according to their geographical origin using phenolic compound profiles obtained by capillary electrochromatography. Food Research International, 42(10): 1446-1452.
  • Ocakoglu, D., F. Tokatli, B. Ozen and F. Korel. (2009). Distribution of simple phenols, phenolic acids and flavonoids in Turkish monovarietal extra virgin olive oils for two harvest years. Food Chemistry,113(2): 401-410.
  • Olivero-David, R., C. Mena, M. A. Pérez-Jimenez, B. Sastre, S. Bastida, G. Márquez-Ruiz and F. J. Sánchez-Muniz. (2014). Influence of Picual Olive Ripening on Virgin Olive Oil Alteration and Stability during Potato Frying. Journal of Agricultural and Food Chemistry, 62(48): 11637-11646.
  • Pandey, K. B. and S. I. Rizvi. (2009). Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxidative Medicine and Cellular Longevity, 2(5).
  • Piravi-Vanak, Z., J. B. Ghasemi, M. Ghavami, H. Ezzatpanah and E. Zolfonoun. (2012). The Influence of Growing Region on Fatty Acids and Sterol Composition of Iranian Olive Oils by Unsupervised Clustering Methods. Journal of the American Oil Chemists' Society, 89(3): 371-378.
  • Ranalli, A., G. Modesti, M. Patumi and G. Fontanazza. (2000). The compositional quality and sensory properties of virgin olive oil from a new olive cultivar — I-77. Food Chemistry, 69(1): 37-46.
  • Reboredo-Rodríguez, P., C. González-Barreiro, B. Cancho-Grande, T. Y. Forbes-Hernández, M. Gasparrini, S. Afrin, D. Cianciosi, A. Carrasco-Pancorbo, J. Simal-Gándara and F. Giampieri. (2018). Characterization of phenolic extracts from Brava extra virgin olive oils and their cytotoxic effects on MCF-7 breast cancer cells. Food and chemical toxicology, 119: 73-85.
  • Rodrigues, N., S. Casal, T. Pinho, A. M. Peres, A. Bento, P. Baptista and J. A. Pereira. (2019). Ancient olive trees as a source of olive oils rich in phenolic compounds. Food Chemistry, 276: 231-239.
  • Rodríguez-López, P., Lozano-Sanchez, J., Borrás-Linares, I., Emanuelli, T., Menéndez, J.A. and Segura-Carretero, A. (2020). Structure–Biological Activity Relationships of Extra-Virgin Olive Oil Phenolic Compounds: Health Properties and Bioavailability. Antioxidants, 9(8): p.685.
  • Servili, M., B. Sordini, S. Esposto, S. Urbani, G. Veneziani, I. Di Maio, R. Selvaggini and A. Taticchi. (2014). Biological Activities of Phenolic Compounds of Extra Virgin Olive Oil. Antioxidants, 3(1): 1-23.
  • Shavakhi, F., H. C. Boo, A. Osman and H. M. Ghazali. (2011). Application of zNose™ for classification of enzymatically-macerated and steamed pumpkin using principal component analysis. International Food Research Journal, 18: 311-318.
  • Shavakhi, F., P. Moradi and A. Rahmani. (2020). Quality classification of some of the Iranian olive oils using chemometric tools. Iranian journal of Biosystem engineering, 51(2).
  • Squeo, G., F. Caponio, V. M. Paradiso, C. Summo, A. Pasqualone, I. Khmelinskii and E. Sikorska. (2019). Evaluation of total phenolic content in virgin olive oil using fluorescence excitation–emission spectroscopy coupled with chemometrics. Journal of the Science of Food and Agriculture, 99(5): 2513-2520.
  • Tresserra-Rimbau, A. and R. M. Lamuela-Raventos. (2017). "22 Olives and olive oil: a Mediterranean source of polyphenols. Olives and Olive Oil as Functional Foods: Bioactivity, Chemistry and Processing: 417.
  • Vinha, A. F., F. Ferreres, B. M. Silva, P. c. Valentão, A. Gonçalves, J. A. Pereira, M. B. Oliveira, R. M. Seabra and P. B. Andrade. (2005). Phenolic profiles of Portuguese olive fruits (Olea europaea L.): Influences of cultivar and geographical origin. Food Chemistry, 89(4): 561-568.
  • Vitaglione, P., M. Savarese, A. Paduano, L. Scalfi, V. Fogliano and R. Sacchi. (2015). Healthy Virgin Olive Oil: A Matter of Bitterness. Critical Reviews in Food Science and Nutrition, 55(13): 1808-1818.
There are 30 citations in total.

Details

Primary Language English
Subjects Horticultural Production
Journal Section Articles
Authors

Forough Shavakhi 0000-0002-6635-2629

Anosheh Rahmani This is me 0000-0003-0795-992X

Parviz Moradi This is me 0000-0003-3340-7619

Publication Date June 30, 2021
Acceptance Date May 11, 2021
Published in Issue Year 2021 Volume: 31 Issue: 2

Cite

APA Shavakhi, F., Rahmani, A., & Moradi, P. (2021). Characterization of Iranian Olive Oils based on Biophenolic Minor Polar Compounds and their Contribution to Organoleptic Properties. Yuzuncu Yıl University Journal of Agricultural Sciences, 31(2), 365-376. https://doi.org/10.29133/yyutbd.880140
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.