Research Article
BibTex RIS Cite
Year 2022, Volume: 32 Issue: 3, 565 - 575, 30.09.2022
https://doi.org/10.29133/yyutbd.1101682

Abstract

References

  • Anlauf, R. (2014). Using The EXCEL Solver Function to Estimate the Van Genuchten Parameters from Measured Pf/Water Content Values. Excel Spreadsheed Retrieved From https://www.hs osnabrueck.de/fileadmin/HSOS/Homepages/Personalhomepages/Personalhomepages-AuL/Anlauf/Water_Retention_Curve_10.xls 19.02.2021.
  • Arthur, E. Rehman, H. U., Tuller, M., Pouladi, N., Nørgaard, T., Moldrup, P. & de Jonge, L. W., (2021). Estimating atterberg limits of soils from hygroscopic water content. Geoderma, 381, 114698. https://doi.org/10.1016/j.geoderma.2020.114698
  • Benson, C. H., Chiang, I., Chalermyanont, T. & Sawangsuriya, A. (2014). Estimating van genuchten parameters α and n for clean sands from particle size distribution data. In from soil behavior fundamentals to innovations in geotechnical engineering: Honoring Roy E. Olson p: 410-427. https://doi.org/10.1061/9780784413265.033 Blake, G. R. & Hartge, K. H. (1986). Particle density. Methods of soil analysis: Part 1 physical and mineralogical methods, 5,377-382.
  • Bolotov, A.G., Shein, E.V. & Makarychev, S. V. (2019). Water retention capacity of soils in The Altai region. Eurasian Soil Science 52 (2),187-192. https://doi.org/10.1134/S1064229319020030
  • Brooks, R. H. & Corey, A. T. (1964). Hydraulic properties of porous media. Hydrology Papers (Colorado State University); No. 3.
  • Büyüktas, D., & Hakgoren, F. (2005). Determining soil-water retention parameters in the soils of Aksu Branch of Bati Akdeniz Agricultural Research Institute. Akdeniz University Faculty of Agriculture Journal, 18, 101-106.
  • Campbell, G. S., & Gee, G. W. (1986). Water potential: Miscellaneous methods. In a Klute (ed.) Methods of soil analysis. Part 1. Physical and mineralogical methods. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI, (pp 619-632).
  • Castellini, M., Di Prima, S., & Iovino, M. (2018). An assessment of the best procedure to estimate the soil water retention curve: a comparison with the evaporation method. Geoderma, 320, 82-94. https://doi.org/10.1016/j.geoderma.2018.01.014
  • Chen, G., Jiao, L., & Li, X. (2016). Sensitivity analysis and identification of parameters to the van genuchten equation. Journal of Chemistry, http://dx.doi.org/10.1155/2016/9879537
  • Chi, C. (2014). A method for prediction of the van genuchten water retention curve. Journal of Food, Agriculture & Environment 12(2),762-765.
  • Göçük, M., & Demir, Y. (2021). Effect of biochar and polyacrylamide on agregate stability and water holding capacity of soils in the freeze and thaw cycle. Düzce University Faculty of Forestry Journal of Forestry, 17(2), 286-301.
  • Demiralay, İ. (2011). Soil physical analysis. Atatürk University, Faculty of Agriculture Course Publications, No:143, Erzurum. Er, H., Demir, A. D., Demir, Y., & Meral, R. (2020). Methods of obtaining soil water intake curve and usage areas, Chapter 6, Innovative approaches in agriculture; Sustainable agriculture and biodiversity, iksad publishing house, 118-130.
  • Fredlund, D. G., & Rahardjo, H. (1993). Soil mechanics for unsaturated soils. John Wiley & Sons. (pp 225-237). Gee, G. W., & Bauder, J. W. (1986). Particle size analysis. In A. Klute (ed.) Methods of Soil Analysis Part 1. Soil Science Society of America Book Series 5, Madison, Wisconsin, USA, (pp 383-411).
  • Hudson, B. (1994). Soil organic matter and available water capacity. Journal of Soil and Water Conservation, 49, 189-194.
  • Jaiswal, R. K., Tyagi, J. V., Galkate, R.V., & Lohani, A. K. (2020). Evaluation of regional soil water retention (swr) characteristics for soils in central India. Journal of Applied Water Engineering and Research, 8(3), 219-230. https://doi.org/10.1080/23249676.2020.1787249
  • Kim, H., Prezzi, M., & Salgado, R. (2016). Calibration of whatman grade 42 filter paper for soil suction measurement, Canadian Journal of Soil Science 97(2), 93-98. https://doi.org/10.1139/cjss- 2016-0064
  • Mavroulidou, M., Cabarkapa, Z., & Gunn, M. J. (2013). Efficient laboratory measurements of the soil water retention curve. Geotechnical Testing Journal, 36(1), 88-96.
  • Munsuz, N. (1982). Soil-water relations. Ankara University, Faculty of Agriculture Publications: 798, Textbook: 221, Ankara, 241 S.
  • Novák, V., & Hlaváčiková, H. (2019). Soil-water interface phenomena. In Applied Soil Hydrology, Springer, Cham, (pp 37-47).
  • Okuroglu, M., & Yaganoğlu, A.V. (2015). Kültürteknik (Turkish). Atatürk University Faculty of Agriculture Publications, No: 886, Erzurum.
  • Richards, L. A. (1948). Porous plate apparatus for measuring moisture retention and transmission by soils. Soil Science, 66, 105-110.
  • Richards, L. A. (1953). Modulus of rupture as an index of soil crusting. Soil Science Soc. Amer. Process, 17, 321-323.
  • Santra, P., Kumar, M., Kumawat, R. N., Painuli, D.K., Hati, K. M., Heuvelink, G. B. M., & Batjes, N. H. (2018). Pedotransfer functions to estimate soil water content at field capacity and permanent wilting point in hot arid western India. Journal of Earth System Science, 127(3), 1-16.
  • Savage, M. J., Ritchie, J. T., Bland, W.L., & Dugas, W. A. (1996). Lower limit of soil water availability. Agronomy Journal, 88(4), 644-651.
  • Saxton, K. E., Rawls, W., Romberger, J. S., & Papendick, R. I. (1986). Estimating generalized soil‐water characteristics from texture. Soil Science Society of America Journal, 50(4), 1031-1036.
  • Schaap, M. G., Leij, F. J., van Genuchten, M. (1999). A bootstrap-neural network approach to predict soil hydraulic parameters. Proc. Int. Workshop, Characterization and Measurements of the Hydraulic Properties of Unsaturated Porous Media, , University of California, Riverside, CA, (pp 1237-1250).
  • Sebastian, D. J., Nissen, S. J., Westra, P., Shaner, D.L., & Butters, G. (2017). Influence of soil properties and soil moisture on the efficacy of indaziflam and flumioxazin on kochia scoparia l. Pest Management Science, 73(2), 444-451.
  • SPSS. (2013). IBM SPSS Statistics 22.0 for Windows. Armonk, N.Y.
  • Sysuev, V. A., Maksimov, I. I., Alekseev, V. V., & Maksimov, V. I. (2013). Soil water retention curves based on idealized models. Russian Agricultural Sciences, 39(5-6), 522-525.
  • Tinsley, J. (1967). Soil Science Manual of Experiment. Department of Soilscience, University of Aberdeen, Aberdeen.
  • Toll, D. G. (2012). The behaviour of unsaturated soil. In Handbook of Tropical Residual Soils Engineering, Chapter 4.
  • Toms, J. D., & Lesperance, M. L., (2003). Piecewise regression: A tool for identifying ecological thresholds, Ecology 84, 2034-2041.
  • Topp, G. C., Parkin, G. W., Ferré, T. P., Carter, M. R., & Gregorich, E. G. (2008). Soil Water Content. Soil sampling and methods of analysis. 2nd edn.(Eds MR Carter, EG Gregorich) (pp939-962).
  • USSL, (1954). Diagnosis and Improvement of Saline and Alkali Soils. USDA, Handbook, 60, United State Salinity Laboratory, USA. 47.
  • Van Genuchten, M. T. (1980). A Closed‐Form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892-898.
  • Van Genuchten, M. T. (1991). The RETC Code for Quantifying Hydraulic Functions of Unsaturated Soils. EPA/600/2-91/065, R.S. 83.
  • Vereecken, H., Huisman, J. A., Hendricks, F. H. J., Brüggemann, N., Bogena, H. R., Kollet, S., & Vanderborght, J. (2015). Soil hydrology: recent methodological advances, challenges, and perspectives. Water Resources Research, 51(4), 2616-2633.
  • Viliam, N., & Hana, H. (2019). Applied Soil Hydrology. Springer Nature Switzerland AG. Part of Springer Nature. https://doi.org/10.1007/978-3-030-01806-1.
  • Vogelmann, E. S., Reichert, J. M,, Prevedello, J., Consensa, C. O. B., Oliveira, A. É., Awe, G. O., & Mataix-Solera, J. (2013). Threshold water content beyond which hydrophobic soils become hydrophilic: The role of soil texture and organic matter content. Geoderma, 209,177-187.
  • Yongwei, F., Robert, H., Josh, H., (2021). Estimation of soil water retention curves from soil bulk electrical conductivity and water content measurements, Soil and Tillage Research, 209, 104948.
  • Zimmermann, U., Ehhalt, D., & Münnich, K. O. (1967). Soil-Water Movement and Evapotranspiration: Changes in The İsotopic Composition of The Water. In Isotopes in Hydrology. Proceedings of A Symposium. Univ. Heidelberg.

Estimating the Soil Water Retention Curve Using Different Empirical Models and A Piecewise Regression Method

Year 2022, Volume: 32 Issue: 3, 565 - 575, 30.09.2022
https://doi.org/10.29133/yyutbd.1101682

Abstract

In this study, the aim was to compare experimental and empirical methods used for estimation the soil water retention under different soil conditions. Soil samples were chosen to represent examples of heavy, medium and light soil structures. Water retention curves were obtained in the laboratory using the standard method. The van Genuchten (1980) (vG), and the Brooks and Corey (1964) (BC) methods were used empirically. Model parameters were determined by artificial neural networks and Solver optimization methods. In addition, soil water retention SWR curves were obtained by using a piecewise regression (PR) method. As a result of the study, determination coefficient R2 values from 0.8946 to 0.9879 were obtained for the vG model, while the Solver method gave better results. R2 values from 0.8914 to 0.9267 were obtained for the BC method and finally from 0.9598 to 0.9717 for the PR method. No clear differences were observed for different soil structures. Finally, the use of PR has been suggested for water retention curves where breakpoints are to be included, and it is also easy to use. In addition, the vG and BC models gave reasonable results for different soil groups. It is understood that the Rosetta method provided with the HYDRUS software program can be used in the case of limited data to determine model parameters. However, the Solver method provided more reliable results and was easy to use with both models.

References

  • Anlauf, R. (2014). Using The EXCEL Solver Function to Estimate the Van Genuchten Parameters from Measured Pf/Water Content Values. Excel Spreadsheed Retrieved From https://www.hs osnabrueck.de/fileadmin/HSOS/Homepages/Personalhomepages/Personalhomepages-AuL/Anlauf/Water_Retention_Curve_10.xls 19.02.2021.
  • Arthur, E. Rehman, H. U., Tuller, M., Pouladi, N., Nørgaard, T., Moldrup, P. & de Jonge, L. W., (2021). Estimating atterberg limits of soils from hygroscopic water content. Geoderma, 381, 114698. https://doi.org/10.1016/j.geoderma.2020.114698
  • Benson, C. H., Chiang, I., Chalermyanont, T. & Sawangsuriya, A. (2014). Estimating van genuchten parameters α and n for clean sands from particle size distribution data. In from soil behavior fundamentals to innovations in geotechnical engineering: Honoring Roy E. Olson p: 410-427. https://doi.org/10.1061/9780784413265.033 Blake, G. R. & Hartge, K. H. (1986). Particle density. Methods of soil analysis: Part 1 physical and mineralogical methods, 5,377-382.
  • Bolotov, A.G., Shein, E.V. & Makarychev, S. V. (2019). Water retention capacity of soils in The Altai region. Eurasian Soil Science 52 (2),187-192. https://doi.org/10.1134/S1064229319020030
  • Brooks, R. H. & Corey, A. T. (1964). Hydraulic properties of porous media. Hydrology Papers (Colorado State University); No. 3.
  • Büyüktas, D., & Hakgoren, F. (2005). Determining soil-water retention parameters in the soils of Aksu Branch of Bati Akdeniz Agricultural Research Institute. Akdeniz University Faculty of Agriculture Journal, 18, 101-106.
  • Campbell, G. S., & Gee, G. W. (1986). Water potential: Miscellaneous methods. In a Klute (ed.) Methods of soil analysis. Part 1. Physical and mineralogical methods. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI, (pp 619-632).
  • Castellini, M., Di Prima, S., & Iovino, M. (2018). An assessment of the best procedure to estimate the soil water retention curve: a comparison with the evaporation method. Geoderma, 320, 82-94. https://doi.org/10.1016/j.geoderma.2018.01.014
  • Chen, G., Jiao, L., & Li, X. (2016). Sensitivity analysis and identification of parameters to the van genuchten equation. Journal of Chemistry, http://dx.doi.org/10.1155/2016/9879537
  • Chi, C. (2014). A method for prediction of the van genuchten water retention curve. Journal of Food, Agriculture & Environment 12(2),762-765.
  • Göçük, M., & Demir, Y. (2021). Effect of biochar and polyacrylamide on agregate stability and water holding capacity of soils in the freeze and thaw cycle. Düzce University Faculty of Forestry Journal of Forestry, 17(2), 286-301.
  • Demiralay, İ. (2011). Soil physical analysis. Atatürk University, Faculty of Agriculture Course Publications, No:143, Erzurum. Er, H., Demir, A. D., Demir, Y., & Meral, R. (2020). Methods of obtaining soil water intake curve and usage areas, Chapter 6, Innovative approaches in agriculture; Sustainable agriculture and biodiversity, iksad publishing house, 118-130.
  • Fredlund, D. G., & Rahardjo, H. (1993). Soil mechanics for unsaturated soils. John Wiley & Sons. (pp 225-237). Gee, G. W., & Bauder, J. W. (1986). Particle size analysis. In A. Klute (ed.) Methods of Soil Analysis Part 1. Soil Science Society of America Book Series 5, Madison, Wisconsin, USA, (pp 383-411).
  • Hudson, B. (1994). Soil organic matter and available water capacity. Journal of Soil and Water Conservation, 49, 189-194.
  • Jaiswal, R. K., Tyagi, J. V., Galkate, R.V., & Lohani, A. K. (2020). Evaluation of regional soil water retention (swr) characteristics for soils in central India. Journal of Applied Water Engineering and Research, 8(3), 219-230. https://doi.org/10.1080/23249676.2020.1787249
  • Kim, H., Prezzi, M., & Salgado, R. (2016). Calibration of whatman grade 42 filter paper for soil suction measurement, Canadian Journal of Soil Science 97(2), 93-98. https://doi.org/10.1139/cjss- 2016-0064
  • Mavroulidou, M., Cabarkapa, Z., & Gunn, M. J. (2013). Efficient laboratory measurements of the soil water retention curve. Geotechnical Testing Journal, 36(1), 88-96.
  • Munsuz, N. (1982). Soil-water relations. Ankara University, Faculty of Agriculture Publications: 798, Textbook: 221, Ankara, 241 S.
  • Novák, V., & Hlaváčiková, H. (2019). Soil-water interface phenomena. In Applied Soil Hydrology, Springer, Cham, (pp 37-47).
  • Okuroglu, M., & Yaganoğlu, A.V. (2015). Kültürteknik (Turkish). Atatürk University Faculty of Agriculture Publications, No: 886, Erzurum.
  • Richards, L. A. (1948). Porous plate apparatus for measuring moisture retention and transmission by soils. Soil Science, 66, 105-110.
  • Richards, L. A. (1953). Modulus of rupture as an index of soil crusting. Soil Science Soc. Amer. Process, 17, 321-323.
  • Santra, P., Kumar, M., Kumawat, R. N., Painuli, D.K., Hati, K. M., Heuvelink, G. B. M., & Batjes, N. H. (2018). Pedotransfer functions to estimate soil water content at field capacity and permanent wilting point in hot arid western India. Journal of Earth System Science, 127(3), 1-16.
  • Savage, M. J., Ritchie, J. T., Bland, W.L., & Dugas, W. A. (1996). Lower limit of soil water availability. Agronomy Journal, 88(4), 644-651.
  • Saxton, K. E., Rawls, W., Romberger, J. S., & Papendick, R. I. (1986). Estimating generalized soil‐water characteristics from texture. Soil Science Society of America Journal, 50(4), 1031-1036.
  • Schaap, M. G., Leij, F. J., van Genuchten, M. (1999). A bootstrap-neural network approach to predict soil hydraulic parameters. Proc. Int. Workshop, Characterization and Measurements of the Hydraulic Properties of Unsaturated Porous Media, , University of California, Riverside, CA, (pp 1237-1250).
  • Sebastian, D. J., Nissen, S. J., Westra, P., Shaner, D.L., & Butters, G. (2017). Influence of soil properties and soil moisture on the efficacy of indaziflam and flumioxazin on kochia scoparia l. Pest Management Science, 73(2), 444-451.
  • SPSS. (2013). IBM SPSS Statistics 22.0 for Windows. Armonk, N.Y.
  • Sysuev, V. A., Maksimov, I. I., Alekseev, V. V., & Maksimov, V. I. (2013). Soil water retention curves based on idealized models. Russian Agricultural Sciences, 39(5-6), 522-525.
  • Tinsley, J. (1967). Soil Science Manual of Experiment. Department of Soilscience, University of Aberdeen, Aberdeen.
  • Toll, D. G. (2012). The behaviour of unsaturated soil. In Handbook of Tropical Residual Soils Engineering, Chapter 4.
  • Toms, J. D., & Lesperance, M. L., (2003). Piecewise regression: A tool for identifying ecological thresholds, Ecology 84, 2034-2041.
  • Topp, G. C., Parkin, G. W., Ferré, T. P., Carter, M. R., & Gregorich, E. G. (2008). Soil Water Content. Soil sampling and methods of analysis. 2nd edn.(Eds MR Carter, EG Gregorich) (pp939-962).
  • USSL, (1954). Diagnosis and Improvement of Saline and Alkali Soils. USDA, Handbook, 60, United State Salinity Laboratory, USA. 47.
  • Van Genuchten, M. T. (1980). A Closed‐Form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892-898.
  • Van Genuchten, M. T. (1991). The RETC Code for Quantifying Hydraulic Functions of Unsaturated Soils. EPA/600/2-91/065, R.S. 83.
  • Vereecken, H., Huisman, J. A., Hendricks, F. H. J., Brüggemann, N., Bogena, H. R., Kollet, S., & Vanderborght, J. (2015). Soil hydrology: recent methodological advances, challenges, and perspectives. Water Resources Research, 51(4), 2616-2633.
  • Viliam, N., & Hana, H. (2019). Applied Soil Hydrology. Springer Nature Switzerland AG. Part of Springer Nature. https://doi.org/10.1007/978-3-030-01806-1.
  • Vogelmann, E. S., Reichert, J. M,, Prevedello, J., Consensa, C. O. B., Oliveira, A. É., Awe, G. O., & Mataix-Solera, J. (2013). Threshold water content beyond which hydrophobic soils become hydrophilic: The role of soil texture and organic matter content. Geoderma, 209,177-187.
  • Yongwei, F., Robert, H., Josh, H., (2021). Estimation of soil water retention curves from soil bulk electrical conductivity and water content measurements, Soil and Tillage Research, 209, 104948.
  • Zimmermann, U., Ehhalt, D., & Münnich, K. O. (1967). Soil-Water Movement and Evapotranspiration: Changes in The İsotopic Composition of The Water. In Isotopes in Hydrology. Proceedings of A Symposium. Univ. Heidelberg.
There are 41 citations in total.

Details

Primary Language English
Subjects Soil Sciences and Ecology
Journal Section Articles
Authors

Azize Doğan Demir 0000-0003-2008-3408

Hasan Er 0000-0002-7880-8697

Yasin Demir 0000-0002-0117-8471

Ramazan Meral 0000-0001-5763-5638

Publication Date September 30, 2022
Acceptance Date July 7, 2022
Published in Issue Year 2022 Volume: 32 Issue: 3

Cite

APA Doğan Demir, A., Er, H., Demir, Y., Meral, R. (2022). Estimating the Soil Water Retention Curve Using Different Empirical Models and A Piecewise Regression Method. Yuzuncu Yıl University Journal of Agricultural Sciences, 32(3), 565-575. https://doi.org/10.29133/yyutbd.1101682
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.