Research Article
BibTex RIS Cite
Year 2022, Volume: 32 Issue: 4, 682 - 691, 30.12.2022
https://doi.org/10.29133/yyutbd.1105636

Abstract

References

  • Abbasi, G., H., Akhtar, J., Anwar-ul-Haq, M., Ali, S., Chen, Z., & Malik, W. (2014). Exogenous potassium differentially mitigates salt stress in tolerant and sensitive maize hybrids. Pakistan Journal of Botany, 46(1), 135-146.
  • Abbasi, G. H., Akhtar, J., Anwar-ul-Haq, M., Malik, W., Ali, S., Chen, Z. H., & Zhang, G. (2015). Morpho-physiological and micrographic characterization of maize hybrids under NaCl and Cd stress. Plant Growth Regulation, 75(1), 115-122.
  • Ahmad, P., Jaleel, C. A., & Sharma, S. (2010). Antioxidant defense system, lipid peroxidation, proline-metabolizing enzymes, and biochemical activities in two Morus alba genotypes subjected to NaCl stress. Russian Journal of Plant Physiology, 57, 509–517.
  • Altaf, M. A., Shahid, R., Ren, M. X., Altaf, M. M., Khan, L. U., Shahid, S., & Jahan, M. S. (2021). Melatonin alleviates salt damage in tomato seedling: A root architecture system photosynthetic capacity ion homeostasis and antioxidant enzymes analysis. Scientia Horticulturae, 285, 110145. https://doi.org/10.1016/j.scienta.2021.110145
  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism oxidative stress and signal transduction. Annual Review of Plant Biology, 55, 373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
  • Aydin, İ., & Atıcı, Ö. (2015). Tuz stresinin bazı kültür bitkilerinde çimlenme ve fide gelişimi üzerine etkileri. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 3(2), 1-15.
  • Bahadorkhah, F., & Kazemeini, S. A. (2014). Effect of salinity and sowing method on yield component and oil content of two cultivars of spring safflower (Carthamus tinctorius L.). Pizhühishhayi Zirai İran, 12(2), 264-272.
  • Beers, R. F., & Sizer, I. W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Journal of Biological Chemistry, 195(1), 133-140. Bor, M., Özdemir, F., & Türkan, I. (2003). The effect of salt stress on lipid peroxidation and antioksidants in leaves of sugar Beet vulgaris L. and wild beet Beta maritima L. Plant Science, 164(1), 77-84. https://doi.org/10.1016/S0168-9452(02)00338-2
  • Bozcuk, S. (1989). Bazı kültür bitkileri tohumlarının çimlenmesinde tuz ve kinetin etkileşimi. Turkish Journal of Botany, 14, 139-149.
  • Day, S., & Uzun, S. (2016). Farklı tuz konsantrasyonlarının yaygın fiğ (Vicia sativa L.) çeşitlerinin çimlenme ve ilk gelişim dönemlerine etkileri. Türk Tarım-Gıda Bilim ve Teknolojisi Dergisi, 4, 636-641.
  • Demir, İ., & Demir, K. (1992). Farklı tuz konsantrasyonlarının beş değişik fasulye çeşidinde çimlenme çıkış ve fide gelişimi üzerine etkileri GAP 1. Sebze Tarımı Sempozyumu Şanlıurfa 335-342. Dogan, M. (2008). Farkli domates tohumlarinin çimlenmesi üzerine tuz stresinin etkisi. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 3(2), 174-182.
  • Dutta, P., & Bera, A. K. (2014). Effect of NaCl Salinity on seed germination and seedling growth of mungbean cultivars. Legume Research-An International Journal, 37(2), 161164. https://doi.org/10.5958/j.0976-0571.37.2.024
  • Eryilmaz, T., Cesur, C.. Yeşilyurt, M., & Aydın, E. (2014). Fuel properties of biodiesel produced from balci variety oil of safflower (Carthamus tinctorious L.). International Journal of Automotive Engineering and Technologies, 3(2), 74-78. https://doi.org/10.18245/ijaet.88859
  • Farhangi-Abriz, S., & Torabian, S. (2017). Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicology and Environmental Safety, 137, 64-70. https://doi.org/10.1016/j.ecoenv.2016.11.029
  • Flowers, T. J., & Yeo, A. R. (1995). Breeding for salinity resistance in crop plants: Where next? Australian Journal of Plant Physiology, 22, 875-884.
  • Flowers, T. J., Troke, P. F., & Yeo, A. R. (1977). The Mechanism of salt tolerance in halophytes. Annual Review of Plant Physiology and Plant Molecular Biology, 28, 89-121. https://doi.org/10.1146/annurev.pp.28.060177.000513
  • Foyer, C. H., & Noctor, G. (2005). Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. The Plant Cell, 17(7), 1866-1875. https://doi.org/10.1105/tpc.105.033589
  • Foyer, C. H., Descourvieres, P., & Kunert, K. J. (1994). Protection against oxygen radicals: An important defence mechanism studied in transgenic plants. Plant Cell & Environment, 17(5), 507-523. https://doi.org/10.1111/j.1365-3040.1994.tb00146.x
  • García‐Caparrós, P., Hasanuzzaman, M., & Lao, M. T. (2019). Oxidative stress and antioxidant defense in plants under salinity. Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism, Signaling and Defense Mechanisms, 291-309.
  • Garratt, L. C., Janagoudar, B. S., Lowe, K. C., Anthony, P., Power, J. B., & Davey, M. R. (2002). Salinity tolerance and antioxidant status in cotton cultures. Free Radical Biology and Medicine, 33(4), 502-511.
  • Glenn, E. P., & O'Leary, J. W. (1985). Productivity and irrigation requirements of halophytes grown with seawater in the Sonoran Desert. Journal of Arid Environments, 9(1), 81-91.
  • Greenway, H., & Munns, R. (1980). Mechanisms of salt tolerance in nonhalophytes. Annual Review of Plant Physiology, 31(1), 149-190.
  • Hartree, E. F. (1972). Determination of protein: A modification of the lowry method that gives a linear photometric response. Analytical Biochemistry, 48(2), 422-427.
  • Horie, T., Karahara, I., & Katsuhara, M. (2012). Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. Rice, 5(1), 1-18.
  • Huang, P., He, L., Abbas, A., Hussain, S., Hussain, S., Du, D., & Saqib, M. (2021). Seed priming with sorghum water extract improves the performance of camelina (Camelina sativa (L.) crantz.) under salt stress. Plants, 10(4), 749. https://doi.org/10.3390/plants10040749
  • Jaleel, C. A., Gopi, R., Manivannan, P., & Panneerselvam, R. (2007). Antioxidative potentials as a protective mechanism in Catharanthus roseus (L.) G. Don. plants under salinity stress. Turkish Journal of Botany, 31(3), 245-251.
  • Jiang, T., Jahangir, M. M., Jiang, Z., Lu, X., & Ying, T. (2010). Influence of UV-C treatment on antioxidant capacity, antioxidant enzyme activity and texture of postharvest shiitake (Lentinus edodes) mushrooms during storage. Postharvest Biology and Technology, 56(3), 209-215. https://doi.org/10.1016/j.postharvbio.2010.01.011
  • Keskin, A. (2017). Pamuk yağı biyodizeli-eurodizel karışımlarının tam yükte yanma performans ve emisyonlara etkisinin deneysel olarak incelenmesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 17(2), 797-809. https://doi.org/10.1016/j.postharvbio.2010.01.011
  • Khan, M. (1998). Germination of the salt tolerant shrub Suaeda fruticosa from Pakistan: Salinity and temperature responses. Seed Science and Technology, 26, 657-667.
  • Król, A., Amarowicz, R., & Weidner, S. (2014). Changes in the composition of phenolic compounds and antioxidant properties of grapevine roots and leaves (Vitis vinifera L.) under continuous of long-term drought stress. Acta Physiologiae Plantarum, 36(6), 1491-1499. https://doi.org/10.1007/s11738-014-1526-8
  • Kurtulus, M. (2020). Bazı aspir (Carthamus tinctorius L.) çeşitlerinde farklı tuz konsantrasyonlarının çimlenme ve çıkış üzerine etkisi. Bingöl Üniversitesi Fen Bilimleri Enstitüsü Tarla Bitkileri Anabilim Dalı, Yüksek Lisans Tezi, 78s.
  • Kusvuran, Ş., Ellialtıoğlu, S. S., Talhouni, M., Sonmez, K. E. N. A. N., & Kıran, S. (2014, September). Effects of salt and drought stresses on physiological and biochemical changes in callus tissues of melon cultivars. In VI Balkan Symposium on Vegetables and Potatoes 1142 (pp. 239-246). https://doi.org/10.17660/ActaHortic.2016.1142.37
  • Kuscu, H., Caygaracı, A., & Ndayizeye, J. D. D. (2018). Tuz stresinin bazı kinoa (Chenopodium quinoa Willd.) çeşitlerinin çimlenme özellikleri üzerine etkisi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 32(1), 89-99.
  • Li, W., Chen, M., Wang, E., Hu, L., Hawkesford, M. J., Zhong, L., & Ma, Y. (2016). Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice. BMC Genomics, 17(1), 1-16. https://doi.org/10.1186/s12864-016-3113-4
  • Li, (2009). Physiological responses of tomato seedlings (Lycopersicon esculentum) to salt stress. Modern Applied Science, 3(3),171. Liu, S., Guo, X., Feng, G., Maimaitiaili, B., Fan, J., & He, X. (2016). Indigenous arbuscular mycorrhizal fungi can alleviate salt stress and promote growth of cotton and maize in saline fields. Plant and Soil, 398(1), 195-206.
  • Maia, J. M., Costa de Macedo, C. E., Voigt, E. L., Freitas, J. B. S., & Silveira, J. A. G. (2010). Antioxidative enzymatic protection in leaves of two contrasting cowpea cultivars under salinity. Biologia Plantarum, 54(1), 159-163.
  • Mehr, Z. S., Khajeh, H., Bahabadi, S. E., & Sabbagh, S. K. (2012). Changes on proline, phenolic compounds and activity of antioxidant enzymes in Anethum graveolens L. under salt stress. International Journal of Plant Production, 3, 710-715.
  • Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9(10), 490-498. https://doi.org/10.1016/j.tplants.2004.08.009
  • Munns, R., Greenway, H., & Kirst, G. O. (1983). Halotolerant eukaryotes. In Physiological Plant Ecology III (pp. 59-135). Springer, Berlin, Heidelberg.
  • Munns, R., Husain, S., Rivelli, A. R., James, R. A., Condon, A. G., Lindsay, M. P., & Hare, R. A. (2002). Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. In Progress in plant nutrition: plenary lectures of the XIV İnternational Plant Nutrition Colloquium (pp. 93-105). Springer, Dordrecht.
  • Naczk, M., & Shahidi, F. (2004). Extraction and analysis of phenolics in food. Journal of chromatography A, 1054(1-2), 95-111. https://doi.org/10.1016/j.chroma.2004.08.059
  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5), 867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
  • Nedjimi, B. (2013). Effect of of salinity and temperature on germination Lygeum spartum. Agricultural Research, 2(4), 340-345. https://doi.org/10.1007/s40003-013-0084-4
  • Oral, E., Altuner, F., Tunçtürk, R., & Tunçtürk, M. (2019). The impact of salt (NaCl) stress on germination characteristics of gibberellic acid pretreated wheat (Triticum Durum Desf.) seeds. Applied Ecology And Environmental Research, 17(5), 12057-12071. http://dx.doi.org/10.15666/aeer/1705_1205712071
  • Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60(3), 324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010
  • Pérez-Pérez, M. E., Lemaire, S. D., & Crespo, J. L. (2012). Reactive oxygen species and autophagy in plants and algae. Plant Physiology, 160(1), 156-164. https://doi.org/10.1104/pp.112.199992
  • Radi, R., Turrens, J. F., Chang, L. Y., Bush, K. M., Crapo, J. D., & Freeman, B. A. (1991). Detection of catalase in rat heart mitochondria. Journal of Biological Chemistry, 266(32), 22028-22034. https://doi.org/10.1016/S0021-9258(18)54740-2
  • Rhoades, J. D. (1990). Salinity in irrigated agriculture. American Society of Civil Engineers, Irrigation of Agricultural Crops, 1089-1142.
  • Shah, T., Latif, S., Saeed, F., Ali, I., Ullah, S., Alsahli, A. A., & Ahmad, P. (2021). Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress. Journal of King Saud University-Science, 33(1), 101207. https://doi.org/10.1016/j.jksus.2020.10.004
  • Shangguan, L., Fang, X., Chen, L., Cui, L., & Fang, J. (2018). Genome-wide analysis of autophagy-related genes (ARGs) in grapevine and plant tolerance to copper stress. Planta, 247(6), 1449-1463.
  • Sharma, I., Bhardwaj, R., & Pati, P. K. (2013). Stress modulation response of 24-epibrassinolide against imidacloprid in an elite indica rice variety Pusa Basmati-1. Pesticide Biochemistry and Physiology, 105(2), 144-153. https://doi.org/10.1016/j.pestbp.2013.01.004
  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158.
  • Su, T., Li, X., Yang, M., Shao, Q., Zhao, Y., Ma, C., & Wang, P. (2020). Autophagy: an intracellular degradation pathway regulating plant survival and stress response. Frontiers in Plant Science, 11, 164. https://doi.org/10.3389/fpls.2020.00164
  • Szabolcs, I. (1987). global problems of salt-affected soils. Acta Agronomica Hungarica.
  • Toprak, T., & Tunçtürk, R. (2018). Farklı aspir (Carthamus tinctorius L.) çeşitlerinin gelişim performansları üzerine tuz stresinin etkisi. Doğu Fen Bilimleri Dergisi, 1(1), 44-50.
  • Turhan, H., & Ayaz, C. (2004). Effect of salinity on seedling emergence and growth of sunflower (Helianthus annuus L.) cultivars. International Journal of Agriculture Biology, 6(1), 149-152.
  • Türkhan, A., Kaya, E. D., Serdar, S. A. R. I., Tohumcu, F., & Özden, E. (2021). Farklı tuzluluk sınıfındaki topraklarda yetiştirilen domates tohumlarında bazı antioksidan enzim aktivitelerinin belirlenmesi. Journal of the Institute of Science and Technology, 11(özel sayı), 3406-3415. https://doi.org/10.21597/jist.1030465
  • Ungar, I. A. (1974). The effect of salinity and temperature on seed germination and growth of Hordeum jubatum. Canadian Journal of Botany, 52, 1357-1362.
  • Verma, S., & Mishra, S. N. (2005). Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. Journal of plant physiology, 162(6), 669-677. https://doi.org/10.1016/j.jplph.2004.08.008
  • Wang, Y., Bian, Z., Pan, T., Cao, K., & Zou, Z. (2021). Improvement of tomato salt tolerance by the regulation of photosynthetic performance and antioxidant enzyme capacity under a low red to far-red light ratio. Plant Physiology and Biochemistry, 167, 806-815. https://doi.org/10.1016/j.plaphy.2021.09.008
  • Yildirim, A. N., Şan, B., Yildirim, F., Celik, C., Bayar, B., & Karakurt, Y. (2021). Physiological and biochemical responses of almond rootstocks to drought stress. Turkish Journal of Agriculture and Forestry, 45(4), 522-532. https://doi.org/10.3906/tar-2010-47
  • Yildirim, F., Meltem, E., Binici, S., Celik, C., Yildirim, A., & Karakurt, Y. (2021). Antioxidant Enzymes Activities of Walnut Nursery Trees to Drought Stress Progression. International Journal of Agriculture Forestry and Life Sciences, 5(2), 217-225.
  • Zhang, M., Fang, Y., Ji, Y., Jiang, Z., & Wang, L. (2013). Effects of salt stress on ion content, antioxidant enzymes and protein profile in different tissues of Broussonetia papyrifera. South African Journal of Botany, 85, 1-9. https://doi.org/10.1016/j.sajb.2012.11.005 Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
  • Zhou, J., Wang, J., Cheng, Y., Chi, Y. J., Fan, B., Yu, J. Q., & Chen, Z. (2013). NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses. PLoS Genetics, 9(1), e1003196. https://doi.org/10.1371/journal.pgen.1004477

Determination of the Effect of Salt Stress on Germination, Biochemical and Antioxidant Defense Systems in Linas Safflower Seeds

Year 2022, Volume: 32 Issue: 4, 682 - 691, 30.12.2022
https://doi.org/10.29133/yyutbd.1105636

Abstract

In this study, the germination and early seedling growth, biochemical and antioxidant enzyme activities (CAT, SOD, POD, and APX) of one-year, broad-leaved Linas safflower belonging to the Compositeae family were investigated at different salt concentrations (0, 50, 100, 150 and 200 mM). With increasing salt concentration, a 68.83% decrease in seedling length, 71% in stem length, 34% in germination rate, and 77% in fresh plant weight were determined. In addition, total phenolic content (267%), total flavonoid content (904%), CAT (462%), SOD (56%), POD (100%), and APX (381%) antioxidant enzyme activities were increased in parallel with the salt concentration. In addition, it was determined that as the salt stress increased, the water-soluble protein content decreased by 48%. In the study, it was determined that the seeds were relatively resistant to 100, 150, and 200 mM NaCl salt concentrations, and germination continued. As a result, it has been understood once again that our country has been feeling a negative impact lately, and the determination of alternative plants for growing oily plants has gained more importance in these days. Safflower, which is one of these plants, is a strategically important species both in terms of its oil content and being a source of biodiesel. This study carried out in this context will be a resource for our farmers regarding future studies on safflower seeds and which salt concentrations can be used for cultivation.

References

  • Abbasi, G., H., Akhtar, J., Anwar-ul-Haq, M., Ali, S., Chen, Z., & Malik, W. (2014). Exogenous potassium differentially mitigates salt stress in tolerant and sensitive maize hybrids. Pakistan Journal of Botany, 46(1), 135-146.
  • Abbasi, G. H., Akhtar, J., Anwar-ul-Haq, M., Malik, W., Ali, S., Chen, Z. H., & Zhang, G. (2015). Morpho-physiological and micrographic characterization of maize hybrids under NaCl and Cd stress. Plant Growth Regulation, 75(1), 115-122.
  • Ahmad, P., Jaleel, C. A., & Sharma, S. (2010). Antioxidant defense system, lipid peroxidation, proline-metabolizing enzymes, and biochemical activities in two Morus alba genotypes subjected to NaCl stress. Russian Journal of Plant Physiology, 57, 509–517.
  • Altaf, M. A., Shahid, R., Ren, M. X., Altaf, M. M., Khan, L. U., Shahid, S., & Jahan, M. S. (2021). Melatonin alleviates salt damage in tomato seedling: A root architecture system photosynthetic capacity ion homeostasis and antioxidant enzymes analysis. Scientia Horticulturae, 285, 110145. https://doi.org/10.1016/j.scienta.2021.110145
  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism oxidative stress and signal transduction. Annual Review of Plant Biology, 55, 373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
  • Aydin, İ., & Atıcı, Ö. (2015). Tuz stresinin bazı kültür bitkilerinde çimlenme ve fide gelişimi üzerine etkileri. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 3(2), 1-15.
  • Bahadorkhah, F., & Kazemeini, S. A. (2014). Effect of salinity and sowing method on yield component and oil content of two cultivars of spring safflower (Carthamus tinctorius L.). Pizhühishhayi Zirai İran, 12(2), 264-272.
  • Beers, R. F., & Sizer, I. W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Journal of Biological Chemistry, 195(1), 133-140. Bor, M., Özdemir, F., & Türkan, I. (2003). The effect of salt stress on lipid peroxidation and antioksidants in leaves of sugar Beet vulgaris L. and wild beet Beta maritima L. Plant Science, 164(1), 77-84. https://doi.org/10.1016/S0168-9452(02)00338-2
  • Bozcuk, S. (1989). Bazı kültür bitkileri tohumlarının çimlenmesinde tuz ve kinetin etkileşimi. Turkish Journal of Botany, 14, 139-149.
  • Day, S., & Uzun, S. (2016). Farklı tuz konsantrasyonlarının yaygın fiğ (Vicia sativa L.) çeşitlerinin çimlenme ve ilk gelişim dönemlerine etkileri. Türk Tarım-Gıda Bilim ve Teknolojisi Dergisi, 4, 636-641.
  • Demir, İ., & Demir, K. (1992). Farklı tuz konsantrasyonlarının beş değişik fasulye çeşidinde çimlenme çıkış ve fide gelişimi üzerine etkileri GAP 1. Sebze Tarımı Sempozyumu Şanlıurfa 335-342. Dogan, M. (2008). Farkli domates tohumlarinin çimlenmesi üzerine tuz stresinin etkisi. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 3(2), 174-182.
  • Dutta, P., & Bera, A. K. (2014). Effect of NaCl Salinity on seed germination and seedling growth of mungbean cultivars. Legume Research-An International Journal, 37(2), 161164. https://doi.org/10.5958/j.0976-0571.37.2.024
  • Eryilmaz, T., Cesur, C.. Yeşilyurt, M., & Aydın, E. (2014). Fuel properties of biodiesel produced from balci variety oil of safflower (Carthamus tinctorious L.). International Journal of Automotive Engineering and Technologies, 3(2), 74-78. https://doi.org/10.18245/ijaet.88859
  • Farhangi-Abriz, S., & Torabian, S. (2017). Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicology and Environmental Safety, 137, 64-70. https://doi.org/10.1016/j.ecoenv.2016.11.029
  • Flowers, T. J., & Yeo, A. R. (1995). Breeding for salinity resistance in crop plants: Where next? Australian Journal of Plant Physiology, 22, 875-884.
  • Flowers, T. J., Troke, P. F., & Yeo, A. R. (1977). The Mechanism of salt tolerance in halophytes. Annual Review of Plant Physiology and Plant Molecular Biology, 28, 89-121. https://doi.org/10.1146/annurev.pp.28.060177.000513
  • Foyer, C. H., & Noctor, G. (2005). Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. The Plant Cell, 17(7), 1866-1875. https://doi.org/10.1105/tpc.105.033589
  • Foyer, C. H., Descourvieres, P., & Kunert, K. J. (1994). Protection against oxygen radicals: An important defence mechanism studied in transgenic plants. Plant Cell & Environment, 17(5), 507-523. https://doi.org/10.1111/j.1365-3040.1994.tb00146.x
  • García‐Caparrós, P., Hasanuzzaman, M., & Lao, M. T. (2019). Oxidative stress and antioxidant defense in plants under salinity. Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism, Signaling and Defense Mechanisms, 291-309.
  • Garratt, L. C., Janagoudar, B. S., Lowe, K. C., Anthony, P., Power, J. B., & Davey, M. R. (2002). Salinity tolerance and antioxidant status in cotton cultures. Free Radical Biology and Medicine, 33(4), 502-511.
  • Glenn, E. P., & O'Leary, J. W. (1985). Productivity and irrigation requirements of halophytes grown with seawater in the Sonoran Desert. Journal of Arid Environments, 9(1), 81-91.
  • Greenway, H., & Munns, R. (1980). Mechanisms of salt tolerance in nonhalophytes. Annual Review of Plant Physiology, 31(1), 149-190.
  • Hartree, E. F. (1972). Determination of protein: A modification of the lowry method that gives a linear photometric response. Analytical Biochemistry, 48(2), 422-427.
  • Horie, T., Karahara, I., & Katsuhara, M. (2012). Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. Rice, 5(1), 1-18.
  • Huang, P., He, L., Abbas, A., Hussain, S., Hussain, S., Du, D., & Saqib, M. (2021). Seed priming with sorghum water extract improves the performance of camelina (Camelina sativa (L.) crantz.) under salt stress. Plants, 10(4), 749. https://doi.org/10.3390/plants10040749
  • Jaleel, C. A., Gopi, R., Manivannan, P., & Panneerselvam, R. (2007). Antioxidative potentials as a protective mechanism in Catharanthus roseus (L.) G. Don. plants under salinity stress. Turkish Journal of Botany, 31(3), 245-251.
  • Jiang, T., Jahangir, M. M., Jiang, Z., Lu, X., & Ying, T. (2010). Influence of UV-C treatment on antioxidant capacity, antioxidant enzyme activity and texture of postharvest shiitake (Lentinus edodes) mushrooms during storage. Postharvest Biology and Technology, 56(3), 209-215. https://doi.org/10.1016/j.postharvbio.2010.01.011
  • Keskin, A. (2017). Pamuk yağı biyodizeli-eurodizel karışımlarının tam yükte yanma performans ve emisyonlara etkisinin deneysel olarak incelenmesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 17(2), 797-809. https://doi.org/10.1016/j.postharvbio.2010.01.011
  • Khan, M. (1998). Germination of the salt tolerant shrub Suaeda fruticosa from Pakistan: Salinity and temperature responses. Seed Science and Technology, 26, 657-667.
  • Król, A., Amarowicz, R., & Weidner, S. (2014). Changes in the composition of phenolic compounds and antioxidant properties of grapevine roots and leaves (Vitis vinifera L.) under continuous of long-term drought stress. Acta Physiologiae Plantarum, 36(6), 1491-1499. https://doi.org/10.1007/s11738-014-1526-8
  • Kurtulus, M. (2020). Bazı aspir (Carthamus tinctorius L.) çeşitlerinde farklı tuz konsantrasyonlarının çimlenme ve çıkış üzerine etkisi. Bingöl Üniversitesi Fen Bilimleri Enstitüsü Tarla Bitkileri Anabilim Dalı, Yüksek Lisans Tezi, 78s.
  • Kusvuran, Ş., Ellialtıoğlu, S. S., Talhouni, M., Sonmez, K. E. N. A. N., & Kıran, S. (2014, September). Effects of salt and drought stresses on physiological and biochemical changes in callus tissues of melon cultivars. In VI Balkan Symposium on Vegetables and Potatoes 1142 (pp. 239-246). https://doi.org/10.17660/ActaHortic.2016.1142.37
  • Kuscu, H., Caygaracı, A., & Ndayizeye, J. D. D. (2018). Tuz stresinin bazı kinoa (Chenopodium quinoa Willd.) çeşitlerinin çimlenme özellikleri üzerine etkisi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 32(1), 89-99.
  • Li, W., Chen, M., Wang, E., Hu, L., Hawkesford, M. J., Zhong, L., & Ma, Y. (2016). Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice. BMC Genomics, 17(1), 1-16. https://doi.org/10.1186/s12864-016-3113-4
  • Li, (2009). Physiological responses of tomato seedlings (Lycopersicon esculentum) to salt stress. Modern Applied Science, 3(3),171. Liu, S., Guo, X., Feng, G., Maimaitiaili, B., Fan, J., & He, X. (2016). Indigenous arbuscular mycorrhizal fungi can alleviate salt stress and promote growth of cotton and maize in saline fields. Plant and Soil, 398(1), 195-206.
  • Maia, J. M., Costa de Macedo, C. E., Voigt, E. L., Freitas, J. B. S., & Silveira, J. A. G. (2010). Antioxidative enzymatic protection in leaves of two contrasting cowpea cultivars under salinity. Biologia Plantarum, 54(1), 159-163.
  • Mehr, Z. S., Khajeh, H., Bahabadi, S. E., & Sabbagh, S. K. (2012). Changes on proline, phenolic compounds and activity of antioxidant enzymes in Anethum graveolens L. under salt stress. International Journal of Plant Production, 3, 710-715.
  • Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9(10), 490-498. https://doi.org/10.1016/j.tplants.2004.08.009
  • Munns, R., Greenway, H., & Kirst, G. O. (1983). Halotolerant eukaryotes. In Physiological Plant Ecology III (pp. 59-135). Springer, Berlin, Heidelberg.
  • Munns, R., Husain, S., Rivelli, A. R., James, R. A., Condon, A. G., Lindsay, M. P., & Hare, R. A. (2002). Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. In Progress in plant nutrition: plenary lectures of the XIV İnternational Plant Nutrition Colloquium (pp. 93-105). Springer, Dordrecht.
  • Naczk, M., & Shahidi, F. (2004). Extraction and analysis of phenolics in food. Journal of chromatography A, 1054(1-2), 95-111. https://doi.org/10.1016/j.chroma.2004.08.059
  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5), 867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
  • Nedjimi, B. (2013). Effect of of salinity and temperature on germination Lygeum spartum. Agricultural Research, 2(4), 340-345. https://doi.org/10.1007/s40003-013-0084-4
  • Oral, E., Altuner, F., Tunçtürk, R., & Tunçtürk, M. (2019). The impact of salt (NaCl) stress on germination characteristics of gibberellic acid pretreated wheat (Triticum Durum Desf.) seeds. Applied Ecology And Environmental Research, 17(5), 12057-12071. http://dx.doi.org/10.15666/aeer/1705_1205712071
  • Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60(3), 324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010
  • Pérez-Pérez, M. E., Lemaire, S. D., & Crespo, J. L. (2012). Reactive oxygen species and autophagy in plants and algae. Plant Physiology, 160(1), 156-164. https://doi.org/10.1104/pp.112.199992
  • Radi, R., Turrens, J. F., Chang, L. Y., Bush, K. M., Crapo, J. D., & Freeman, B. A. (1991). Detection of catalase in rat heart mitochondria. Journal of Biological Chemistry, 266(32), 22028-22034. https://doi.org/10.1016/S0021-9258(18)54740-2
  • Rhoades, J. D. (1990). Salinity in irrigated agriculture. American Society of Civil Engineers, Irrigation of Agricultural Crops, 1089-1142.
  • Shah, T., Latif, S., Saeed, F., Ali, I., Ullah, S., Alsahli, A. A., & Ahmad, P. (2021). Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress. Journal of King Saud University-Science, 33(1), 101207. https://doi.org/10.1016/j.jksus.2020.10.004
  • Shangguan, L., Fang, X., Chen, L., Cui, L., & Fang, J. (2018). Genome-wide analysis of autophagy-related genes (ARGs) in grapevine and plant tolerance to copper stress. Planta, 247(6), 1449-1463.
  • Sharma, I., Bhardwaj, R., & Pati, P. K. (2013). Stress modulation response of 24-epibrassinolide against imidacloprid in an elite indica rice variety Pusa Basmati-1. Pesticide Biochemistry and Physiology, 105(2), 144-153. https://doi.org/10.1016/j.pestbp.2013.01.004
  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158.
  • Su, T., Li, X., Yang, M., Shao, Q., Zhao, Y., Ma, C., & Wang, P. (2020). Autophagy: an intracellular degradation pathway regulating plant survival and stress response. Frontiers in Plant Science, 11, 164. https://doi.org/10.3389/fpls.2020.00164
  • Szabolcs, I. (1987). global problems of salt-affected soils. Acta Agronomica Hungarica.
  • Toprak, T., & Tunçtürk, R. (2018). Farklı aspir (Carthamus tinctorius L.) çeşitlerinin gelişim performansları üzerine tuz stresinin etkisi. Doğu Fen Bilimleri Dergisi, 1(1), 44-50.
  • Turhan, H., & Ayaz, C. (2004). Effect of salinity on seedling emergence and growth of sunflower (Helianthus annuus L.) cultivars. International Journal of Agriculture Biology, 6(1), 149-152.
  • Türkhan, A., Kaya, E. D., Serdar, S. A. R. I., Tohumcu, F., & Özden, E. (2021). Farklı tuzluluk sınıfındaki topraklarda yetiştirilen domates tohumlarında bazı antioksidan enzim aktivitelerinin belirlenmesi. Journal of the Institute of Science and Technology, 11(özel sayı), 3406-3415. https://doi.org/10.21597/jist.1030465
  • Ungar, I. A. (1974). The effect of salinity and temperature on seed germination and growth of Hordeum jubatum. Canadian Journal of Botany, 52, 1357-1362.
  • Verma, S., & Mishra, S. N. (2005). Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. Journal of plant physiology, 162(6), 669-677. https://doi.org/10.1016/j.jplph.2004.08.008
  • Wang, Y., Bian, Z., Pan, T., Cao, K., & Zou, Z. (2021). Improvement of tomato salt tolerance by the regulation of photosynthetic performance and antioxidant enzyme capacity under a low red to far-red light ratio. Plant Physiology and Biochemistry, 167, 806-815. https://doi.org/10.1016/j.plaphy.2021.09.008
  • Yildirim, A. N., Şan, B., Yildirim, F., Celik, C., Bayar, B., & Karakurt, Y. (2021). Physiological and biochemical responses of almond rootstocks to drought stress. Turkish Journal of Agriculture and Forestry, 45(4), 522-532. https://doi.org/10.3906/tar-2010-47
  • Yildirim, F., Meltem, E., Binici, S., Celik, C., Yildirim, A., & Karakurt, Y. (2021). Antioxidant Enzymes Activities of Walnut Nursery Trees to Drought Stress Progression. International Journal of Agriculture Forestry and Life Sciences, 5(2), 217-225.
  • Zhang, M., Fang, Y., Ji, Y., Jiang, Z., & Wang, L. (2013). Effects of salt stress on ion content, antioxidant enzymes and protein profile in different tissues of Broussonetia papyrifera. South African Journal of Botany, 85, 1-9. https://doi.org/10.1016/j.sajb.2012.11.005 Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
  • Zhou, J., Wang, J., Cheng, Y., Chi, Y. J., Fan, B., Yu, J. Q., & Chen, Z. (2013). NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses. PLoS Genetics, 9(1), e1003196. https://doi.org/10.1371/journal.pgen.1004477
There are 64 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Articles
Authors

Civan Çelik 0000-0002-1696-5902

Yaşar Karakurt 0000-0003-3914-0652

Publication Date December 30, 2022
Acceptance Date September 11, 2022
Published in Issue Year 2022 Volume: 32 Issue: 4

Cite

APA Çelik, C., & Karakurt, Y. (2022). Determination of the Effect of Salt Stress on Germination, Biochemical and Antioxidant Defense Systems in Linas Safflower Seeds. Yuzuncu Yıl University Journal of Agricultural Sciences, 32(4), 682-691. https://doi.org/10.29133/yyutbd.1105636
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.