Research Article
BibTex RIS Cite
Year 2022, Volume: 32 Issue: 4, 775 - 784, 30.12.2022
https://doi.org/10.29133/yyutbd.1146378

Abstract

References

  • Acquaah, G. (2015). Conventional plant breeding principles and techniques. In Al Khayri et al. (Eds.), Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools (Vol. 1, pp. 115–158). Springer International Publishing. https://doi.org/10.1007/978-3-319-22521-0_5
  • Aloqalaa, D. A., Kowalski, D. R., Błazej, P., Wnetrzak, M., Mackiewicz, D., & Mackiewicz, P. (2019). The impact of the transversion/transition ratio on the optimal genetic code graph partition. Article presented at 10th International Conference on Bioinformatics Models, Methods and Algorithms, Proceedings; Part of 12th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2019, 55–65. https://doi.org/10.5220/0007381000550065
  • Eiserhardt, W. L., Svenning, J. C., Baker, W. J., Couvreur, T. L. P., & Balslev, H. (2013). Dispersal and niche evolution jointly shape the geographic turnover of phylogenetic clades across continents. Scientific Reports, 3, 1–8. https://doi.org/10.1038/srep01164
  • Fernández-García, J. L. (2017). Phylogenetics for wildlife conservation. In I. Y. Abdurakhmonov (Ed.), Phylogenetics. IntechOpen. https://doi.org/10.5772/intechopen.69240
  • Flint-Garcia, S. A. (2013). Genetics and consequences of crop domestication. Journal of Agricultural and Food Chemistry, 61(35), 8267–8276. https://doi.org/10.1021/jf305511d
  • Frankham, R., Ballou, J. D., & Broscoe, D. A. (2004). A primer of conservation genetics. Cambridge, UK: Cambridge University Press.
  • Gao, Y., Yin, S., Yang, H., Wu, L., & Yan, Y. (2017). Genetic diversity and phylogenetic relationships of seven Amorphophallus species in southwestern China revealed by chloroplast DNA sequences. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 29(5), 679–686. https://doi.org/10.1080/24701394.2017.1350855
  • Gascuel, F., Ferrière, R., Aguilée, R., & Lambert, A. (2015). How ecology and landscape dynamics shape phylogenetic trees. Systematic Biology, 64(4), 590–607. https://doi.org/10.1093/sysbio/syv014
  • Gholave, A. R., Pawar, K. D., Yadav, S. R., Bapat, V. A., & Jadhav, J. P. (2017). Reconstruction of molecular phylogeny of closely related Amorphophallus species of India using plastid DNA marker and fingerprinting approaches. Physiology and Molecular Biology of Plants, 23(1), 155–167. https://doi.org/10.1007/s12298-016-0400-0
  • Govindaraj, M., Vetriventhan, M., & Srinivasan, M. (2015). Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. Genetics Research International, 2015, 1–14. https://doi.org/10.1155/2015/431487
  • Guo, J., Xu, X., Li, W., Zhu, W., Zhu, H., Liu, Z., Luan, X., Dai, Z., Liu, G., Zhang, Z., Zeng, R., Tang, G., Fu, X., Wang, S., & Zhang, G. (2016). Overcoming inter-subspecific hybrid sterility in rice by developing indica-compatible japonica lines. Scientific Reports, 6, 1–9. https://doi.org/10.1038/srep26878
  • He, W., Chen, C., Xiang, K., Wang, J., Zheng, P., Tembrock, L. R., Jin, D., & Wu, Z. (2021). The history and diversity of rice domestication as resolved from 1464 complete plastid genomes. Frontiers in Plant Science, 12, 1–14. https://doi.org/10.3389/fpls.2021.781793
  • Hernández-Soto, A., Pérez, J., Fait-Zúñiga, R., Rojas-Vásquez, R., Gatica-Arias, A., Vargas-Segura, W., & Abdelnour-Esquivel, A. (2022). A temporary immersion system improves regeneration of in vitro irradiated recalcitrant indica rice (Oryza sativa L.) embryogenic calli. Plants, 11(375), 1–12. https://doi.org/10.3390/plants11030375
  • Hu, M., Lv, S., Wu, W., Fu, Y., Liu, F., Wang, B., Li, W., Gu, P., Cai, H., Sun, C., & Zhu, Z. (2018). The domestication of plant architecture in African rice. Plant Journal, 94(4), 661–669. https://doi.org/10.1111/tpj.13887
  • Izawa, T. (2008). The process of rice domestication: A new model based on recent data. Rice, 1(2), 127–134. https://doi.org/10.1007/s12284-008-9014-7
  • Jain, H. K., & Kharwal, M. C. (2004). Plant breeding: Mendelian to molecular approaches (H. K. Jain & M. C. Kharkwal, Eds.). Springer Netherlands. https://doi.org/10.1007/978-94-007-1040-5
  • Kiple, K. F., & Ornelas, K. C. (1999). The Cambridge world history of food. Cambridge, UK: Cambridge University Press.
  • Koide, Y., Sakaguchi, S., Uchiyama, T., Ota, Y., Tezuka, A., Nagano, A. J., Ishiguro, S., Takamure, I., & Kishima, Y. (2019). Genetic properties responsible for the transgressive segregation of days to heading in rice. G3: Genes, Genomes, Genetics, 9(5), 1655–1662. https://doi.org/10.1534/g3.119.201011
  • Korneliussen, T. S., Moltke, I., Albrechtsen, A., & Nielsen, R. (2013). Calculation of Tajima’s D and other neutrality test statistics from low depth next-generation sequencing data. BMC Bioinformatics, 14(289), 1–14.
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096
  • Lemey, P., Salemi, M., & Vandamme, A.-M. (2009). The phylogenetic handbook: A practical approach to phylogenetic analysis and hypothesis testing (Second ed.). Cambridge, UK: Cambridge University Press.
  • Lloyd, M. M., Makukhov, A. D., & Pespeni, M. H. (2016). Loss of genetic diversity as a consequence of selection in response to high pCO2. Evolutionary Applications, 9(9), 1124–1132. https://doi.org/10.1111/eva.12404
  • Mursyidin, D. H., & Khairullah, I. (2020). Genetic evaluation of tidal swamp rice from South Kalimantan, Indonesia based on the agro-morphological markers. Biodiversitas, 21(10), 4795–4803. https://doi.org/10.13057/biodiv/d211045
  • Mursyidin, D. H., Nazari, Y. A., & Daryono, B. S. (2017). Tidal swamp rice cultivars of South Kalimantan Province, Indonesia: A case study of diversity and local culture. Biodiversitas, 18(1), 427–432. https://doi.org/10.13057/biodiv/d180156
  • Mursyidin, D. H., Purnomo, & Daryono, B. S. (2021). The ligule ultrastructure of the tidal swamp rice (Oryza sativa) landraces of South Kalimantan, Indonesia, and their genetic diversity and relationship. Biodiversitas, 22(12), 5280–5285. https://doi.org/10.13057/biodiv/d221207
  • Mursyidin, D. H., Purnomo, P., Sumardi, I., & Daryono, B. S. (2018). Molecular diversity of tidal swamp rice (Oryza sativa L.) in South Kalimantan, Indonesia. Diversity, 10(2). https://doi.org/10.3390/d10020022
  • Mursyidin, D. H., Purnomo, Sumardi, I., & Daryono, B. S. (2019). Phenotypic diversity of the tidal swamp rice (Oryza sativa L.) germplasm from South Kalimantan, Indonesia. Australian Journal of Crop Science, 13(3). https://doi.org/10.21475/ajcs.19.13.03.p1268
  • Mursyidin, D. H., Sumardi, I., Purnomo, & Daryono, B. S. (2018). Pollen diversity of the tidal swamp rice (Oryza sativa L.) cultivars collected from South Kalimantan, Indonesia. Australian Journal of Crop Science, 12(3). https://doi.org/10.21475/ajcs.18.12.03.pne751
  • Nei, M., & Li, W.-H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases (molecular evolution/mitochondrial DNA/nucleotide diversity). PNAS, 76(10), 5269–5273.
  • Philippe, H., Brinkmann, H., Lavrov, D. v., Littlewood, D. T. J., Manuel, M., Wörheide, G., & Baurain, D. (2011). Resolving difficult phylogenetic questions: Why more sequences are not enough. PLoS Biology, 9(3), 1–10. https://doi.org/10.1371/journal.pbio.1000602
  • Rabosky, D. L., Slater, G. J., & Alfaro, M. E. (2012). Clade age and species richness are decoupled across the eukaryotic tree of life. PLoS Biology, 10(8), 1–11. https://doi.org/10.1371/journal.pbio.1001381
  • Reig-Valiente, J. L., Viruel, J., Sales, E., Marqu�s, L., Terol, J., Gut, M., Derdak, S., Tal�n, M., & Domingo, C. (2016). Genetic diversity and population structure of rice varieties cultivated in temperate regions. Rice, 9(1), 1–12. https://doi.org/10.1186/s12284-016-0130-5
  • Saladin, B., Thuiller, W., Graham, C. H., Lavergne, S., Maiorano, L., Salamin, N., & Zimmermann, N. E. (2019). Environment and evolutionary history shape phylogenetic turnover in European tetrapods. Nature Communications, 10(1), 1–9. https://doi.org/10.1038/s41467-018-08232-4
  • Sievers, F., Barton, G., & Higgins, D. G. (2020). Multiple sequence alignments. In A. D. B. G. D. I. D. S. Baxevanis (Ed.), Bioinformatics (Fourth ed.). New York, USA: John Wiley & Sons, Inc.
  • Stoltzfus, A., & Norris, R. W. (2016). On the causes of evolutionary transition: transversion bias. Molecular Biology and Evolution, 33(3), 595–602. https://doi.org/10.1093/molbev/msv274
  • Sweeney, M., & McCouch, S. (2007). The complex history of the domestication of rice. Annals of Botany, 100(5), 951–957. https://doi.org/10.1093/aob/mcm128
  • Turner-Hissong, S. D., Mabry, M. E., Beissinger, T. M., Ross-Ibarra, J., & Pires, J. C. (2020). Evolutionary insights into plant breeding. Current Opinion in Plant Biology, 54, 93–100. https://doi.org/10.1016/j.pbi.2020.03.003
  • Wei, X., & Huang, X. (2018). Origin, taxonomy, and phylogenetics of rice. In Rice: Chemistry and Technology (pp. 1–29). Elsevier. https://doi.org/10.1016/B978-0-12-811508-4.00001-0

Genetic Diversity and Phylogenetic Position of Traditional Rice (Oryza sativa L.) Landraces: A Case Study of South Kalimantan in Indonesia

Year 2022, Volume: 32 Issue: 4, 775 - 784, 30.12.2022
https://doi.org/10.29133/yyutbd.1146378

Abstract

Traditional rice (Oryza sativa L.) landraces provide many essential genes for improving yield, disease resistance, abiotic stress tolerance, and other parameters for future rice breeding. This study aimed to analyze the genetic diversity and determine the phylogenetic position of the traditional rice landraces from the tidal swamp areas of South Kalimantan, Indonesia, compared to other rice germplasm, including wild relatives, obtained from the GenBank database, using a cpDNA-rbcL marker. In this case, six traditional rice landraces from this region were collected and analyzed molecularly using the rbcL marker and compared with 16 similar others and 25 wild relatives from the GenBank database. The genetic diversity of this germplasm was determined using the nucleotide diversity index (π), whereas the phylogenetic analysis by maximum likelihood with bootstrap for 1 000 replicates. The principal component analysis (PCA) was employed to confirm this grouping. Based on this marker, the traditional rice landraces have a genetic diversity of 0.38, lower than intra-species and inter-species levels, i.e., 0.44 and 0.83, respectively. The phylogenetic analysis shows that this germplasm has separated from most O. sativa rice cultivars and their wild relatives, except for the ‘GBVN’ and ‘NARC’ (comparison cultivars obtained from GenBank). This information has substantial implications for future rice breeding and conservation efforts, locally and globally.

References

  • Acquaah, G. (2015). Conventional plant breeding principles and techniques. In Al Khayri et al. (Eds.), Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools (Vol. 1, pp. 115–158). Springer International Publishing. https://doi.org/10.1007/978-3-319-22521-0_5
  • Aloqalaa, D. A., Kowalski, D. R., Błazej, P., Wnetrzak, M., Mackiewicz, D., & Mackiewicz, P. (2019). The impact of the transversion/transition ratio on the optimal genetic code graph partition. Article presented at 10th International Conference on Bioinformatics Models, Methods and Algorithms, Proceedings; Part of 12th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2019, 55–65. https://doi.org/10.5220/0007381000550065
  • Eiserhardt, W. L., Svenning, J. C., Baker, W. J., Couvreur, T. L. P., & Balslev, H. (2013). Dispersal and niche evolution jointly shape the geographic turnover of phylogenetic clades across continents. Scientific Reports, 3, 1–8. https://doi.org/10.1038/srep01164
  • Fernández-García, J. L. (2017). Phylogenetics for wildlife conservation. In I. Y. Abdurakhmonov (Ed.), Phylogenetics. IntechOpen. https://doi.org/10.5772/intechopen.69240
  • Flint-Garcia, S. A. (2013). Genetics and consequences of crop domestication. Journal of Agricultural and Food Chemistry, 61(35), 8267–8276. https://doi.org/10.1021/jf305511d
  • Frankham, R., Ballou, J. D., & Broscoe, D. A. (2004). A primer of conservation genetics. Cambridge, UK: Cambridge University Press.
  • Gao, Y., Yin, S., Yang, H., Wu, L., & Yan, Y. (2017). Genetic diversity and phylogenetic relationships of seven Amorphophallus species in southwestern China revealed by chloroplast DNA sequences. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 29(5), 679–686. https://doi.org/10.1080/24701394.2017.1350855
  • Gascuel, F., Ferrière, R., Aguilée, R., & Lambert, A. (2015). How ecology and landscape dynamics shape phylogenetic trees. Systematic Biology, 64(4), 590–607. https://doi.org/10.1093/sysbio/syv014
  • Gholave, A. R., Pawar, K. D., Yadav, S. R., Bapat, V. A., & Jadhav, J. P. (2017). Reconstruction of molecular phylogeny of closely related Amorphophallus species of India using plastid DNA marker and fingerprinting approaches. Physiology and Molecular Biology of Plants, 23(1), 155–167. https://doi.org/10.1007/s12298-016-0400-0
  • Govindaraj, M., Vetriventhan, M., & Srinivasan, M. (2015). Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. Genetics Research International, 2015, 1–14. https://doi.org/10.1155/2015/431487
  • Guo, J., Xu, X., Li, W., Zhu, W., Zhu, H., Liu, Z., Luan, X., Dai, Z., Liu, G., Zhang, Z., Zeng, R., Tang, G., Fu, X., Wang, S., & Zhang, G. (2016). Overcoming inter-subspecific hybrid sterility in rice by developing indica-compatible japonica lines. Scientific Reports, 6, 1–9. https://doi.org/10.1038/srep26878
  • He, W., Chen, C., Xiang, K., Wang, J., Zheng, P., Tembrock, L. R., Jin, D., & Wu, Z. (2021). The history and diversity of rice domestication as resolved from 1464 complete plastid genomes. Frontiers in Plant Science, 12, 1–14. https://doi.org/10.3389/fpls.2021.781793
  • Hernández-Soto, A., Pérez, J., Fait-Zúñiga, R., Rojas-Vásquez, R., Gatica-Arias, A., Vargas-Segura, W., & Abdelnour-Esquivel, A. (2022). A temporary immersion system improves regeneration of in vitro irradiated recalcitrant indica rice (Oryza sativa L.) embryogenic calli. Plants, 11(375), 1–12. https://doi.org/10.3390/plants11030375
  • Hu, M., Lv, S., Wu, W., Fu, Y., Liu, F., Wang, B., Li, W., Gu, P., Cai, H., Sun, C., & Zhu, Z. (2018). The domestication of plant architecture in African rice. Plant Journal, 94(4), 661–669. https://doi.org/10.1111/tpj.13887
  • Izawa, T. (2008). The process of rice domestication: A new model based on recent data. Rice, 1(2), 127–134. https://doi.org/10.1007/s12284-008-9014-7
  • Jain, H. K., & Kharwal, M. C. (2004). Plant breeding: Mendelian to molecular approaches (H. K. Jain & M. C. Kharkwal, Eds.). Springer Netherlands. https://doi.org/10.1007/978-94-007-1040-5
  • Kiple, K. F., & Ornelas, K. C. (1999). The Cambridge world history of food. Cambridge, UK: Cambridge University Press.
  • Koide, Y., Sakaguchi, S., Uchiyama, T., Ota, Y., Tezuka, A., Nagano, A. J., Ishiguro, S., Takamure, I., & Kishima, Y. (2019). Genetic properties responsible for the transgressive segregation of days to heading in rice. G3: Genes, Genomes, Genetics, 9(5), 1655–1662. https://doi.org/10.1534/g3.119.201011
  • Korneliussen, T. S., Moltke, I., Albrechtsen, A., & Nielsen, R. (2013). Calculation of Tajima’s D and other neutrality test statistics from low depth next-generation sequencing data. BMC Bioinformatics, 14(289), 1–14.
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096
  • Lemey, P., Salemi, M., & Vandamme, A.-M. (2009). The phylogenetic handbook: A practical approach to phylogenetic analysis and hypothesis testing (Second ed.). Cambridge, UK: Cambridge University Press.
  • Lloyd, M. M., Makukhov, A. D., & Pespeni, M. H. (2016). Loss of genetic diversity as a consequence of selection in response to high pCO2. Evolutionary Applications, 9(9), 1124–1132. https://doi.org/10.1111/eva.12404
  • Mursyidin, D. H., & Khairullah, I. (2020). Genetic evaluation of tidal swamp rice from South Kalimantan, Indonesia based on the agro-morphological markers. Biodiversitas, 21(10), 4795–4803. https://doi.org/10.13057/biodiv/d211045
  • Mursyidin, D. H., Nazari, Y. A., & Daryono, B. S. (2017). Tidal swamp rice cultivars of South Kalimantan Province, Indonesia: A case study of diversity and local culture. Biodiversitas, 18(1), 427–432. https://doi.org/10.13057/biodiv/d180156
  • Mursyidin, D. H., Purnomo, & Daryono, B. S. (2021). The ligule ultrastructure of the tidal swamp rice (Oryza sativa) landraces of South Kalimantan, Indonesia, and their genetic diversity and relationship. Biodiversitas, 22(12), 5280–5285. https://doi.org/10.13057/biodiv/d221207
  • Mursyidin, D. H., Purnomo, P., Sumardi, I., & Daryono, B. S. (2018). Molecular diversity of tidal swamp rice (Oryza sativa L.) in South Kalimantan, Indonesia. Diversity, 10(2). https://doi.org/10.3390/d10020022
  • Mursyidin, D. H., Purnomo, Sumardi, I., & Daryono, B. S. (2019). Phenotypic diversity of the tidal swamp rice (Oryza sativa L.) germplasm from South Kalimantan, Indonesia. Australian Journal of Crop Science, 13(3). https://doi.org/10.21475/ajcs.19.13.03.p1268
  • Mursyidin, D. H., Sumardi, I., Purnomo, & Daryono, B. S. (2018). Pollen diversity of the tidal swamp rice (Oryza sativa L.) cultivars collected from South Kalimantan, Indonesia. Australian Journal of Crop Science, 12(3). https://doi.org/10.21475/ajcs.18.12.03.pne751
  • Nei, M., & Li, W.-H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases (molecular evolution/mitochondrial DNA/nucleotide diversity). PNAS, 76(10), 5269–5273.
  • Philippe, H., Brinkmann, H., Lavrov, D. v., Littlewood, D. T. J., Manuel, M., Wörheide, G., & Baurain, D. (2011). Resolving difficult phylogenetic questions: Why more sequences are not enough. PLoS Biology, 9(3), 1–10. https://doi.org/10.1371/journal.pbio.1000602
  • Rabosky, D. L., Slater, G. J., & Alfaro, M. E. (2012). Clade age and species richness are decoupled across the eukaryotic tree of life. PLoS Biology, 10(8), 1–11. https://doi.org/10.1371/journal.pbio.1001381
  • Reig-Valiente, J. L., Viruel, J., Sales, E., Marqu�s, L., Terol, J., Gut, M., Derdak, S., Tal�n, M., & Domingo, C. (2016). Genetic diversity and population structure of rice varieties cultivated in temperate regions. Rice, 9(1), 1–12. https://doi.org/10.1186/s12284-016-0130-5
  • Saladin, B., Thuiller, W., Graham, C. H., Lavergne, S., Maiorano, L., Salamin, N., & Zimmermann, N. E. (2019). Environment and evolutionary history shape phylogenetic turnover in European tetrapods. Nature Communications, 10(1), 1–9. https://doi.org/10.1038/s41467-018-08232-4
  • Sievers, F., Barton, G., & Higgins, D. G. (2020). Multiple sequence alignments. In A. D. B. G. D. I. D. S. Baxevanis (Ed.), Bioinformatics (Fourth ed.). New York, USA: John Wiley & Sons, Inc.
  • Stoltzfus, A., & Norris, R. W. (2016). On the causes of evolutionary transition: transversion bias. Molecular Biology and Evolution, 33(3), 595–602. https://doi.org/10.1093/molbev/msv274
  • Sweeney, M., & McCouch, S. (2007). The complex history of the domestication of rice. Annals of Botany, 100(5), 951–957. https://doi.org/10.1093/aob/mcm128
  • Turner-Hissong, S. D., Mabry, M. E., Beissinger, T. M., Ross-Ibarra, J., & Pires, J. C. (2020). Evolutionary insights into plant breeding. Current Opinion in Plant Biology, 54, 93–100. https://doi.org/10.1016/j.pbi.2020.03.003
  • Wei, X., & Huang, X. (2018). Origin, taxonomy, and phylogenetics of rice. In Rice: Chemistry and Technology (pp. 1–29). Elsevier. https://doi.org/10.1016/B978-0-12-811508-4.00001-0
There are 38 citations in total.

Details

Primary Language English
Subjects Botany
Journal Section Articles
Authors

Dindin Hidayatul Mursyidin 0000-0002-1200-0927

Publication Date December 30, 2022
Acceptance Date September 30, 2022
Published in Issue Year 2022 Volume: 32 Issue: 4

Cite

APA Mursyidin, D. H. (2022). Genetic Diversity and Phylogenetic Position of Traditional Rice (Oryza sativa L.) Landraces: A Case Study of South Kalimantan in Indonesia. Yuzuncu Yıl University Journal of Agricultural Sciences, 32(4), 775-784. https://doi.org/10.29133/yyutbd.1146378
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.