Research Article
BibTex RIS Cite
Year 2024, Volume: 34 Issue: 2, 286 - 298, 30.06.2024
https://doi.org/10.29133/yyutbd.1409442

Abstract

References

  • A.O.A.C. (1975). Official methods of analysis (12th ed.). Association of Official Analysis Chemists.
  • Abd Allah, M. M. S., El-Bassiouny, H. M. S., Bakry, B. A., & Sadak, M. S. (2015). Effect of Arbuscular mycorrhiza and glutamic acid on growth, yield, some chemical composition and nutritional quality of wheat plant grown in newly reclaimed sandy soil. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6(3), 1038–1054.
  • Al-Ealayawi, Z. A., & Al-Dulaimy, A. F. (2023). Marine algae and applications to plant nutrition: A review. IOP Conference Series: Earth and Environmental Science, 1158(4), 1-9. https://doi.org/10.1088/1755-1315/1158/4/042004
  • Al-Saif, A. M., Ali, M. M., Ben Hifaa, A. B., & Mosa, W. F. (2023). Influence of spraying some biostimulants on yield, fruit quality, oil fruit content and nutritional status of olive (Olea europaea L.) under salinity. Horticulturae, 9(7), 825. https://doi.org/10.3390/horticulturae9070825
  • Amin, M. W., Aryan, S., & Samadi, A. F. (2023). Interpretation of morpho-physiological and biochemical responses of winter wheat under different sodium chloride concentrations. Journal of Crop Science and Biotechnology. https://doi.org/10.1007/s12892-023-00200-9
  • Bates, L. S., Waldan, R. P., & Teare, L. D. (1973). Rapid determination of free proline under water stress studies. Plant Soil, 39, 205–207.
  • Bayanati, M., Al-Tawaha, A. R. M., Sangeetha, J., Thangadurai, D., & Kummur, P. N. (2023). Role of mycorrhizal fungi in plant growth: Implications in abiotic stress tolerance. In Mycorrhizal Technology (pp. 131-157). Apple Academic Press.
  • Bogoutdinova, L. R., Baranova, E. N., Kononenko, N. V., Chaban, I. A., Konovalova, L. N., Gulevich, A. A., … & Khaliluev, M. R. (2023). Characteristics of root cells during in vitro rhizogenesis under action of NaCl in two tomato genotypes differing in salt tolerance. International Journal of Plant Biology, 14(1), 104-119. https://doi.org/10.3390/ijpb14010010
  • Chakraborty, P., & Kumari, A. (2024). Role of compatible osmolytes in plant stress tolerance under the influence of phytohormones and mineral elements. In Improving Stress Resilience in Plants (pp. 165-201). Academic Press.
  • Chandra, P., Yadav, S., Kumar, A., Sheoran, P., & Mann, A. (2023). Arbuscular mycorrhizal fungi–plant interaction for salinity and drought stress alleviation. In Salinity and Drought Tolerance in Plants: Physiological Perspectives (pp. 365-386). Springer Nature Singapore.
  • Chang, W., Zhang, Y., Ping, Y., Li, K., Qi, D. D., & Song, F. Q. (2023). Label-free quantitative proteomics of arbuscular mycorrhizal Elaeagnus angustifolia seedlings provides insights into salt-stress tolerance mechanisms. Frontiers in Plant Science, 13, 1098260. https://doi.org/10.3389/fpls.2022.1098260
  • Chaurasia, S., & Kumar, A. (2023). The key genomic regions harboring QTLs associated with salinity tolerance in bread wheat (Triticumaestivum L.): a comprehensive review. Journal of Crop Science and Biotechnology.
  • Dafaallah, A. B., Mustafa, W. N., & Hussein, Y. H. (2019). Allelopathic effects of jimsonweed (Datura Stramonium L.) seed on seed germination and seedling growth of some leguminous crops. International Journal of Innovative Approaches in Agricultural Research, 3(2), 321–31. https://doi.org/10.29329/ijiaar.2019.194.17
  • Dubois, M., Smith, F., Gilles, K. A., Hamilton, J. K., & Reber, P. A. (1966). Calorimetric method for determination of sugar and related substances. Analytical Chemistry, 28(3), 350. https://doi.org/10.1021/ac60111a017
  • Fairoj, S. A., Islam, M. M., Islam, M. A., Zaman, E., Momtaz, M. B., Hossain, M. S., … & Murata, Y. (2023). Salicylic acid improves agro-morphology, yield and ion accumulation of two wheat (Triticum aestivum l.) genotypes by ameliorating the impact of salt stress. Agronomy, 13(1), 25. https://doi.org/10.3390/agronomy13010025
  • Fayaz, F., & Zahedi, M. (2021). Beneficial effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) nutritional status and tolerance indices under soil salinity stress. Journal of Plant Nutrition, 45(2), 185-201. https://doi.org/10.1080/01904167.2021.1952228
  • Finlay, R. D. (2008). Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. Journal of Experimental Botany, 59(5), 1115-1126. https://doi.org/10.1093/jxb/ern059
  • Ghonaim, M. M., Attya, A. M., Aly, H. G., Mohamed, H. I., & Omran, A. A. (2023). Agro-morphological, biochemical, and molecular markers of barley genotypes grown under salinity stress conditions. BMC Plant Biology, 23(1), 526. https://doi.org/10.1186/s12870-023-04550-y
  • Gupta, R., Meghwal, M., & Prabhakar, P. K. (2021). Bioactive compounds of pigmented wheat (Triticumaestivum): Potential benefits in human health. Trends in Food Science & Technology, 110, 240-252. https://doi.org/10.1016/j.tifs.2021.02.003
  • Hamouda, M. M., Badr, A., Ali, S. S., Adham, A. M., Ahmed, H. I. S., & Saad-Allah, K. M. (2023). Growth, physiological, and molecular responses of three phaeophyte extracts on salt-stressed pea (Pisum sativum L.) seedlings. Journal of Genetic Engineering and Biotechnology, 21(1), 1-15. https://doi.org/10.1186/s43141-023-00483-z
  • Hamouda, M. M., Saad-Allah, K. M., & Gad, D. (2022). Potential of seaweed extract on growth, physiological, cytological and biochemical parameters of wheat (Triticum aestivum L.) seedlings. Journal of Soil Science and Plant Nutrition, 22(2), 1818-1831. https://doi.org/10.1007/s42729-022-00774-3
  • Hesse, R. (1971). Textbook of soil chemical analysis. CBS-publisher.
  • Huang, S., Gill, S., Ramzan, M., Ahmad, M. Z., Danish, S., Huang, P., … & Alharbi, S. A. (2023). Uncovering the impact of AM fungi on wheat nutrient uptake, ion homeostasis, oxidative stress, and antioxidant defense under salinity stress. Scientific Reports, 13(1), 8249. https://doi.org/10.1038/s41598-023-35148-x
  • Humphries, E. (1956). Mineral components and ash analysis. In Moderne Methoden der Pflanzenanalyse/Modern Methods of Plant Analysis (pp. 468-502). Springer.
  • Hussain, S., Hafeez, M. B., Azam, R., Mehmood, K., Aziz, M., Ercisli, S., … & Ren, X. (2023). Deciphering the role of phytohormones and osmolytes in plant tolerance against salt stress: Implications, possible cross-talk, and prospects. Journal of Plant Growth Regulation. https://doi.org/10.1007/s00344-023-11070-4
  • Kaschuk, G., Kuyper, T. W., Leffelaar, P. A., Hungria, M., & Giller, K. E. (2009). Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses?. Soil Biology and Biochemistry, 41(6), 1233-1244. https://doi.org/10.1016/j.soilbio.2009.03.005
  • Kwon, O. K., Mekapogu, M., & Kim, K. S. (2019). Effect of salinity stress on photosynthesis and related physiological responses in carnation (Dianthus caryophyllus). Horticulture, Environment, and Biotechnology, 60, 831-839. https://doi.org/10.1007/s13580-019-00189-7
  • Latique, S., Mrid, R. B., Kabach, I., Kchikich, A., Sammama, H., Yasri, A., … & Selmaoui, K. (2021). Foliar application of Ulva rigida water extracts improves salinity tolerance in wheat (Triticum durum L.). Agronomy, 11(2), 265. https://doi.org/10.3390/agronomy11020265
  • Metzner, H., Rau, H., & Senger, H. (1965). Untersuchungen zur synchronisierbarkeit einzelner pigmentmangelmutanten von Chlorella. Planta, 65(2), 186-194.
  • Mokhtarpour, H., Teh, C. B., Saleh, G., Selamat, A. B., Asadi, M. E., & Kamkar, B. (2010). Nondestructive estimation of maize leaf area, fresh weight, and dry weight using leaf length and leaf width. Communications in Biometry and Crop Science, 5(1), 19-26.
  • Ndiate, N. I., Francis, I. N., Dada, O. A., Rehman, A., Asif, M., Goffner, D., … & Haider, F. U. (2022). Soil amendment with arbuscular mycorrhizal fungi and biochar Improves salinity tolerance, growth, and lipid metabolism of common wheat (Triticum aestivum L.). Sustainability, 14(6), 3210. https://doi.org/10.3390/su14063210
  • Ortas, I. (2023). The importance of mycorrhizae in microbiology and how it relates to food security. Science and Innovation, 2(special issue 8), 548-564. https://doi.org/10.5281/zenodo.8360447
  • Paudel, H., Bhandari, R., Dhakal, A., Nyaupane, S., Panthi, B., & Poudel, M. R. (2023). Response of Wheat To Different Abiotic Stress Conditions: A Review. Science, 7(1), 27-31. https://doi.org/10.26480/gws.01.2023.27.31
  • Prajapati, S. K., Dayal, P., Kumar, V., & Kumari, M. (2023). The Plant Bio-stimulant Properties of Seaweed Extracts: Potential to Mitigate Climate Change for Sustainable Agriculture. Food and Scientific Reports, 4(9), 70-75.
  • Puccio, G., Ingraffia, R., Mercati, F., Amato, G., Giambalvo, D., Martinelli, F., … & Frenda, A. S. (2023). Transcriptome changes induced

The Individual and Combined Effects of Cystoseira compressa Extracts and Inoculation of Arbuscular Mycorrhizal on Growth and Yield of Wheat under Salinity Conditions

Year 2024, Volume: 34 Issue: 2, 286 - 298, 30.06.2024
https://doi.org/10.29133/yyutbd.1409442

Abstract

Combined treatments are a successful way to overcome salinity damage in an environmentally safe and cost-effective method. So this experiment aimed to study the individual and combined effects of a seaweed extract of Cystoseira compressa (SWE) and Arbuscular Mycorrhizal Fungi (VA-M) on the growth and yield of Triticum aestivum L. cultivar (ACSAD 1398), under salinity conditions. In general, the study showed a significant decrease in morphological and biochemical parameters of the wheat under salinity levels. On the contrary, the results showed that all treatments significantly increased shoot and root length, number of leaves /plant, leaf area, seedling length, fresh and dry weight seedlings, spike length, fresh and dry weight spike, chlorophyll (a b), carotenoids, total pigments, Ca, Mg, P, K, Cu, N, crude protein, and total soluble sugars. As caused a decrease in proline content. The findings revealed that the (SWE+VA-M) combined treatment was superior to the foliar individual application of (SWE), and (VA-M) individual inoculation.

References

  • A.O.A.C. (1975). Official methods of analysis (12th ed.). Association of Official Analysis Chemists.
  • Abd Allah, M. M. S., El-Bassiouny, H. M. S., Bakry, B. A., & Sadak, M. S. (2015). Effect of Arbuscular mycorrhiza and glutamic acid on growth, yield, some chemical composition and nutritional quality of wheat plant grown in newly reclaimed sandy soil. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6(3), 1038–1054.
  • Al-Ealayawi, Z. A., & Al-Dulaimy, A. F. (2023). Marine algae and applications to plant nutrition: A review. IOP Conference Series: Earth and Environmental Science, 1158(4), 1-9. https://doi.org/10.1088/1755-1315/1158/4/042004
  • Al-Saif, A. M., Ali, M. M., Ben Hifaa, A. B., & Mosa, W. F. (2023). Influence of spraying some biostimulants on yield, fruit quality, oil fruit content and nutritional status of olive (Olea europaea L.) under salinity. Horticulturae, 9(7), 825. https://doi.org/10.3390/horticulturae9070825
  • Amin, M. W., Aryan, S., & Samadi, A. F. (2023). Interpretation of morpho-physiological and biochemical responses of winter wheat under different sodium chloride concentrations. Journal of Crop Science and Biotechnology. https://doi.org/10.1007/s12892-023-00200-9
  • Bates, L. S., Waldan, R. P., & Teare, L. D. (1973). Rapid determination of free proline under water stress studies. Plant Soil, 39, 205–207.
  • Bayanati, M., Al-Tawaha, A. R. M., Sangeetha, J., Thangadurai, D., & Kummur, P. N. (2023). Role of mycorrhizal fungi in plant growth: Implications in abiotic stress tolerance. In Mycorrhizal Technology (pp. 131-157). Apple Academic Press.
  • Bogoutdinova, L. R., Baranova, E. N., Kononenko, N. V., Chaban, I. A., Konovalova, L. N., Gulevich, A. A., … & Khaliluev, M. R. (2023). Characteristics of root cells during in vitro rhizogenesis under action of NaCl in two tomato genotypes differing in salt tolerance. International Journal of Plant Biology, 14(1), 104-119. https://doi.org/10.3390/ijpb14010010
  • Chakraborty, P., & Kumari, A. (2024). Role of compatible osmolytes in plant stress tolerance under the influence of phytohormones and mineral elements. In Improving Stress Resilience in Plants (pp. 165-201). Academic Press.
  • Chandra, P., Yadav, S., Kumar, A., Sheoran, P., & Mann, A. (2023). Arbuscular mycorrhizal fungi–plant interaction for salinity and drought stress alleviation. In Salinity and Drought Tolerance in Plants: Physiological Perspectives (pp. 365-386). Springer Nature Singapore.
  • Chang, W., Zhang, Y., Ping, Y., Li, K., Qi, D. D., & Song, F. Q. (2023). Label-free quantitative proteomics of arbuscular mycorrhizal Elaeagnus angustifolia seedlings provides insights into salt-stress tolerance mechanisms. Frontiers in Plant Science, 13, 1098260. https://doi.org/10.3389/fpls.2022.1098260
  • Chaurasia, S., & Kumar, A. (2023). The key genomic regions harboring QTLs associated with salinity tolerance in bread wheat (Triticumaestivum L.): a comprehensive review. Journal of Crop Science and Biotechnology.
  • Dafaallah, A. B., Mustafa, W. N., & Hussein, Y. H. (2019). Allelopathic effects of jimsonweed (Datura Stramonium L.) seed on seed germination and seedling growth of some leguminous crops. International Journal of Innovative Approaches in Agricultural Research, 3(2), 321–31. https://doi.org/10.29329/ijiaar.2019.194.17
  • Dubois, M., Smith, F., Gilles, K. A., Hamilton, J. K., & Reber, P. A. (1966). Calorimetric method for determination of sugar and related substances. Analytical Chemistry, 28(3), 350. https://doi.org/10.1021/ac60111a017
  • Fairoj, S. A., Islam, M. M., Islam, M. A., Zaman, E., Momtaz, M. B., Hossain, M. S., … & Murata, Y. (2023). Salicylic acid improves agro-morphology, yield and ion accumulation of two wheat (Triticum aestivum l.) genotypes by ameliorating the impact of salt stress. Agronomy, 13(1), 25. https://doi.org/10.3390/agronomy13010025
  • Fayaz, F., & Zahedi, M. (2021). Beneficial effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) nutritional status and tolerance indices under soil salinity stress. Journal of Plant Nutrition, 45(2), 185-201. https://doi.org/10.1080/01904167.2021.1952228
  • Finlay, R. D. (2008). Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. Journal of Experimental Botany, 59(5), 1115-1126. https://doi.org/10.1093/jxb/ern059
  • Ghonaim, M. M., Attya, A. M., Aly, H. G., Mohamed, H. I., & Omran, A. A. (2023). Agro-morphological, biochemical, and molecular markers of barley genotypes grown under salinity stress conditions. BMC Plant Biology, 23(1), 526. https://doi.org/10.1186/s12870-023-04550-y
  • Gupta, R., Meghwal, M., & Prabhakar, P. K. (2021). Bioactive compounds of pigmented wheat (Triticumaestivum): Potential benefits in human health. Trends in Food Science & Technology, 110, 240-252. https://doi.org/10.1016/j.tifs.2021.02.003
  • Hamouda, M. M., Badr, A., Ali, S. S., Adham, A. M., Ahmed, H. I. S., & Saad-Allah, K. M. (2023). Growth, physiological, and molecular responses of three phaeophyte extracts on salt-stressed pea (Pisum sativum L.) seedlings. Journal of Genetic Engineering and Biotechnology, 21(1), 1-15. https://doi.org/10.1186/s43141-023-00483-z
  • Hamouda, M. M., Saad-Allah, K. M., & Gad, D. (2022). Potential of seaweed extract on growth, physiological, cytological and biochemical parameters of wheat (Triticum aestivum L.) seedlings. Journal of Soil Science and Plant Nutrition, 22(2), 1818-1831. https://doi.org/10.1007/s42729-022-00774-3
  • Hesse, R. (1971). Textbook of soil chemical analysis. CBS-publisher.
  • Huang, S., Gill, S., Ramzan, M., Ahmad, M. Z., Danish, S., Huang, P., … & Alharbi, S. A. (2023). Uncovering the impact of AM fungi on wheat nutrient uptake, ion homeostasis, oxidative stress, and antioxidant defense under salinity stress. Scientific Reports, 13(1), 8249. https://doi.org/10.1038/s41598-023-35148-x
  • Humphries, E. (1956). Mineral components and ash analysis. In Moderne Methoden der Pflanzenanalyse/Modern Methods of Plant Analysis (pp. 468-502). Springer.
  • Hussain, S., Hafeez, M. B., Azam, R., Mehmood, K., Aziz, M., Ercisli, S., … & Ren, X. (2023). Deciphering the role of phytohormones and osmolytes in plant tolerance against salt stress: Implications, possible cross-talk, and prospects. Journal of Plant Growth Regulation. https://doi.org/10.1007/s00344-023-11070-4
  • Kaschuk, G., Kuyper, T. W., Leffelaar, P. A., Hungria, M., & Giller, K. E. (2009). Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses?. Soil Biology and Biochemistry, 41(6), 1233-1244. https://doi.org/10.1016/j.soilbio.2009.03.005
  • Kwon, O. K., Mekapogu, M., & Kim, K. S. (2019). Effect of salinity stress on photosynthesis and related physiological responses in carnation (Dianthus caryophyllus). Horticulture, Environment, and Biotechnology, 60, 831-839. https://doi.org/10.1007/s13580-019-00189-7
  • Latique, S., Mrid, R. B., Kabach, I., Kchikich, A., Sammama, H., Yasri, A., … & Selmaoui, K. (2021). Foliar application of Ulva rigida water extracts improves salinity tolerance in wheat (Triticum durum L.). Agronomy, 11(2), 265. https://doi.org/10.3390/agronomy11020265
  • Metzner, H., Rau, H., & Senger, H. (1965). Untersuchungen zur synchronisierbarkeit einzelner pigmentmangelmutanten von Chlorella. Planta, 65(2), 186-194.
  • Mokhtarpour, H., Teh, C. B., Saleh, G., Selamat, A. B., Asadi, M. E., & Kamkar, B. (2010). Nondestructive estimation of maize leaf area, fresh weight, and dry weight using leaf length and leaf width. Communications in Biometry and Crop Science, 5(1), 19-26.
  • Ndiate, N. I., Francis, I. N., Dada, O. A., Rehman, A., Asif, M., Goffner, D., … & Haider, F. U. (2022). Soil amendment with arbuscular mycorrhizal fungi and biochar Improves salinity tolerance, growth, and lipid metabolism of common wheat (Triticum aestivum L.). Sustainability, 14(6), 3210. https://doi.org/10.3390/su14063210
  • Ortas, I. (2023). The importance of mycorrhizae in microbiology and how it relates to food security. Science and Innovation, 2(special issue 8), 548-564. https://doi.org/10.5281/zenodo.8360447
  • Paudel, H., Bhandari, R., Dhakal, A., Nyaupane, S., Panthi, B., & Poudel, M. R. (2023). Response of Wheat To Different Abiotic Stress Conditions: A Review. Science, 7(1), 27-31. https://doi.org/10.26480/gws.01.2023.27.31
  • Prajapati, S. K., Dayal, P., Kumar, V., & Kumari, M. (2023). The Plant Bio-stimulant Properties of Seaweed Extracts: Potential to Mitigate Climate Change for Sustainable Agriculture. Food and Scientific Reports, 4(9), 70-75.
  • Puccio, G., Ingraffia, R., Mercati, F., Amato, G., Giambalvo, D., Martinelli, F., … & Frenda, A. S. (2023). Transcriptome changes induced
There are 35 citations in total.

Details

Primary Language English
Subjects Field Crops and Pasture Production (Other)
Journal Section Articles
Authors

Sami Salih 0000-0001-7644-2380

Ahmed Abdulrraziq 0000-0003-3722-4836

Early Pub Date June 16, 2024
Publication Date June 30, 2024
Submission Date December 25, 2023
Acceptance Date April 17, 2024
Published in Issue Year 2024 Volume: 34 Issue: 2

Cite

APA Salih, S., & Abdulrraziq, A. (2024). The Individual and Combined Effects of Cystoseira compressa Extracts and Inoculation of Arbuscular Mycorrhizal on Growth and Yield of Wheat under Salinity Conditions. Yuzuncu Yıl University Journal of Agricultural Sciences, 34(2), 286-298. https://doi.org/10.29133/yyutbd.1409442
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.