Research Article
BibTex RIS Cite

Potential Fungal-bacterial Biofilm for Bioremediation Polluted Soils of Chromium and Its Impact on Maize Growth

Year 2025, Volume: 35 Issue: 1, 9 - 22

Abstract

Recently, biofilm has emerged as a notable agent in bioremediation. The present study was conducted to determine the potential of microbes described in forming fungal-bacterial biofilm (FBB) as a bioremediation agent for chromium-contaminated soil. Parameters observed include total chromium concentration in soil, Zea mays growth, total chromium concentration in tissue, and its effects on microbial populations. The study commenced with biofilm formation assays and pot experiments in a greenhouse using combinations of chemical fertilizer (CF) on Zea mays. This research employed a Completely Randomized Design (CRD) with five treatments and four replications: A (100% CF), B (75% CF + 25% FBB), C (50% CF + 50% FBB), D (25% CF + 75% FBB), E (100% FBB). The results indicate that all treatments could reduce total chromium concentration below the threshold limit (2.5 mg kg-1), the lowest chromium concentration found in treatments D and E at 1.25 mg kg-1. FBB alone or in combination with CF did not enhance Zea mays growth. Treatment E exhibited plant height, crown dry weight, and root dry weight sequentially 20.31%, 84.10%, and 76.15% lower than treatment A. FBB could increase chromium accumulation in plants, with treatment E having the highest chromium concentration in crown and roots, at 15.47 µg g-1 and 15.59 µg g-1. Application of 100% FBB increased soil bacterial population by 44.02% compared to treatment A. In conclusion, the microorganisms identified can form FBB and serve as bioremediation agents by enhancing heavy metal accumulation in plants (phytoextraction).

References

  • Adiloğlu, S., & Göker, M. (2021). Phytoremediation: elimination of hexavalent chromium heavy metal using corn (Zea mays L.). Cereal Research Communications, 49(1), 65–72.
  • Arifin, M., Devnita, R., Anda, M., Goenadi, D. H., & Nugraha, A. (2022). Characteristics of Andisols Developed from Andesitic and Basaltic Volcanic Ash in Different Agro-Climatic Zones. Soil Systems, 6(4), 1–25. https://doi.org/10.3390/soilsystems6040078
  • Atbaş, Ş., & Taşkın, B. (2024). Effect of Different Metals on Synthesis of Siderophores by Endophyte Bacteria Isolated from Various Annual Plants. Yuzuncu Yil University Journal of Agricultural Sciences, 34(3), 406–416. https://doi.org/10.29133/yyutbd.1427459
  • Balai Pengujian Standar Instrumen Tanah dan pupuk. (2023). Analisis Kimia Tanah, Tanaman, Air, dan Pupuk. In Petunjuk Teknis Edisi 3 Analisis Kimia Tanah, Tanaman,Air,dan Pupuk.
  • Bashir, M. A., Naveed, M., Ahmad, Z., Gao, B., Mustafa, A., & Núñez-Delgado, A. (2020). Combined application of biochar and sulfur regulated growth, physiological, antioxidant responses and Cr removal capacity of maize (Zea mays L.) in tannery polluted soils. Journal of Environmental Management, 259(December 2019). https://doi.org/10.1016/j.jenvman.2019.110051
  • Bhunia, A., Lahiri, D., Nag, M., & Al., E. (2022). Bacterial biofilm mediated bioremediation of hexavalent chromium: A review. Biocatalysis and Agricultural Biotechnology, 43, 1–26.
  • Dong, Q., LeFevre, G. H., & Mattes, T. E. (2024). Black Carbon Impacts on Paraburkholderia xenovorans Strain LB400 Cell Enrichment and Activity: Implications toward Lower-Chlorinated Polychlorinated Biphenyls Biodegradation Potential. Environmental Science and Technology, 58, 3895–3907. https://doi.org/10.1021/acs.est.3c09183
  • Faria, M., Bertocco, T., Barroso, A., Carvalho, M., Fonseca, F., Delerue Matos, C., Figueiredo, T., Sequeira Braga, A., Valente, T., & Jiménez-Ballesta, R. (2023). A Comparison of Analytical Methods for the Determination of Soil pH: Case Study on Burned Soils in Northern Portugal. Fire, 6(227), 1–13. https://doi.org/10.3390/fire6060227
  • Ferina, P., Rosariastuti, R., & Supriyadi, S. (2017). The effectiveness of Mendong plant (Fimbrystilis globulosa) as a phytoremediator of soil contaminated with chromium of industrial waste. Journal of Degraded and Mining Lands Management, 04(04), 899–905. https://doi.org/10.15243/jdmlm.2017.044.899
  • Ghitti, E., Rolli, E., Vergani, L., & Borin, S. (2024). Flavonoids influence key rhizocompetence traits for early root colonization and PCB degradation potential of Paraburkholderia xenovorans LB400. Frontiers in Plant Science, 15(1325048), 1–18. https://doi.org/10.3389/fpls.2024.1325048
  • Henagamage, A. P. (2019). Bioremediation of Textile dyes by Fungal-Bacterial Biofilms. International Journal of Environment, Agriculture and Biotechnology, 4(3), 635–642. https://doi.org/10.22161/ijeab/4.3.7
  • Henagamage, A. P., Peries, C. M., & Seneviratne, G. (2022). Fungal-bacterial biofilm mediated heavy metal rhizo-remediation. World Journal of Microbiology and Biotechnology, 38(85), 1–13. https://doi.org/10.1007/s11274-022-03267-8
  • Igaz, D., Aydin, E., Šinkovičová, M., Šimanský, V., Tall, A., & Horák, J. (2020). Laser diffraction as an innovative alternative to standard pipette method for determination of soil texture classes in central Europe. Water (Switzerland), 12(5), 1–16. https://doi.org/10.3390/W12051232
  • İnci, H. Ş., Ahıskalı, M., Macit, M., & Çaçan, E. (2024). Investigation of Heavy Metal Concentrations and Accumulation Capacities of Naturally Growing Species in Old Garbage Area. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 34(1), 151–165. https://doi.org/10.29133/yyutbd.1399025
  • Irfan, M., Mudassir, M., Khan, M. J., Dawar, K. M., Muhammad, D., Mian, I. A., Ali, W., Fahad, S., Saud, S., Hayat, Z., Nawaz, T., Khan, S. A., Alam, S., Ali, B., Banout, J., Ahmed, S., Mubeen, S., Danish, S., Datta, R., … Dewil, R. (2021). Heavy metals immobilization and improvement in maize (Zea mays L.) growth amended with biochar and compost. Scientific Reports, 11(1), 1–9. https://doi.org/10.1038/s41598-021-97525-8
  • Jia, Y., Li, J., Niu, H., Ma, H., Han, Q., Wang, C., Li, B., & Qiu, Z. (2023). Synergistic antagonism mechanism of Bacillus-Pseudomonas consortium against Alternaria solani. European Journal of Plant Pathology, 0123456789. https://doi.org/10.1007/s10658-023-02747-3
  • Kapoor, R. T., Mfarrej, M. F. B., Alam, P., Rinklebe, J., & Ahmad, P. (2022). Accumulation of chromium in plants and its repercussion in animals and humans. Environtmental Pollution, 301(119044), 1–11. https://doi.org/10.3329/bioethics.v1i1.9525
  • Kumar, M., & Saini, H. S. (2016). Novel Approaches for Sustainable Management of Chromium Contaminated Wastewater. Intech, 11, 1–27. https://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics
  • Liu, Y., Zhang, B., Han, Y. H., Yao, Y., & Guo, P. (2023). Involvement of exogenous arsenic-reducing bacteria in root surface biofilm formation promoted phytoextraction of arsenic. Science of the Total Environment, 858(160158), 1–13. https://doi.org/10.1016/j.scitotenv.2022.160158
  • Maity, S., Sarkar, D., Poddar, K., Patil, P., & Sarkar, A. (2023). Biofilm-Mediated Heavy Metal Removal from Aqueous System by Multi-Metal-Resistant Bacterial Strain Bacillus sp. GH-s29. Applied Biochemistry and Biotechnology, 195(8), 4832–4850. https://doi.org/10.1007/s12010-022-04288-7
  • Mattila, T. J., & Rajala, J. (2022). Estimating cation exchange capacity from agronomic soil tests: Comparing Mehlich-3 and ammonium acetate sum of cations. Soil Science Society of America Journal, 86(1), 47–50. https://doi.org/10.1002/saj2.20340
  • Maurya, A., Kumar, P. S., & Raj, A. (2022). Characterization of biofilm formation and reduction of hexavalent chromium by bacteria isolated from tannery sludge. Chemosphere, 286, 1–13. https://doi.org/10.1016/j.chemosphere.2021.131795
  • Maurya, A., Kumar, R., Yadav, P., Singh, A., Yadav, A., Chowdhary, P., & Raj, A. (2022). Biofilm formation and extracellular polymeric substance (EPS) production by Bacillus haynesii and influence of hexavalent chromium. Bioresource Technology, 352(127109), 1–5. https://doi.org/10.1016/j.biortech.2022.127109
  • O’Toole, G. A. (2010). Microtiter dish Biofilm formation assay. Journal of Visualized Experiments, 47, 10–11. https://doi.org/10.3791/2437
  • Pandit, A., Adholeya, A., Cahill, D., Brau, L., & Kochar, M. (2020). Microbial biofilms in nature: unlocking their potential for agricultural applications. Journal of Applied Microbiology, 129(2), 199–211. https://doi.org/10.1111/jam.14609
  • Peraturan Pemerintah Republik Indonesia Nomor 22, (2021).
  • Peternella, W. sacchi, Silva, frederico fonseca da, & Saraiva, antonio carlos da costa. (2021). Evaluation of the Phytoavailability of Cu(II) and Cr(III) for the Growing of Corn (Zea mays L.), Cultivated in Four Soils of a Toposequence Derived from Basalt. Journal of Environmental Protention, 8. https://doi.org/http://dx.doi.org/10.4236/oalib.1107707
  • Prabhakaran, D. C., Bolaños-Benitez, V., Sivry, Y., Gelabert, A., Riotte, J., & Subramanian, S. (2019). Mechanistic studies on the bioremediation of Cr(VI) using Sphingopyxis macrogoltabida SUK2c, a Cr(VI) tolerant bacterial isolate. Biochemical Engineering Journal, 150(February), 1–13. https://doi.org/10.1016/j.bej.2019.107292
  • Priyadarshanee, M., & Das, S. (2021). Bioremediation potential of biofilm forming multi-metal resistant marine bacterium Pseudomonas chengduensis PPSS-4 isolated from contaminated site of Paradip Port, Odisha. Journal of Earth System Science, 130(125), 1–17. https://doi.org/10.1007/s12040-021-01627-w
  • Rahman, Z., & Singh, V. P. (2019). The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environmental Monitoring and Assessment, 191(419), 1–21. https://doi.org/10.1007/s10661-019-7528-7
  • Renu, K., Chakraborty, R., Myakala, H., Koti, R., Famurewa, A. C., Madhyastha, H., Vellingiri, B., George, A., & Valsala Gopalakrishnan, A. (2021). Molecular mechanism of heavy metals (Lead, Chromium, Arsenic, Mercury, Nickel and Cadmium) - induced hepatotoxicity – A review. Chemosphere, 271, 1–23. https://doi.org/10.1016/j.chemosphere.2021.129735
  • Rizqiyah, E. L., Utami, S. N. H., & Purwanto, B. H. (2023). Retention And Availability of Andisol Soil Phosphorus in Monocultural and Policultural Crop Patterns in Ngablak and Getasan Subdistrict, Magelang and Semarang, Indonesia. BIO Web of Conferences, 80, 1–10. https://doi.org/10.1051/bioconf/20238003016
  • Robles-Morales, D. L., Reyes Cervantes, A., Díaz-Godínez, R., Tovar-Jiménez, X., Medina-Moreno, S. A., & Jiménez-González, A. (2021). Design and Performance Evaluation of a Fungi-Bacteria Consortium to Biodegrade Organic Matter at High Concentration on Synthetic Slaughterhouse Wastewater. Water, Air, and Soil Pollution, 232(6), 1–15. https://doi.org/10.1007/s11270-021-05177-1
  • Rosariastuti, R., Sutami, Nugraha, S., & Amanto, B. S. (2023). Bacterial diversity in the western slopes of Mount Lawu, Karanganyar, Indonesia. Biodiversitas, 24(4), 2125–2133. https://doi.org/10.13057/biodiv/d240423
  • Rosariastuti, R., Taruno, D., Hartati, S., & Atmojo, S. W. (2018). Effect of bioremediation in soil of paddyfield contaminated by chromium (Cr) on soil fertility and chromium uptake by plant in karanganyar, central java. Bulgarian Journal of Agricultural Science, 24(6), 1027–1033.
  • Ruiz, A., Herráez, M., Costa-Gutierrez, S. B., Molina-Henares, M. A., Martínez, M. J., Espinosa-Urgel, M., & Barriuso, J. (2021). The architecture of a mixed fungal–bacterial biofilm is modulated by quorum-sensing signals. Environmental Microbiology, 23(5), 2433–2447. https://doi.org/10.1111/1462-2920.15444
  • Seddiki, A., Atma, W., Bekhti, N., Mahmood, Q., Zeggai, F. Z., & Ghalem, B. R. (2023). Phytoremediation efficacy of Nerium oleander L. for removal of Cd, Ni, and Pb-contaminated soil. Soil and Environment, 42(2), 154–164. https://doi.org/10.25252/SE/2023/243191
  • Sharma, S., & Saraf, M. (2023). Biofilm-forming plant growth-promoting rhizobacterial consortia isolated from mines and dumpsites assist green remediation of toxic metal (Ni and Pb) using Brassica juncea. Biologia Futura, 74(3), 309–325. https://doi.org/10.1007/s42977-023-00179-y
  • Sigaye, M. H., Mekuria, R., Kebede, K., Nigussei, A., & Lulie, B. (2021). Integrated Use of Organic and Inorganic Fertilizers on Maize (Zea Mays L.) Yield and Soil Fertility in Andisols of Sidama, Ethiopia. Asian Journal of Plant Science and Research, 11(1), 10–18. https://doi.org/10.20944/preprints202011.0314.v1
  • Singh, S., Tripathi, A., Maji, D., Awasthi, A., Vajpayee, P., & Kalra, A. (2019). Evaluating the potential of combined inoculation of Trichoderma harzianum and Brevibacterium halotolerans for increased growth and oil yield in Mentha arvensis under greenhouse and field conditions. Industrial Crops and Products, 131(January), 173–181. https://doi.org/10.1016/j.indcrop.2019.01.039
  • Sofyan, E. T., Sara, D. S., & MacHfud, Y. (2019). The effect of organic and inorganic fertilizer applications on N, P-uptake, K-uptake and yield of sweet corn (Zea mays saccharata Sturt). IOP Conference Series: Earth and Environmental Science, 393(1), 1–6. https://doi.org/10.1088/1755-1315/393/1/012021
  • Srivastava, D., Tiwari, M., Dutta, P., Singh, P., Chawda, K., Kumari, M., & Chakrabarty, D. (2021). Chromium stress in plants: Toxicity, tolerance and phytoremediation. Sustainability (Switzerland), 13(9), 1–20. https://doi.org/10.3390/su13094629
  • Sutami, Purwanto, & Rosariastuti, R. (2021). The effectivity of Biduri combined with indigenous bacteria in mercury absorption. IOP Conference Series: Earth and Environmental Science, 905(1). https://doi.org/10.1088/1755-1315/905/1/012130
  • Tan, X., Nie, Y., Ma, X., Guo, Z., Liu, Y., Tian, H., Megharaj, M., Shen, W., & He, W. (2021). Soil chemical properties rather than the abundance of active and potentially active microorganisms control soil enzyme kinetics. Science of the Total Environment, 770(144500), 1–9. https://doi.org/10.1016/j.scitotenv.2020.144500
  • Vishnupradeep, R., Bruno, L. B., Taj, Z., Karthik, C., Challabathula, D., Tripti, Kumar, A., Freitas, H., & Rajkumar, M. (2022). Plant growth promoting bacteria improve growth and phytostabilization potential of Zea mays under chromium and drought stress by altering photosynthetic and antioxidant responses. Environmental Technology and Innovation, 25, 1–12. https://doi.org/10.1016/j.eti.2021.102154
  • Wadood, H. Z., Latif, A., Mukhtar, H., Javed, M., Mukhtar, H., & Rehman, Y. (2021). Planktonic cells of Staphylococcus and Bacillus species capable of faster chromium reduction in short incubation times as compared to their biofilms. Arabian Journal of Geosciences, 14(17). https://doi.org/10.1007/s12517-021-08226-5
  • Wakeel, A., & Xu, M. (2020). Chromium Morpho-Phytotoxicity. Plants, 9(564), 1–10.
  • Xia, S., Song, Z., Jeyakumar, P., Bolan, N., & Wang, H. (2020). Characteristics and applications of biochar for remediating Cr(VI)-contaminated soils and wastewater. Environmental Geochemistry and Health, 42(6), 1543–1567. https://doi.org/10.1007/s10653-019-00445-w
  • Yasinta, K. A., Budiastuti, S., & Rosariastuti, R. (2018). Application of Agrobacterium sp. I30 and vermicompost to suppress lead (Pb) uptake by rice in Pb polluted soil. J. Degrade. Min. Land Manage, 6(1), 1545–1552. https://doi.org/10.15243/jdmlm
  • Zeng, W., Wan, X., Lei, M., & Chen, T. (2024). Intercropping of Pteris vittata and maize on multimetal contaminated soil can achieve remediation and safe agricultural production. Science of the Total Environment, 915(January), 1–12. https://doi.org/10.1016/j.scitotenv.2024.170074
  • Zhao, Z., Sun, Y., Wang, H., & Yu, Q. (2023). Regulation of cadmium-induced biofilm formation by artificial polysaccharide-binding proteins for enhanced phytoremediation. Chemosphere, 342(September), 1–13. https://doi.org/10.1016/j.chemosphere.2023.140156
  • Zhou, Y., Meng, F., Ochieng, B., Xu, J., Zhang, L., Kimirei, I. A., Feng, M., Zhu, L., & Wang, J. (2024). Climate and Environmental Variables Drive Stream Biofilm Bacterial and Fungal Diversity on Tropical Mountainsides. Microbial Ecology, 87(28), 1–15. https://doi.org/10.1007/s00248-023-02335-2
  • Źróbek-Rozanska, A. (2016). Application of the Walkley-Black titration for organic carbon quantification in organic rich sedimentary rocks. Real Estate Management and Valuation, 24(4), 70–78. https://doi.org/10.1515/remav-2016-0031
Year 2025, Volume: 35 Issue: 1, 9 - 22

Abstract

References

  • Adiloğlu, S., & Göker, M. (2021). Phytoremediation: elimination of hexavalent chromium heavy metal using corn (Zea mays L.). Cereal Research Communications, 49(1), 65–72.
  • Arifin, M., Devnita, R., Anda, M., Goenadi, D. H., & Nugraha, A. (2022). Characteristics of Andisols Developed from Andesitic and Basaltic Volcanic Ash in Different Agro-Climatic Zones. Soil Systems, 6(4), 1–25. https://doi.org/10.3390/soilsystems6040078
  • Atbaş, Ş., & Taşkın, B. (2024). Effect of Different Metals on Synthesis of Siderophores by Endophyte Bacteria Isolated from Various Annual Plants. Yuzuncu Yil University Journal of Agricultural Sciences, 34(3), 406–416. https://doi.org/10.29133/yyutbd.1427459
  • Balai Pengujian Standar Instrumen Tanah dan pupuk. (2023). Analisis Kimia Tanah, Tanaman, Air, dan Pupuk. In Petunjuk Teknis Edisi 3 Analisis Kimia Tanah, Tanaman,Air,dan Pupuk.
  • Bashir, M. A., Naveed, M., Ahmad, Z., Gao, B., Mustafa, A., & Núñez-Delgado, A. (2020). Combined application of biochar and sulfur regulated growth, physiological, antioxidant responses and Cr removal capacity of maize (Zea mays L.) in tannery polluted soils. Journal of Environmental Management, 259(December 2019). https://doi.org/10.1016/j.jenvman.2019.110051
  • Bhunia, A., Lahiri, D., Nag, M., & Al., E. (2022). Bacterial biofilm mediated bioremediation of hexavalent chromium: A review. Biocatalysis and Agricultural Biotechnology, 43, 1–26.
  • Dong, Q., LeFevre, G. H., & Mattes, T. E. (2024). Black Carbon Impacts on Paraburkholderia xenovorans Strain LB400 Cell Enrichment and Activity: Implications toward Lower-Chlorinated Polychlorinated Biphenyls Biodegradation Potential. Environmental Science and Technology, 58, 3895–3907. https://doi.org/10.1021/acs.est.3c09183
  • Faria, M., Bertocco, T., Barroso, A., Carvalho, M., Fonseca, F., Delerue Matos, C., Figueiredo, T., Sequeira Braga, A., Valente, T., & Jiménez-Ballesta, R. (2023). A Comparison of Analytical Methods for the Determination of Soil pH: Case Study on Burned Soils in Northern Portugal. Fire, 6(227), 1–13. https://doi.org/10.3390/fire6060227
  • Ferina, P., Rosariastuti, R., & Supriyadi, S. (2017). The effectiveness of Mendong plant (Fimbrystilis globulosa) as a phytoremediator of soil contaminated with chromium of industrial waste. Journal of Degraded and Mining Lands Management, 04(04), 899–905. https://doi.org/10.15243/jdmlm.2017.044.899
  • Ghitti, E., Rolli, E., Vergani, L., & Borin, S. (2024). Flavonoids influence key rhizocompetence traits for early root colonization and PCB degradation potential of Paraburkholderia xenovorans LB400. Frontiers in Plant Science, 15(1325048), 1–18. https://doi.org/10.3389/fpls.2024.1325048
  • Henagamage, A. P. (2019). Bioremediation of Textile dyes by Fungal-Bacterial Biofilms. International Journal of Environment, Agriculture and Biotechnology, 4(3), 635–642. https://doi.org/10.22161/ijeab/4.3.7
  • Henagamage, A. P., Peries, C. M., & Seneviratne, G. (2022). Fungal-bacterial biofilm mediated heavy metal rhizo-remediation. World Journal of Microbiology and Biotechnology, 38(85), 1–13. https://doi.org/10.1007/s11274-022-03267-8
  • Igaz, D., Aydin, E., Šinkovičová, M., Šimanský, V., Tall, A., & Horák, J. (2020). Laser diffraction as an innovative alternative to standard pipette method for determination of soil texture classes in central Europe. Water (Switzerland), 12(5), 1–16. https://doi.org/10.3390/W12051232
  • İnci, H. Ş., Ahıskalı, M., Macit, M., & Çaçan, E. (2024). Investigation of Heavy Metal Concentrations and Accumulation Capacities of Naturally Growing Species in Old Garbage Area. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 34(1), 151–165. https://doi.org/10.29133/yyutbd.1399025
  • Irfan, M., Mudassir, M., Khan, M. J., Dawar, K. M., Muhammad, D., Mian, I. A., Ali, W., Fahad, S., Saud, S., Hayat, Z., Nawaz, T., Khan, S. A., Alam, S., Ali, B., Banout, J., Ahmed, S., Mubeen, S., Danish, S., Datta, R., … Dewil, R. (2021). Heavy metals immobilization and improvement in maize (Zea mays L.) growth amended with biochar and compost. Scientific Reports, 11(1), 1–9. https://doi.org/10.1038/s41598-021-97525-8
  • Jia, Y., Li, J., Niu, H., Ma, H., Han, Q., Wang, C., Li, B., & Qiu, Z. (2023). Synergistic antagonism mechanism of Bacillus-Pseudomonas consortium against Alternaria solani. European Journal of Plant Pathology, 0123456789. https://doi.org/10.1007/s10658-023-02747-3
  • Kapoor, R. T., Mfarrej, M. F. B., Alam, P., Rinklebe, J., & Ahmad, P. (2022). Accumulation of chromium in plants and its repercussion in animals and humans. Environtmental Pollution, 301(119044), 1–11. https://doi.org/10.3329/bioethics.v1i1.9525
  • Kumar, M., & Saini, H. S. (2016). Novel Approaches for Sustainable Management of Chromium Contaminated Wastewater. Intech, 11, 1–27. https://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics
  • Liu, Y., Zhang, B., Han, Y. H., Yao, Y., & Guo, P. (2023). Involvement of exogenous arsenic-reducing bacteria in root surface biofilm formation promoted phytoextraction of arsenic. Science of the Total Environment, 858(160158), 1–13. https://doi.org/10.1016/j.scitotenv.2022.160158
  • Maity, S., Sarkar, D., Poddar, K., Patil, P., & Sarkar, A. (2023). Biofilm-Mediated Heavy Metal Removal from Aqueous System by Multi-Metal-Resistant Bacterial Strain Bacillus sp. GH-s29. Applied Biochemistry and Biotechnology, 195(8), 4832–4850. https://doi.org/10.1007/s12010-022-04288-7
  • Mattila, T. J., & Rajala, J. (2022). Estimating cation exchange capacity from agronomic soil tests: Comparing Mehlich-3 and ammonium acetate sum of cations. Soil Science Society of America Journal, 86(1), 47–50. https://doi.org/10.1002/saj2.20340
  • Maurya, A., Kumar, P. S., & Raj, A. (2022). Characterization of biofilm formation and reduction of hexavalent chromium by bacteria isolated from tannery sludge. Chemosphere, 286, 1–13. https://doi.org/10.1016/j.chemosphere.2021.131795
  • Maurya, A., Kumar, R., Yadav, P., Singh, A., Yadav, A., Chowdhary, P., & Raj, A. (2022). Biofilm formation and extracellular polymeric substance (EPS) production by Bacillus haynesii and influence of hexavalent chromium. Bioresource Technology, 352(127109), 1–5. https://doi.org/10.1016/j.biortech.2022.127109
  • O’Toole, G. A. (2010). Microtiter dish Biofilm formation assay. Journal of Visualized Experiments, 47, 10–11. https://doi.org/10.3791/2437
  • Pandit, A., Adholeya, A., Cahill, D., Brau, L., & Kochar, M. (2020). Microbial biofilms in nature: unlocking their potential for agricultural applications. Journal of Applied Microbiology, 129(2), 199–211. https://doi.org/10.1111/jam.14609
  • Peraturan Pemerintah Republik Indonesia Nomor 22, (2021).
  • Peternella, W. sacchi, Silva, frederico fonseca da, & Saraiva, antonio carlos da costa. (2021). Evaluation of the Phytoavailability of Cu(II) and Cr(III) for the Growing of Corn (Zea mays L.), Cultivated in Four Soils of a Toposequence Derived from Basalt. Journal of Environmental Protention, 8. https://doi.org/http://dx.doi.org/10.4236/oalib.1107707
  • Prabhakaran, D. C., Bolaños-Benitez, V., Sivry, Y., Gelabert, A., Riotte, J., & Subramanian, S. (2019). Mechanistic studies on the bioremediation of Cr(VI) using Sphingopyxis macrogoltabida SUK2c, a Cr(VI) tolerant bacterial isolate. Biochemical Engineering Journal, 150(February), 1–13. https://doi.org/10.1016/j.bej.2019.107292
  • Priyadarshanee, M., & Das, S. (2021). Bioremediation potential of biofilm forming multi-metal resistant marine bacterium Pseudomonas chengduensis PPSS-4 isolated from contaminated site of Paradip Port, Odisha. Journal of Earth System Science, 130(125), 1–17. https://doi.org/10.1007/s12040-021-01627-w
  • Rahman, Z., & Singh, V. P. (2019). The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environmental Monitoring and Assessment, 191(419), 1–21. https://doi.org/10.1007/s10661-019-7528-7
  • Renu, K., Chakraborty, R., Myakala, H., Koti, R., Famurewa, A. C., Madhyastha, H., Vellingiri, B., George, A., & Valsala Gopalakrishnan, A. (2021). Molecular mechanism of heavy metals (Lead, Chromium, Arsenic, Mercury, Nickel and Cadmium) - induced hepatotoxicity – A review. Chemosphere, 271, 1–23. https://doi.org/10.1016/j.chemosphere.2021.129735
  • Rizqiyah, E. L., Utami, S. N. H., & Purwanto, B. H. (2023). Retention And Availability of Andisol Soil Phosphorus in Monocultural and Policultural Crop Patterns in Ngablak and Getasan Subdistrict, Magelang and Semarang, Indonesia. BIO Web of Conferences, 80, 1–10. https://doi.org/10.1051/bioconf/20238003016
  • Robles-Morales, D. L., Reyes Cervantes, A., Díaz-Godínez, R., Tovar-Jiménez, X., Medina-Moreno, S. A., & Jiménez-González, A. (2021). Design and Performance Evaluation of a Fungi-Bacteria Consortium to Biodegrade Organic Matter at High Concentration on Synthetic Slaughterhouse Wastewater. Water, Air, and Soil Pollution, 232(6), 1–15. https://doi.org/10.1007/s11270-021-05177-1
  • Rosariastuti, R., Sutami, Nugraha, S., & Amanto, B. S. (2023). Bacterial diversity in the western slopes of Mount Lawu, Karanganyar, Indonesia. Biodiversitas, 24(4), 2125–2133. https://doi.org/10.13057/biodiv/d240423
  • Rosariastuti, R., Taruno, D., Hartati, S., & Atmojo, S. W. (2018). Effect of bioremediation in soil of paddyfield contaminated by chromium (Cr) on soil fertility and chromium uptake by plant in karanganyar, central java. Bulgarian Journal of Agricultural Science, 24(6), 1027–1033.
  • Ruiz, A., Herráez, M., Costa-Gutierrez, S. B., Molina-Henares, M. A., Martínez, M. J., Espinosa-Urgel, M., & Barriuso, J. (2021). The architecture of a mixed fungal–bacterial biofilm is modulated by quorum-sensing signals. Environmental Microbiology, 23(5), 2433–2447. https://doi.org/10.1111/1462-2920.15444
  • Seddiki, A., Atma, W., Bekhti, N., Mahmood, Q., Zeggai, F. Z., & Ghalem, B. R. (2023). Phytoremediation efficacy of Nerium oleander L. for removal of Cd, Ni, and Pb-contaminated soil. Soil and Environment, 42(2), 154–164. https://doi.org/10.25252/SE/2023/243191
  • Sharma, S., & Saraf, M. (2023). Biofilm-forming plant growth-promoting rhizobacterial consortia isolated from mines and dumpsites assist green remediation of toxic metal (Ni and Pb) using Brassica juncea. Biologia Futura, 74(3), 309–325. https://doi.org/10.1007/s42977-023-00179-y
  • Sigaye, M. H., Mekuria, R., Kebede, K., Nigussei, A., & Lulie, B. (2021). Integrated Use of Organic and Inorganic Fertilizers on Maize (Zea Mays L.) Yield and Soil Fertility in Andisols of Sidama, Ethiopia. Asian Journal of Plant Science and Research, 11(1), 10–18. https://doi.org/10.20944/preprints202011.0314.v1
  • Singh, S., Tripathi, A., Maji, D., Awasthi, A., Vajpayee, P., & Kalra, A. (2019). Evaluating the potential of combined inoculation of Trichoderma harzianum and Brevibacterium halotolerans for increased growth and oil yield in Mentha arvensis under greenhouse and field conditions. Industrial Crops and Products, 131(January), 173–181. https://doi.org/10.1016/j.indcrop.2019.01.039
  • Sofyan, E. T., Sara, D. S., & MacHfud, Y. (2019). The effect of organic and inorganic fertilizer applications on N, P-uptake, K-uptake and yield of sweet corn (Zea mays saccharata Sturt). IOP Conference Series: Earth and Environmental Science, 393(1), 1–6. https://doi.org/10.1088/1755-1315/393/1/012021
  • Srivastava, D., Tiwari, M., Dutta, P., Singh, P., Chawda, K., Kumari, M., & Chakrabarty, D. (2021). Chromium stress in plants: Toxicity, tolerance and phytoremediation. Sustainability (Switzerland), 13(9), 1–20. https://doi.org/10.3390/su13094629
  • Sutami, Purwanto, & Rosariastuti, R. (2021). The effectivity of Biduri combined with indigenous bacteria in mercury absorption. IOP Conference Series: Earth and Environmental Science, 905(1). https://doi.org/10.1088/1755-1315/905/1/012130
  • Tan, X., Nie, Y., Ma, X., Guo, Z., Liu, Y., Tian, H., Megharaj, M., Shen, W., & He, W. (2021). Soil chemical properties rather than the abundance of active and potentially active microorganisms control soil enzyme kinetics. Science of the Total Environment, 770(144500), 1–9. https://doi.org/10.1016/j.scitotenv.2020.144500
  • Vishnupradeep, R., Bruno, L. B., Taj, Z., Karthik, C., Challabathula, D., Tripti, Kumar, A., Freitas, H., & Rajkumar, M. (2022). Plant growth promoting bacteria improve growth and phytostabilization potential of Zea mays under chromium and drought stress by altering photosynthetic and antioxidant responses. Environmental Technology and Innovation, 25, 1–12. https://doi.org/10.1016/j.eti.2021.102154
  • Wadood, H. Z., Latif, A., Mukhtar, H., Javed, M., Mukhtar, H., & Rehman, Y. (2021). Planktonic cells of Staphylococcus and Bacillus species capable of faster chromium reduction in short incubation times as compared to their biofilms. Arabian Journal of Geosciences, 14(17). https://doi.org/10.1007/s12517-021-08226-5
  • Wakeel, A., & Xu, M. (2020). Chromium Morpho-Phytotoxicity. Plants, 9(564), 1–10.
  • Xia, S., Song, Z., Jeyakumar, P., Bolan, N., & Wang, H. (2020). Characteristics and applications of biochar for remediating Cr(VI)-contaminated soils and wastewater. Environmental Geochemistry and Health, 42(6), 1543–1567. https://doi.org/10.1007/s10653-019-00445-w
  • Yasinta, K. A., Budiastuti, S., & Rosariastuti, R. (2018). Application of Agrobacterium sp. I30 and vermicompost to suppress lead (Pb) uptake by rice in Pb polluted soil. J. Degrade. Min. Land Manage, 6(1), 1545–1552. https://doi.org/10.15243/jdmlm
  • Zeng, W., Wan, X., Lei, M., & Chen, T. (2024). Intercropping of Pteris vittata and maize on multimetal contaminated soil can achieve remediation and safe agricultural production. Science of the Total Environment, 915(January), 1–12. https://doi.org/10.1016/j.scitotenv.2024.170074
  • Zhao, Z., Sun, Y., Wang, H., & Yu, Q. (2023). Regulation of cadmium-induced biofilm formation by artificial polysaccharide-binding proteins for enhanced phytoremediation. Chemosphere, 342(September), 1–13. https://doi.org/10.1016/j.chemosphere.2023.140156
  • Zhou, Y., Meng, F., Ochieng, B., Xu, J., Zhang, L., Kimirei, I. A., Feng, M., Zhu, L., & Wang, J. (2024). Climate and Environmental Variables Drive Stream Biofilm Bacterial and Fungal Diversity on Tropical Mountainsides. Microbial Ecology, 87(28), 1–15. https://doi.org/10.1007/s00248-023-02335-2
  • Źróbek-Rozanska, A. (2016). Application of the Walkley-Black titration for organic carbon quantification in organic rich sedimentary rocks. Real Estate Management and Valuation, 24(4), 70–78. https://doi.org/10.1515/remav-2016-0031
There are 53 citations in total.

Details

Primary Language English
Subjects Plant Biotechnology in Agriculture
Journal Section Articles
Authors

Harjayanti Auliyaa Salsabila 0000-0002-4052-0284

Retno Rosariastuti 0000-0001-8041-7444

Sudadi Sudadi 0000-0001-8580-5390

Early Pub Date March 16, 2025
Publication Date
Submission Date April 24, 2024
Acceptance Date November 11, 2024
Published in Issue Year 2025 Volume: 35 Issue: 1

Cite

APA Salsabila, H. A., Rosariastuti, R., & Sudadi, S. (2025). Potential Fungal-bacterial Biofilm for Bioremediation Polluted Soils of Chromium and Its Impact on Maize Growth. Yuzuncu Yıl University Journal of Agricultural Sciences, 35(1), 9-22. https://doi.org/10.29133/yyutbd.1472747
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.