Evaluation of Some Physiological and Molecular Mechanisms of Wheat Cultivars Under Salt Stress
Year 2025,
Volume: 35 Issue: 1, 91 - 106
Somayyeh Mohammadi
,
Soudabeh Jahanbakhsh
,
Khadijeh Razavi
,
Seyedeh Yalda Raeisi Sadati
,
Muhsin Ağamirzaoğlu
Abstract
Salt stress is an important problem in the cultivation of crops in dry and semi-arid environments, which restricts crop production. Considering that soil salinity in Iran and neighboring Turkey is increasing with decreasing celestial precipitation, it is important to select genotypes and tolerant wheat varieties for cultivated in saline soils by breeding for future generations. The present research was conducted to evaluate SOS2, SOS3, and SDH genes in wheat leaves using QRT-PCR. This experiment was done as a factorial in the form of a completely randomized design in each plot with three replications for four varieties. Bread wheat seedlings (Triticum aestivum L.) varieties including Kavir, Roshan, Bam, and a native landrace (3623) were screened by 200 mM NaCl for 10 days, and physiological and molecular parameters analysis of chlorophyll contents, fluorescence, cations, and proline contents for SOS2, SOS3, and SDH genes expression. Generally, salt stress significantly enhanced ions and organic compounds content (Calcium and sodium concentration), chlorophyll and carotenoid pigment, and the amino acid concentration of proline and chlorophyll fluorescence indices in varieties. Analyses revealed that 3623 can be regarded as a relatively "tolerant" genotype compared with the Kavir. After studying its agricultural indice, it will be considered for breeding programs. Overall, NaCl treated wheat, inducing salt-tolerance genes, effectively facilitates deficiency tolerance. Considering the expression of relatively higher TaSOS2 and TaSOS3 in the root of 3623 under stress conditions, perhaps most of the sodium absorbed by the root is returned to the environment.
Ethical Statement
Ethical approval is not required for this study because the researcher does not interfere with or manipulate the environment or the subjects' behaviors; they simply observe ongoing activities.
Supporting Institution
This project was supported by National Institute for Genetic engineering and Biotechnology, Tehran, Iran Grant No. 451M.
References
- Abdeshahian, M., Nabipour, M., & Meskarbashee, M. (2010). Chlorophyll fluorescence as criterion for the diagnosis salt stress in wheat (Triticum aestivum L.) plants. World Academy of Science, Engineering and Technology, 71, 569-571. doi: 10.5281/zenodo.1059343.
- Almeida, D. M., Oliverira, M. M., & Saibo, N. J. M. (2017). Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genetics and Molecular Biology, 40, 326-345. doi: 0.1590/1678-4685-GMB-2016-0106.
- Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64-77. doi: 10.1016/j.plaphy.2020.08.042.
- Asano, T, Hayashi, N., Kikuchi, S., & Ohsugi, R. (2012). CDPK-mediated abiotic stress signaling. Plant Signaling and Behavior, 7, 817-821. doi: 10.4161/psb.20351.
- Baker, N. R., & Rosenqvist, E. (2004). Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. Journal of Experimental Botany, 55, 1607-1621. doi: 10.1093/jxb/erh196.
- Barampuram, S., Allen, G., & Krasnyanski, S. (2014). Effect of various sterilization procedures on the in vitro germination of cotton seeds. Plant Cell, Tissue and Organ Culture, 118, 179-185. doi: 10.1007/s11240-014-0472-x.
- Bates, L. S., Waldren, R. P., & Teare, I. D. (1973) Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi: 10.1007/bf00018060.
- Borjigin, C., Schilling, R. K., Jewell, N., Brien, C., Sanchez-Ferrero, J. C., Eckermann, P. J., Watson-Haigh, N. S., Berger, B., Pearson, A. S., & Roy, S. J. (2021). Identifying the genetic control of salinity tolerance in the bread wheat landrace Mocho de Espiga Branca. Functional Plant Biology, 48, 1148-1160. doi; 10.1071/FP21140.
- Che Othman, M. H., Millar, A. H., & Taylor, N. L. (2017). Connecting salt stress signalling pathways with salinity‐induced changes in mitochondrial metabolic processes in C3 plants. Plant Cell and Environment, 40, 2875-2905. doi: 10.1111/pce.13034.
- Deinlein, U., Stephan, A. B., Horie, T., Luo, W., Xu, G., & Schroeder, J. I. (2014). Plant salt-tolerance mechanisms. Trends in Plant Science, 19, 371-379. doi: 10.1016/j.tplants.2014.02.001.
- Dissanyake, B. M. (2021). Influence of salinity exposure on wheat root metabolism and the concept of tissue tolerance and susceptibility. Thesis of the University of Western Australia.
- Faseela, P., Sinisha, A. K., Brestic, M., & Puthur, J. (2020). Chlorophyll a fluorescence parameter as indicators of a particular abiotic stress in rice. Photosynthetica, 58, 293-300. doi: 10.32615/ps.2019.147.
- Foroutan, L., Solouki, M., Abdossi, V., & Fakheri, B. A. (2018). The effects of zinc oxide nanoparticles on enzymatic and osmoprotectant alternations in different Moringa peregrina populations under drought stress. International Journal of Basic Science in Medicine, 3, 178-187. doi. 10.15171/ijbsm.2018.31.
- Guo, Y. Y., Yu, H. Y., Kong, D. S., Yan, F., & Zhang, Y. J. (2016). Effects of drought stress on growth and chlorophyll fluorescence of Lycium ruthenicum Murr. seedlings. Photosynthetica, 54, 524-531. doi: 10.1007/s11099-016-0206-x.
- Hamblin, J., Stefanova, K., & Angessa, T. T. (2014). Variation in chlorophyll content per unit leaf area in spring wheat and implications for selection in segregating material. PLoS One, 9(3), p.e92529. doi: 10.1371/journal.pone.0092529.
- Heydarzadeh, S., Arena, C., Vitale, E., Rahimi, A., Mirzapour, M., Nasar, J., Kisaka, O., Sow, S., Ranjan, S., & Gitari, H. (2023). impact of different fertilizer sources under supplemental irrigation and rainfed conditions on eco-physiological responses and yield characteristics of dragon’s head (Lallemantia iberica). Plants, 12(8), 1693. doi.org/10.3390/plants12081693.
- Heydarzadeh, S., Jalilian, J., Pirzad, A., Jamei, R., & Petrussa, E. (2022). Fodder value and physiological aspects of rainfed smooth vetch affected by biofertilizers and supplementary irrigation in an agri-silviculture system. Agroforestry Systems, 96, 221–232. doi.org/10.1007/s10457-021-00695-7.
- Janczak-Pieniazek, M., Migut, D., Piechowiak, T., & Balawejder, M. (2022). Assessment of the impact of the application of a quercetin-copper complex on the course of physiological and biochemical processes in wheat plants (Triticum aestivum L.) growing under saline conditions. Cells, 11(7), 1141. doi: 10.3390/cells11071141.
- Liu, X., Chen, D., Yang, T., Huang, F., Fu, S., & Li, L. (2020). Changes in soil labile and recalcitrant carbon pools after land-use change in a semi-arid agro-pastoral ecotone in Central Asia. Ecological Indicators, 110, 105925. doi: 10.1016/j.ecolind.2019.105925.
- Ma, N. L., Che Lah, W. A., Abd Kadir, N., Mustaqim, M., Rahmat, Z., Ahmad, A., Lam, S. D., & Ismail, M. R. (2018). Susceptibility and tolerance of rice crop to salt threat: Physiological and metabolic inspections. PLoS One, 13, e 0192732. doi: 10.1371/journal.pone.0192732.
- Mathur, S., Mehta, P., & Jajoo, A. (2013). Effects of dual stress (high salt and high temperature) on the photochemical efficiency of wheat leaves (Triticum aestivum L.). Physiology and Molecular Biology of Plants, 19, 179-188. doi: 10.1007/s12298-012-0151-5.
- Matkovi´c Stojšin, M., Petrovi´c, S., Banjac, B., Zeˇcevi´c, V., Roljevi´c Nikoli´c, S., Majstorovi´c, H., Ðordevic,´R., & Kneževic´, D. (2022). Assessment of genotypes stress tolerance as an effective way to sustain wheat production under salinity stress conditions. Sustainability, 14, 6973. doi:/10.3390/su14126973.
- Mehta, P., Jajoo, A., Mathur, S., & Bharti, S. (2010). Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves. Plant Physiology and Biochemistry, 48, 16-20. doi: 10.1016/j.plaphy.2009.10.006.
- Mehta, P., Kraslavsky, V., Bharti, S., Allakhverdiev, S. I., & Jajoo, A. (2011). Analysis of salt stress induced changes in Photosystem II heterogeneity by prompt fluorescence and delayed fluorescence in wheat (Triticum aestivum L.) leaves. Journal of Photochemistry and Photobiology Biology, 104, 308-313. doi: 10.1016/j.jphotobiol.2011.02.016.
- Mohammadi, R., Maali-Amiri, R., & Abbasi, A. (2013). Effect of TiO2 nanoparticles on chickpea response to cold stress. Biological Trace Element Research, 152, 403-410. doi: 10.1007/s12011-013-9631-x.
- Munns, R., James, R. A., & Läuchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57, 1025-1043. doi; 10.1093/jxb/erj100.
- Negrão, S., Schmöckel, S. M., & Tester, M. (2017). Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119, 1-11. doi: 10.1093/aob/mcw191.
- Pan, T., Liu, M., Kreslavski, V. D., Zharmukhamedov, S. K., Nie, C., Yu, M., Kuznetsov, V. V., Allakhverdiev, S. I., & Shabala, S. (2021). Non-stomatal limitation of photosynthesis by soil salinity. Critical Reviews in Environmental Science and Technology, 51, 791-825. doi: 10.1080/10643389.2020.1735231.
- Raeisi Sadati, S. Y., Jahanbakhsh Godehkahriz, S., Ebadi, A., & Sedghi, M. (2022). Zinc oxide nanoparticles enhance drought tolerance in wheat via physio-biochemical changes and stress genes expression Iran. Journal of Biotechnology, 20, e3027. doi; 10.30498/ijb.2021.280711.3027.
- Ramel, F., Birtic, S., Cuiné, S., Triantaphylidès, C., Ravanat, J. L., & Havaux, M. (2012). Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiology, 158, 1267-1278. doi: 10.1104/pp.111.182394.
- Saddiq, M., Iqbal, S., Hafeez, M., Ibrahim, A., Raza, A., Fatima, E., Baloch, H., Jahanzaib, W., & Ciarmiello, L. (2021). Effect of salinity stress on physiological changes in winter and spring wheat. Agronomy, 11, 1193. doi: 10.3390/agronomy11061193.
- Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3, 1101-1108. doi: 10.1038/nprot.2008.73.
- Shu, S., Yuan, L. Y., Guo, S. R., Sun, J., & Liu, C. J. (2012). Effects of exogenous spermidine on photosynthesis, xanthophyll cycle and endogenous polyamines in cucumber seedlings exposed to salinity. African Journal of Biotechnology, 11, 6064-6074. doi: 10.5897/AJB11.1354.
- Singh Yadav, N., Shukla, P. S., Jha, A., Agarwal, P. K., & Jha, B. (2012). The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading inxylem and confers salt tolerance in transgenic tobacco. Plant Biology, 12, 188. doi: 10.1186/1471-2229-12-188.
- Taïbi, K., Taïbi, F., Abderrahim, L. A., Ennajah, A., Belkhodja, M., & Mulet, J. M. (2016). Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African Journal of Botany, 105, 306-312. doi: 10.1016/j.sajb.2016.03.011.
- Wani, A. S., Ahmad, A., Hayat, S., & Tahir, I. (2019). Epibrassinolide and proline alleviate the photosynthetic and yield inhibition under salt stress by acting on antioxidant system in mustard. Plant Physiology and Biochemistry, 135, 385-394. doi. 10.1016/j.plaphy.2019.01.002.
- Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144, 307-313. doi: 10.1016/S0176-1617(11)81192-2.
- Xie, Z., Wang, C., Zhu, S., Wang, W., Xu, J., & Zhao, X. (2020). characterizing the metabolites related to rice salt tolerance with introgression lines exhibiting contrasting performances in response to saline conditions. Plant Growth Regulation, 92, 157-167. doi. 10.1007/s10725-020-00627-y.
- Xu, Z., Jiang, Y., & Zhou, G. (2015). Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants. Frontiers in Plant Science, 6, 701. doi: 10.3389/fpls.2015.00701.
- Zhang, S., Gan, Y., & Xu, B. (2016). Application of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. Frontiers in Plant Science, 7, 1405. doi: 10.3389/fpls.2016.01405.
Year 2025,
Volume: 35 Issue: 1, 91 - 106
Somayyeh Mohammadi
,
Soudabeh Jahanbakhsh
,
Khadijeh Razavi
,
Seyedeh Yalda Raeisi Sadati
,
Muhsin Ağamirzaoğlu
References
- Abdeshahian, M., Nabipour, M., & Meskarbashee, M. (2010). Chlorophyll fluorescence as criterion for the diagnosis salt stress in wheat (Triticum aestivum L.) plants. World Academy of Science, Engineering and Technology, 71, 569-571. doi: 10.5281/zenodo.1059343.
- Almeida, D. M., Oliverira, M. M., & Saibo, N. J. M. (2017). Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genetics and Molecular Biology, 40, 326-345. doi: 0.1590/1678-4685-GMB-2016-0106.
- Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64-77. doi: 10.1016/j.plaphy.2020.08.042.
- Asano, T, Hayashi, N., Kikuchi, S., & Ohsugi, R. (2012). CDPK-mediated abiotic stress signaling. Plant Signaling and Behavior, 7, 817-821. doi: 10.4161/psb.20351.
- Baker, N. R., & Rosenqvist, E. (2004). Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. Journal of Experimental Botany, 55, 1607-1621. doi: 10.1093/jxb/erh196.
- Barampuram, S., Allen, G., & Krasnyanski, S. (2014). Effect of various sterilization procedures on the in vitro germination of cotton seeds. Plant Cell, Tissue and Organ Culture, 118, 179-185. doi: 10.1007/s11240-014-0472-x.
- Bates, L. S., Waldren, R. P., & Teare, I. D. (1973) Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi: 10.1007/bf00018060.
- Borjigin, C., Schilling, R. K., Jewell, N., Brien, C., Sanchez-Ferrero, J. C., Eckermann, P. J., Watson-Haigh, N. S., Berger, B., Pearson, A. S., & Roy, S. J. (2021). Identifying the genetic control of salinity tolerance in the bread wheat landrace Mocho de Espiga Branca. Functional Plant Biology, 48, 1148-1160. doi; 10.1071/FP21140.
- Che Othman, M. H., Millar, A. H., & Taylor, N. L. (2017). Connecting salt stress signalling pathways with salinity‐induced changes in mitochondrial metabolic processes in C3 plants. Plant Cell and Environment, 40, 2875-2905. doi: 10.1111/pce.13034.
- Deinlein, U., Stephan, A. B., Horie, T., Luo, W., Xu, G., & Schroeder, J. I. (2014). Plant salt-tolerance mechanisms. Trends in Plant Science, 19, 371-379. doi: 10.1016/j.tplants.2014.02.001.
- Dissanyake, B. M. (2021). Influence of salinity exposure on wheat root metabolism and the concept of tissue tolerance and susceptibility. Thesis of the University of Western Australia.
- Faseela, P., Sinisha, A. K., Brestic, M., & Puthur, J. (2020). Chlorophyll a fluorescence parameter as indicators of a particular abiotic stress in rice. Photosynthetica, 58, 293-300. doi: 10.32615/ps.2019.147.
- Foroutan, L., Solouki, M., Abdossi, V., & Fakheri, B. A. (2018). The effects of zinc oxide nanoparticles on enzymatic and osmoprotectant alternations in different Moringa peregrina populations under drought stress. International Journal of Basic Science in Medicine, 3, 178-187. doi. 10.15171/ijbsm.2018.31.
- Guo, Y. Y., Yu, H. Y., Kong, D. S., Yan, F., & Zhang, Y. J. (2016). Effects of drought stress on growth and chlorophyll fluorescence of Lycium ruthenicum Murr. seedlings. Photosynthetica, 54, 524-531. doi: 10.1007/s11099-016-0206-x.
- Hamblin, J., Stefanova, K., & Angessa, T. T. (2014). Variation in chlorophyll content per unit leaf area in spring wheat and implications for selection in segregating material. PLoS One, 9(3), p.e92529. doi: 10.1371/journal.pone.0092529.
- Heydarzadeh, S., Arena, C., Vitale, E., Rahimi, A., Mirzapour, M., Nasar, J., Kisaka, O., Sow, S., Ranjan, S., & Gitari, H. (2023). impact of different fertilizer sources under supplemental irrigation and rainfed conditions on eco-physiological responses and yield characteristics of dragon’s head (Lallemantia iberica). Plants, 12(8), 1693. doi.org/10.3390/plants12081693.
- Heydarzadeh, S., Jalilian, J., Pirzad, A., Jamei, R., & Petrussa, E. (2022). Fodder value and physiological aspects of rainfed smooth vetch affected by biofertilizers and supplementary irrigation in an agri-silviculture system. Agroforestry Systems, 96, 221–232. doi.org/10.1007/s10457-021-00695-7.
- Janczak-Pieniazek, M., Migut, D., Piechowiak, T., & Balawejder, M. (2022). Assessment of the impact of the application of a quercetin-copper complex on the course of physiological and biochemical processes in wheat plants (Triticum aestivum L.) growing under saline conditions. Cells, 11(7), 1141. doi: 10.3390/cells11071141.
- Liu, X., Chen, D., Yang, T., Huang, F., Fu, S., & Li, L. (2020). Changes in soil labile and recalcitrant carbon pools after land-use change in a semi-arid agro-pastoral ecotone in Central Asia. Ecological Indicators, 110, 105925. doi: 10.1016/j.ecolind.2019.105925.
- Ma, N. L., Che Lah, W. A., Abd Kadir, N., Mustaqim, M., Rahmat, Z., Ahmad, A., Lam, S. D., & Ismail, M. R. (2018). Susceptibility and tolerance of rice crop to salt threat: Physiological and metabolic inspections. PLoS One, 13, e 0192732. doi: 10.1371/journal.pone.0192732.
- Mathur, S., Mehta, P., & Jajoo, A. (2013). Effects of dual stress (high salt and high temperature) on the photochemical efficiency of wheat leaves (Triticum aestivum L.). Physiology and Molecular Biology of Plants, 19, 179-188. doi: 10.1007/s12298-012-0151-5.
- Matkovi´c Stojšin, M., Petrovi´c, S., Banjac, B., Zeˇcevi´c, V., Roljevi´c Nikoli´c, S., Majstorovi´c, H., Ðordevic,´R., & Kneževic´, D. (2022). Assessment of genotypes stress tolerance as an effective way to sustain wheat production under salinity stress conditions. Sustainability, 14, 6973. doi:/10.3390/su14126973.
- Mehta, P., Jajoo, A., Mathur, S., & Bharti, S. (2010). Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves. Plant Physiology and Biochemistry, 48, 16-20. doi: 10.1016/j.plaphy.2009.10.006.
- Mehta, P., Kraslavsky, V., Bharti, S., Allakhverdiev, S. I., & Jajoo, A. (2011). Analysis of salt stress induced changes in Photosystem II heterogeneity by prompt fluorescence and delayed fluorescence in wheat (Triticum aestivum L.) leaves. Journal of Photochemistry and Photobiology Biology, 104, 308-313. doi: 10.1016/j.jphotobiol.2011.02.016.
- Mohammadi, R., Maali-Amiri, R., & Abbasi, A. (2013). Effect of TiO2 nanoparticles on chickpea response to cold stress. Biological Trace Element Research, 152, 403-410. doi: 10.1007/s12011-013-9631-x.
- Munns, R., James, R. A., & Läuchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57, 1025-1043. doi; 10.1093/jxb/erj100.
- Negrão, S., Schmöckel, S. M., & Tester, M. (2017). Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119, 1-11. doi: 10.1093/aob/mcw191.
- Pan, T., Liu, M., Kreslavski, V. D., Zharmukhamedov, S. K., Nie, C., Yu, M., Kuznetsov, V. V., Allakhverdiev, S. I., & Shabala, S. (2021). Non-stomatal limitation of photosynthesis by soil salinity. Critical Reviews in Environmental Science and Technology, 51, 791-825. doi: 10.1080/10643389.2020.1735231.
- Raeisi Sadati, S. Y., Jahanbakhsh Godehkahriz, S., Ebadi, A., & Sedghi, M. (2022). Zinc oxide nanoparticles enhance drought tolerance in wheat via physio-biochemical changes and stress genes expression Iran. Journal of Biotechnology, 20, e3027. doi; 10.30498/ijb.2021.280711.3027.
- Ramel, F., Birtic, S., Cuiné, S., Triantaphylidès, C., Ravanat, J. L., & Havaux, M. (2012). Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiology, 158, 1267-1278. doi: 10.1104/pp.111.182394.
- Saddiq, M., Iqbal, S., Hafeez, M., Ibrahim, A., Raza, A., Fatima, E., Baloch, H., Jahanzaib, W., & Ciarmiello, L. (2021). Effect of salinity stress on physiological changes in winter and spring wheat. Agronomy, 11, 1193. doi: 10.3390/agronomy11061193.
- Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3, 1101-1108. doi: 10.1038/nprot.2008.73.
- Shu, S., Yuan, L. Y., Guo, S. R., Sun, J., & Liu, C. J. (2012). Effects of exogenous spermidine on photosynthesis, xanthophyll cycle and endogenous polyamines in cucumber seedlings exposed to salinity. African Journal of Biotechnology, 11, 6064-6074. doi: 10.5897/AJB11.1354.
- Singh Yadav, N., Shukla, P. S., Jha, A., Agarwal, P. K., & Jha, B. (2012). The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading inxylem and confers salt tolerance in transgenic tobacco. Plant Biology, 12, 188. doi: 10.1186/1471-2229-12-188.
- Taïbi, K., Taïbi, F., Abderrahim, L. A., Ennajah, A., Belkhodja, M., & Mulet, J. M. (2016). Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African Journal of Botany, 105, 306-312. doi: 10.1016/j.sajb.2016.03.011.
- Wani, A. S., Ahmad, A., Hayat, S., & Tahir, I. (2019). Epibrassinolide and proline alleviate the photosynthetic and yield inhibition under salt stress by acting on antioxidant system in mustard. Plant Physiology and Biochemistry, 135, 385-394. doi. 10.1016/j.plaphy.2019.01.002.
- Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144, 307-313. doi: 10.1016/S0176-1617(11)81192-2.
- Xie, Z., Wang, C., Zhu, S., Wang, W., Xu, J., & Zhao, X. (2020). characterizing the metabolites related to rice salt tolerance with introgression lines exhibiting contrasting performances in response to saline conditions. Plant Growth Regulation, 92, 157-167. doi. 10.1007/s10725-020-00627-y.
- Xu, Z., Jiang, Y., & Zhou, G. (2015). Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants. Frontiers in Plant Science, 6, 701. doi: 10.3389/fpls.2015.00701.
- Zhang, S., Gan, Y., & Xu, B. (2016). Application of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. Frontiers in Plant Science, 7, 1405. doi: 10.3389/fpls.2016.01405.