Research Article
BibTex RIS Cite

Effect of Mycorrhiza Applications on Some Physiological and Macro-Micro Element Contents in Soybean (Glycine max L.) Grown under Salt Stress Condition

Year 2025, Volume: 35 Issue: 1, 135 - 148

Abstract

This study was carried out to determine the effects of mycorrhizal applications on some biochemical and macro/micro nutrient characteristics of soybean (Glycine max L.) under salt stress (0, 50, 100, 150, 200 mM NaCl). In the research investigated chlorophyll a (17.30-22.61 µg g-1 TA), chlorophyll b (3.05-5.78 µg g-1 TA), total chlorophyll (20.46-27.72 µg g-1 TA), carotenoids (3.57-4.72 µg g-1 TA), proline (0.43-1.81 µg g-1 TA), malondialdehyde (MDA) (13.1-18.3 nmol g-1), and several macro- and micro-elements, including Ca (9.43-12.8 g kg-1), K (9.97-11.8 g kg-1), Na (0.94-3.52 g kg-1), P (1.49-2.44 g kg-1), Mg (3.03-3.46 g kg-1), Zn (3.71-7.63 g kg-1), K/Na ratio (3.32-7.17%), Mn (23.6-56.5 g kg-1), Mo (0.81-1.26 g kg-1), Cu (0.76-1.78 g kg-1), As (2.17-5.26 g kg-1), Ni (0.99-1.97 g kg-1), Pb (0.07-0.12 g kg-1), Cd (0.06-0.13 g kg-1), Co (0.06-0.08 g kg-1) and Cr (0.78-1.48 g kg-1). As a result of the study; a decrease or an initialincrease followed bya decrease was observed inin chlorophyll a and b, total chlorophyll, carotenoids, P, Zn, K/Na, Ca/Na, Mn, Mo, Cu, As, Ni, Pb, Cd, Co and Cr contents in mycorrhiza -treated plants under salt stress. The levels of Ca, K and Na increased, while Mg levels remained statistically insignificant, following a fluctuating pattern.. Additionally, boron applications were found to increase the nitrogen balance index, MDA, flavonol, anthocyanin, antioxidant and phenolic contents. Overall, the study demonstrated that mycorrhiza applications have a beneficialand regulatory effect on the biochemical composition and macro/micro- element levels in soybean under salt stress.

Project Number

FBA-2023-10654

References

  • Akat, H., Altunlu, H., Akat Sarçoğlu, Ö., & Yağmur, B. (2020). Effect of Mycorrhiza Applications on Plant Development and Some Stresses in Glauca Variety (Cupressus arizonica L.) in Saline Conditions. Journal of Ege University Faculty of Agriculture, 57(4), 511-517. DOI: 10.20289/zfdergi.655145.
  • Aktaş, Ö. Ü. İ. (2021). Omega Yağ Asitlerinin İnsan Sağlığı Açısından Önemi. Iksad Publications, Ankara.
  • Al-Karaki, G. N. (2000). Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza, 10, 51- 54.
  • Altunlu, H. (2019). The Effects of mycorrhiza application on growth and antioxidative enzymes of capia type pepper (Capsicum annuum l.) seedling under salty conditions. Journal of Agriculture Faculty of Ege University, 56(2), 139-146.
  • Arıoğlu, H., & Güllüoğlu, L., (2008). Türkiye’de Yağlı Tohum Üretim Potansiyelinin Belirlenmesi ve Üretimi Artırabilmek İçin Alınması Gerekli Önlemler. Bitkisel Yemeklik Yağlar Sempozyumu ve Sergisi Bildiriler Kitabı, Adana.
  • Arnon, D. I. (1950). Dennis Robert Hoagland: 1884-1949. Science, 112(2921), 739-742.
  • Bahjat, N. M., Tunçtürk, M., & Tunçtürk, R. (2023). Effect of humic acid applications on physiological and biochemical properties of soybean (glycine max l.) grown under salt stress conditions. Yuzuncu Yil University Journal of Agricultural Sciences, 33(1), 1-9.
  • Balliu, A., Sallaku G., & Rewald, B. (2015). AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability, 7(12), 15967-15981.
  • Bates, L., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant Soil, 39, 205-207.
  • Büyük, İ., Soydam-Aydın, S., & Aras, S. (2012). Molecular responses of plants to stress conditions. Turkish Bulletin of Hygiene and Experimental Biology, 69, (2).
  • Carvalho, L. M., Correia, P. M., & Martins-Louçao, A. M. (2004). Arbuscular mycorrhizal fungal propogules in a salt marsh. Mycorrhiza, 14, 165-170.
  • Çekiç, F. Ö., Ünyayar, S., & Ortaş, İ. (2012). Effects of arbuscular mycorrhizal inoculation on biochemical parameters in Capsicum annuum grown under long term salt stress. Turkish Journal of Botany, 36(1), 63-72.
  • Çelebi, Ş. Z., & Şahar, A. K. (2023). Effects of different harvest stages on forage yield and quality of soybean cultivars grown as second crops. Yuzuncu Yil University Journal of Agricultural Sciences, 33(4), 571-580.
  • Çulha, Ş., & Çakırlar, H. (2011). Effects of salinity on plants and salt tolerance mechanisms. Afyon Kocatepe University Journal of Science, 11, 11-34.
  • Dasgan, H. Y., Aktas, H., Abak, K., & Cakmak, I. (2002). Determination of screening techniques to salinity tolerance in tomatoes ve investigation of genotype responses. Plant Science, 163, 695-703.
  • Düzgüneş 0., Kesici, T., Koyuncu, O. & Gurbuz, F. (1987). Araştırma ve deneme metotları. Ankara Universitesi Ziraat Fakultesi Yayınları, No:1021.295-381.
  • FAOSTAT, (2024). Food and Agriculture Organization Statistics. https://www.fao.org/faostat/: (Access date: 01.12.2024).
  • Geren, H., Okkaoğlu, H., & Avcıoğlu, R. (2011). Effect of mycorrhiza on yield and some physiological properties of Cyprus damson (Lathyrus ochrus L.) at different salt (NaCl) concentrations. Journal of Ege University Faculty of Agriculture, 48(1), 31 - 37.
  • Göktaş, Ö., & Gıdık, B. (2019). Usage areas of medicinal and aromatic plants. Bayburt University Journal of Science, 2(1), 145-151.
  • Hadi, M. R., & Karimi, N. (2012). The role of Ca in plants' salt tolerance. Journal of Plant Nutrition, 35(13), 2037-2054.
  • Hasanuzzaman, M., Nahar, K., & Fujita, M. (2013). Plant response to salt stress and role of exogenous protectants to mitigate saltinduced damages, In: Ecophysiology and Responses of Plants under Salt Stress (Eds: Ahmad P, Prasad MNV, Azooz MM), Springer-Verlag, New York. pp 25-87.
  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives in Biochemistry and Biophysics, 125, 189-198. doi:10.1016/0003-9861(68)90654-1.
  • Kacar, B., & İnal, A. (2008). Plant analysis. Nobel Publication,Ankara, Türkiye, 1271, 63.
  • Kaya, C., Asraf, M., Sönmez, O., Aydemir, S., Tuna A. L., & Cullu, M. A. (2009). The influence of arbuscular mycorrhizal colonization on key growth parameters and fruit yield of pepper plants grown at high salinity. Scientia Horticulturae, 121, 1-6.
  • Kereçin, G., & Öztürk, F. (2024). The Effect of Salicylic Acid and Salt Stress on Seeder Development of Some Soya (Glycine max. L.) Cultivars. ISPEC Journal of Agricultural Sciences, 8(1), 25-35.
  • Kurt, C. H., Tunçtürk, M., & Tunçtürk, R. (2023). Effects of salicylic acid applications on some physiological and biochemical changes in soybean (Glycine max L.) plants grown under salinity stress conditions. Ege University Journal of Agriculture, 60(1), 91-101.
  • Kuşvuran, Ş., Yaşar, F., Abak, K., & Ellialtıoğlu, Ş. (2008). Changes in lipid peroxidation, chlorophyll and ion amounts in some genotypes of salt tolerant and sensitive Cucumis sp. grown under salt stress. Journal of Agricultural Sciences of Yüzüncü Yıl University Faculty of Agriculture, 18(1), 13-20.
  • Lichtenthaler, H. K., & Wellburn, A. R. (1985). Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochemical Society Transactions, 11, 591-592.
  • López-Aguilar, R., Medina-Hernández, D., Ascencio-Valle, F., Troyo-Dieguez, E., Nieto- Garibay, A., ArceMontoya, M., Larrinaga-Mayoral, J.A., & Gómez-Veuro, G.A. (2012). Differential responses of Chiltepin (Capsicum annuum var. glabriusculum) ve Poblano (Capsicum annuum var. annuum) hot peppers to salinity at the plantlet stage. African Journal of Biotechnology, 11(11), 2642-2653.
  • Manaf, H. H., & Zayed, M. S. (2015). Productivity of cowpea as affected by salt stress in presence of endomycorrhizae and Pseudomonas fluorescens. Annals of Agricultural Sciences, 60(2), 219–226.
  • Nas, F., & Günal, V. (2024). Effect of The Customs Union on Oilseeds Foreign Trade Between Turkey and The EU. Social Sciences Studies Journal, 10(4), 553-575.
  • Nazlıcan, A. N. (2017). Soybean cultivation. (Webpage: https://arastirma.tarimorman.gov.tr/cukurovataem/Belgeler/Yeti%C5%9Ftiricilik/soya-yetistiriciligi_1.pdf) (Access Date: 20.12.2019).
  • Oral, E., Tunçtürk, R., & Tunçtürk, M. (2021). The effect of rhizobacteria in the reducing drought stress in soybean (Glycine max L.). Legume Research, 44, 1172-1178.
  • Öğütcü, H., Algur, Ö. F., Güllüce, M., & Adıgüzel, A. (2010). Investigation of nitrogen fixation potentials of Rhizobium strains isolated from wild plants and used as microbial fertilizers under different temperature conditions. Journal of Biological Sciences Research, 3(1), 47-52.
  • Özcan, T., Delikanlı, B., & Akın, Z. (2015). Soya biyoaktif bileşenleri ve sağlık üzerine etkisi. Turkish Journal of Agriculture-Food Science and Technology, 3(6), 350-355.
  • Özçınar, A.B., Arslan, H., & Arslan, D., (2022). Soya (Glycine max. L. Merill)‘da tuz uygulamasının fizyolojik ve biyokimyasal özellikler üzerine etkisinin incelenmesi. ISPEC Tarım Bilimleri Dergisi, 6(4), 762-776.
  • Qin, P., Wang, T., & Luo, Y. (2022). A review on plant-based proteins from soybean: Health benefits and soy product development. Journal of Agriculture and Food Research, 7, 100265.
  • Patel, P. R., Kajal, S. S., Patel, V. R., Patel, V. J., & Khristi, S. M. (2010). Impact of salt stress on nutrient uptake and growth of cowpea. Brazilian Journal of Plant Physiology, 22(1), 43-48.
  • Ruiz-Lozano, J. M., Azcón R., & Gòmez M. (1996). Alleviation of salt stress by arbuscular- mycorrhizal Glomus species in Lactuca sativa plants. Physiologia Plantarum, 98, 767– 772.
  • Ruiz-Lozano, J. M. (2003). Antioxidant activities in mycorrhizal soybean plants under drought stress. New Phytologist, 157(1), 135-143.
  • Sairam, R. K., & Saxena, D. C. (2000). Oxidative stres and antioksidants in wheat genotypes: possible mechanism of water stres tolerance. Journal Agronomy and Crop Sciences, 184, 55-61.
  • Singhal, R. K., Fahad, S., Kumar, P., Choyal, P., Javed, T., Jinger, D., ... & Nawaz, T. (2023). Beneficial elements: New Players in improving nutrient use efficiency and abiotic stress tolerance. Plant Growth Regulation, 100(2), 237-265.
  • Smith, S., & Read, D. J. (1997) Mycorrhizal Symbiosis. Second Edition. Academic Press, London, UK. pp 605.
  • Taïbi, K., Taïbi, F., Abderrahim, L. A., Ennajah, A., Belkhodja, M., & Mulet, J. M. (2016). Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African Journal of Botany, 105, 306- 312.
  • Taiz, L., & Zeiger, E. (2002). Plant Physiology ( 3 rd ed.) Sinauer Associates, ISBN: 0878938230, Massachusetts, USA.
  • Trouvelot, A., Kough, J., & Gianinazzi-Pearson, V. (1986). Evaluation of VA infection levels in root systems. Research for estimation methods having a functional significance. In: Gianinazzi-Pearson, V., Gianinazzi, S. (eds.), Physiological and Genetical Aspects of Mycorrhizae. INRA Press, Paris, France, 217–221 pp.
  • TUIK, 2024. Tarım istatistikleri özeti. Türkiye İstatistik Kurumu. http://www.tuik.gov.tr (Access date: 02.12.2024).
  • Tuna, A. L., & Eroğlu, B. (2017). Effects of some organic and inorganic compounds on antioxidative system in pepper (Capsicum annuum L.) plant under salt stress. Anatolian Journal of Agricultural Sciences, 32(1), 121-131.
  • Turan, M. A., Elkarim, A. H. A., Taban, N., & Taban, S. (2010). Effect of salt stress on growth and ion distribution and accumulation in shoot and root of maize plant. African journal of Agricultural Research, 5(7), 584-588.
  • USDA, 2024. World Agricultural Production, United States Department of Agriculture (USDA), Foreign Agricultural Service, September 2024-42s. (Access date: 01.12.2024).
  • Zamani, M., Hakimi, M. H., Mosley Arany, A., Kiani B., & Rashtian, A. (2014). Studying the salinity stress on physical and growth charactristics of Cupressus sempervirens. Journal of Biodeversity and Enviromental Sciences, 5(1), 30-36.

Tuz Stresi Koşullarında Yetiştirilen Soya Fasulyesi (Glycine max L.)’ nde Mikoriza Uygulamalarinin Bazı Fizyolojik ve Makro-Mikro Element İçerikleri Üzerine Etkisi

Year 2025, Volume: 35 Issue: 1, 135 - 148

Abstract

Bu çalışma, soya fasulyesinde (Glycine max L.) tuz stresi (0, 50, 100, 150, 200 mM NaCl) altında mikoriza uygulamalarının bitkide bazı biyokimyasal ve makro-mikro özellikler üzerine olan etkilerini belirlemek amacıyla yürütülmüştür. Araştırmada uygulamalar sonrasında soya fasulyesinde klorofil a (17.30-22.61 µg/g TA), klorofil b (3.05-5.78 µg/g TA), toplam klorofil (20.46-27.72 µg/g TA), karetonoid (3.57-4.72 µg/g TA), prolin (0.43-1.81 µg/g TA), MDA (13.1- 18.3 nmol/g), Ca (9.43-12.8 g/kg), K (9.97-11.8 g/kg), Na (0.94-3.52 g/kg), P (1.49-2.44 g/kg), Mg (3.03-3.46 g/kg), Zn (3.71-7.63 g/kg), K/Na (% 3.32-7.17), Mn (23.6-56.5 mg/kg), Mo (0.81-1.26 mg/kg), Cu (0.76-1.78 mg/kg), As (2.17-5.26 mg/kg), Ni (0.99-1.97 mg/kg), Pb (0.07-0.12 mg/kg), Cd (0.06-0.13 mg/kg), Co (0.06-0.08 mg/kg) ve Cr (0.78-1.48 mg/kg) incelenmiştir. Çalışma sonucunda; tuz stresi altındaki bitkilerde mikoriza uygulamalarının klorofil a ve b, toplam klorofil, karotenoid, P, Zn, K/Na, Ca/Na, Mn, Mo, Cu, As, Ni, Pb, Cd, Co ve Cr içeriklerinde azalma yada önce artış sonra azalma meydana gelmiştir. Araştırmada prolin, MDA, Ca, K ve Na değerlerinde artış, Mg değerinde ise istatistiksel olarak önemsiz bulunmuştur. ise dalgalı bir seyir izlemiştir. Bor uygulamalarının azot balans indeksi, MDA, flavonol, antosiyanin, antioksidant ve fenolik içeriklerini artırdığı tespit edilmiştir. Bu çalışmada mikoriza uygulamalarının soya fasulyesinde bazı biyokimysal ve makro-mikro element düzeyleri üzerinde olumlu ve düzenleyici etkiye sahip olduğu olduğu tespit edilmiştir.

Project Number

FBA-2023-10654

References

  • Akat, H., Altunlu, H., Akat Sarçoğlu, Ö., & Yağmur, B. (2020). Effect of Mycorrhiza Applications on Plant Development and Some Stresses in Glauca Variety (Cupressus arizonica L.) in Saline Conditions. Journal of Ege University Faculty of Agriculture, 57(4), 511-517. DOI: 10.20289/zfdergi.655145.
  • Aktaş, Ö. Ü. İ. (2021). Omega Yağ Asitlerinin İnsan Sağlığı Açısından Önemi. Iksad Publications, Ankara.
  • Al-Karaki, G. N. (2000). Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza, 10, 51- 54.
  • Altunlu, H. (2019). The Effects of mycorrhiza application on growth and antioxidative enzymes of capia type pepper (Capsicum annuum l.) seedling under salty conditions. Journal of Agriculture Faculty of Ege University, 56(2), 139-146.
  • Arıoğlu, H., & Güllüoğlu, L., (2008). Türkiye’de Yağlı Tohum Üretim Potansiyelinin Belirlenmesi ve Üretimi Artırabilmek İçin Alınması Gerekli Önlemler. Bitkisel Yemeklik Yağlar Sempozyumu ve Sergisi Bildiriler Kitabı, Adana.
  • Arnon, D. I. (1950). Dennis Robert Hoagland: 1884-1949. Science, 112(2921), 739-742.
  • Bahjat, N. M., Tunçtürk, M., & Tunçtürk, R. (2023). Effect of humic acid applications on physiological and biochemical properties of soybean (glycine max l.) grown under salt stress conditions. Yuzuncu Yil University Journal of Agricultural Sciences, 33(1), 1-9.
  • Balliu, A., Sallaku G., & Rewald, B. (2015). AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability, 7(12), 15967-15981.
  • Bates, L., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant Soil, 39, 205-207.
  • Büyük, İ., Soydam-Aydın, S., & Aras, S. (2012). Molecular responses of plants to stress conditions. Turkish Bulletin of Hygiene and Experimental Biology, 69, (2).
  • Carvalho, L. M., Correia, P. M., & Martins-Louçao, A. M. (2004). Arbuscular mycorrhizal fungal propogules in a salt marsh. Mycorrhiza, 14, 165-170.
  • Çekiç, F. Ö., Ünyayar, S., & Ortaş, İ. (2012). Effects of arbuscular mycorrhizal inoculation on biochemical parameters in Capsicum annuum grown under long term salt stress. Turkish Journal of Botany, 36(1), 63-72.
  • Çelebi, Ş. Z., & Şahar, A. K. (2023). Effects of different harvest stages on forage yield and quality of soybean cultivars grown as second crops. Yuzuncu Yil University Journal of Agricultural Sciences, 33(4), 571-580.
  • Çulha, Ş., & Çakırlar, H. (2011). Effects of salinity on plants and salt tolerance mechanisms. Afyon Kocatepe University Journal of Science, 11, 11-34.
  • Dasgan, H. Y., Aktas, H., Abak, K., & Cakmak, I. (2002). Determination of screening techniques to salinity tolerance in tomatoes ve investigation of genotype responses. Plant Science, 163, 695-703.
  • Düzgüneş 0., Kesici, T., Koyuncu, O. & Gurbuz, F. (1987). Araştırma ve deneme metotları. Ankara Universitesi Ziraat Fakultesi Yayınları, No:1021.295-381.
  • FAOSTAT, (2024). Food and Agriculture Organization Statistics. https://www.fao.org/faostat/: (Access date: 01.12.2024).
  • Geren, H., Okkaoğlu, H., & Avcıoğlu, R. (2011). Effect of mycorrhiza on yield and some physiological properties of Cyprus damson (Lathyrus ochrus L.) at different salt (NaCl) concentrations. Journal of Ege University Faculty of Agriculture, 48(1), 31 - 37.
  • Göktaş, Ö., & Gıdık, B. (2019). Usage areas of medicinal and aromatic plants. Bayburt University Journal of Science, 2(1), 145-151.
  • Hadi, M. R., & Karimi, N. (2012). The role of Ca in plants' salt tolerance. Journal of Plant Nutrition, 35(13), 2037-2054.
  • Hasanuzzaman, M., Nahar, K., & Fujita, M. (2013). Plant response to salt stress and role of exogenous protectants to mitigate saltinduced damages, In: Ecophysiology and Responses of Plants under Salt Stress (Eds: Ahmad P, Prasad MNV, Azooz MM), Springer-Verlag, New York. pp 25-87.
  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives in Biochemistry and Biophysics, 125, 189-198. doi:10.1016/0003-9861(68)90654-1.
  • Kacar, B., & İnal, A. (2008). Plant analysis. Nobel Publication,Ankara, Türkiye, 1271, 63.
  • Kaya, C., Asraf, M., Sönmez, O., Aydemir, S., Tuna A. L., & Cullu, M. A. (2009). The influence of arbuscular mycorrhizal colonization on key growth parameters and fruit yield of pepper plants grown at high salinity. Scientia Horticulturae, 121, 1-6.
  • Kereçin, G., & Öztürk, F. (2024). The Effect of Salicylic Acid and Salt Stress on Seeder Development of Some Soya (Glycine max. L.) Cultivars. ISPEC Journal of Agricultural Sciences, 8(1), 25-35.
  • Kurt, C. H., Tunçtürk, M., & Tunçtürk, R. (2023). Effects of salicylic acid applications on some physiological and biochemical changes in soybean (Glycine max L.) plants grown under salinity stress conditions. Ege University Journal of Agriculture, 60(1), 91-101.
  • Kuşvuran, Ş., Yaşar, F., Abak, K., & Ellialtıoğlu, Ş. (2008). Changes in lipid peroxidation, chlorophyll and ion amounts in some genotypes of salt tolerant and sensitive Cucumis sp. grown under salt stress. Journal of Agricultural Sciences of Yüzüncü Yıl University Faculty of Agriculture, 18(1), 13-20.
  • Lichtenthaler, H. K., & Wellburn, A. R. (1985). Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochemical Society Transactions, 11, 591-592.
  • López-Aguilar, R., Medina-Hernández, D., Ascencio-Valle, F., Troyo-Dieguez, E., Nieto- Garibay, A., ArceMontoya, M., Larrinaga-Mayoral, J.A., & Gómez-Veuro, G.A. (2012). Differential responses of Chiltepin (Capsicum annuum var. glabriusculum) ve Poblano (Capsicum annuum var. annuum) hot peppers to salinity at the plantlet stage. African Journal of Biotechnology, 11(11), 2642-2653.
  • Manaf, H. H., & Zayed, M. S. (2015). Productivity of cowpea as affected by salt stress in presence of endomycorrhizae and Pseudomonas fluorescens. Annals of Agricultural Sciences, 60(2), 219–226.
  • Nas, F., & Günal, V. (2024). Effect of The Customs Union on Oilseeds Foreign Trade Between Turkey and The EU. Social Sciences Studies Journal, 10(4), 553-575.
  • Nazlıcan, A. N. (2017). Soybean cultivation. (Webpage: https://arastirma.tarimorman.gov.tr/cukurovataem/Belgeler/Yeti%C5%9Ftiricilik/soya-yetistiriciligi_1.pdf) (Access Date: 20.12.2019).
  • Oral, E., Tunçtürk, R., & Tunçtürk, M. (2021). The effect of rhizobacteria in the reducing drought stress in soybean (Glycine max L.). Legume Research, 44, 1172-1178.
  • Öğütcü, H., Algur, Ö. F., Güllüce, M., & Adıgüzel, A. (2010). Investigation of nitrogen fixation potentials of Rhizobium strains isolated from wild plants and used as microbial fertilizers under different temperature conditions. Journal of Biological Sciences Research, 3(1), 47-52.
  • Özcan, T., Delikanlı, B., & Akın, Z. (2015). Soya biyoaktif bileşenleri ve sağlık üzerine etkisi. Turkish Journal of Agriculture-Food Science and Technology, 3(6), 350-355.
  • Özçınar, A.B., Arslan, H., & Arslan, D., (2022). Soya (Glycine max. L. Merill)‘da tuz uygulamasının fizyolojik ve biyokimyasal özellikler üzerine etkisinin incelenmesi. ISPEC Tarım Bilimleri Dergisi, 6(4), 762-776.
  • Qin, P., Wang, T., & Luo, Y. (2022). A review on plant-based proteins from soybean: Health benefits and soy product development. Journal of Agriculture and Food Research, 7, 100265.
  • Patel, P. R., Kajal, S. S., Patel, V. R., Patel, V. J., & Khristi, S. M. (2010). Impact of salt stress on nutrient uptake and growth of cowpea. Brazilian Journal of Plant Physiology, 22(1), 43-48.
  • Ruiz-Lozano, J. M., Azcón R., & Gòmez M. (1996). Alleviation of salt stress by arbuscular- mycorrhizal Glomus species in Lactuca sativa plants. Physiologia Plantarum, 98, 767– 772.
  • Ruiz-Lozano, J. M. (2003). Antioxidant activities in mycorrhizal soybean plants under drought stress. New Phytologist, 157(1), 135-143.
  • Sairam, R. K., & Saxena, D. C. (2000). Oxidative stres and antioksidants in wheat genotypes: possible mechanism of water stres tolerance. Journal Agronomy and Crop Sciences, 184, 55-61.
  • Singhal, R. K., Fahad, S., Kumar, P., Choyal, P., Javed, T., Jinger, D., ... & Nawaz, T. (2023). Beneficial elements: New Players in improving nutrient use efficiency and abiotic stress tolerance. Plant Growth Regulation, 100(2), 237-265.
  • Smith, S., & Read, D. J. (1997) Mycorrhizal Symbiosis. Second Edition. Academic Press, London, UK. pp 605.
  • Taïbi, K., Taïbi, F., Abderrahim, L. A., Ennajah, A., Belkhodja, M., & Mulet, J. M. (2016). Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African Journal of Botany, 105, 306- 312.
  • Taiz, L., & Zeiger, E. (2002). Plant Physiology ( 3 rd ed.) Sinauer Associates, ISBN: 0878938230, Massachusetts, USA.
  • Trouvelot, A., Kough, J., & Gianinazzi-Pearson, V. (1986). Evaluation of VA infection levels in root systems. Research for estimation methods having a functional significance. In: Gianinazzi-Pearson, V., Gianinazzi, S. (eds.), Physiological and Genetical Aspects of Mycorrhizae. INRA Press, Paris, France, 217–221 pp.
  • TUIK, 2024. Tarım istatistikleri özeti. Türkiye İstatistik Kurumu. http://www.tuik.gov.tr (Access date: 02.12.2024).
  • Tuna, A. L., & Eroğlu, B. (2017). Effects of some organic and inorganic compounds on antioxidative system in pepper (Capsicum annuum L.) plant under salt stress. Anatolian Journal of Agricultural Sciences, 32(1), 121-131.
  • Turan, M. A., Elkarim, A. H. A., Taban, N., & Taban, S. (2010). Effect of salt stress on growth and ion distribution and accumulation in shoot and root of maize plant. African journal of Agricultural Research, 5(7), 584-588.
  • USDA, 2024. World Agricultural Production, United States Department of Agriculture (USDA), Foreign Agricultural Service, September 2024-42s. (Access date: 01.12.2024).
  • Zamani, M., Hakimi, M. H., Mosley Arany, A., Kiani B., & Rashtian, A. (2014). Studying the salinity stress on physical and growth charactristics of Cupressus sempervirens. Journal of Biodeversity and Enviromental Sciences, 5(1), 30-36.
There are 51 citations in total.

Details

Primary Language English
Subjects Industrial Crops, Fertilisers and Application, Organic Agriculture, Agro-Ecosystem Function and Prediction
Journal Section Articles
Authors

Erol Oral 0000-0001-9413-1092

Rüveyde Tunçtürk 0000-0002-3759-8232

Murat Tunçtürk 0000-0002-7995-0599

Lütfi Nohutçu 0000-0003-2250-2645

Ezelhan Şelem 0000-0003-4227-5013

Project Number FBA-2023-10654
Early Pub Date March 16, 2025
Publication Date
Submission Date November 21, 2024
Acceptance Date February 24, 2025
Published in Issue Year 2025 Volume: 35 Issue: 1

Cite

APA Oral, E., Tunçtürk, R., Tunçtürk, M., Nohutçu, L., et al. (2025). Effect of Mycorrhiza Applications on Some Physiological and Macro-Micro Element Contents in Soybean (Glycine max L.) Grown under Salt Stress Condition. Yuzuncu Yıl University Journal of Agricultural Sciences, 35(1), 135-148. https://doi.org/10.29133/yyutbd.1589075
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.