Research Article
BibTex RIS Cite

Effectiveness of Cinnamomum porrectum Roxb. Kosterm Pyroligneous Acid and Its Compounds in Staphylococcus aureus Growth Inhibition

Year 2025, Volume: 35 Issue: 3, 392 - 402, 30.09.2025
https://doi.org/10.29133/yyutbd.1601765

Abstract

The purpose of this study is to assess the antibacterial activity of pyroligneous acid derived from Cinnamomum porrectum (Roxb.) Kosterm stem wood and three types of its constituent chemicals against Staphylococcus aureus. The antibacterial activity of pyroligneous acid produced from C. porrectum was determined using the well diffusion method. The test concentrations varied from 1.56% to 100%, with the lowest to highest concentrations being 1.56%, 3.12%, 6.25%, 12.5%, 25%, 50% vv-1, and 100%. The pure components that make up the pyroligneous acid were also examined at two concentrations: 1.56% and 3.12% vv-1 or mv-1. The negative control was sterile distilled water, while the positive control was clindamycin 0.025% mv-1. Pyroligneous acid's ability to suppress S. aureus ATCC 6538 growth rose as the concentration tested, having MIC and MBC values of 0.39% and 0.78% vv-1, respectively. The principal constituents of C. porrectum pyroligneous acid, 2,6-dimethoxyphenol, 2-hydroxyphenol, and acetic acid, could inhibit S. aureus at a concentration of 1.56% by 12.55; 9.10; 8.33 mm and 16.36; 12.62; 11.48 mm at a concentration of 3.12%, respectively. This pyroligneous acid's potential to suppress the growth of S. aureus has been shown since it comprises acetic acid and phenol derivatives with antibacterial capabilities.

Ethical Statement

Ethical approval is not required for this study

Supporting Institution

DRPM-DIKTI The ministry of education, culture, research, and technology, Republic of Indonesia

Project Number

Contract number 3952/UN30.15/PT/2024

Thanks

The author would like to thank DRPM-DIKTI for supporting this research with the penelitian tesis magister scheme, contract number 3952/UN30.15/PT/2024.

References

  • Adfa, M., Gusatyana, N. M. C., Mudyanto, A., Avidlyandi, A., Oktiarni, D., & Yudha S., S. (2021). Combined effect of methanol extract of Persea americana seeds and Cassia alata leaves against Staphylococcus epidermidis. Paper presented at the International Seminar on Promoting Local Resources for Sustainable Agriculture and Development (ISPLRSAD 2020), Advances in Biological Sciences Research, 13, 36–40. https://doi.org/10.2991/absr.k.210609.006
  • Adfa, M., Romayasa, A., Kusnanda, A. J., Avidlyandi, A., Yudha S., S., Banon, C., & Gustian, I. (2020). Chemical components, antitermite and antifungal activities of Cinnamomum parthenoxylon wood vinegar. Journal of the Korean Wood Science and Technology, 48(1), 107–116. https://doi.org/10.5658/WOOD.2020.48.1.107
  • Bai, B., Wang, M., Zhang, Z., Guo, Q., & Yao, J. (2024). Mechanistic investigation of the pyrolysis temperature of reed wood vinegar for maximising the antibacterial activity of Escherichia coli and its inhibitory activity. Biology, 13(11), 912. https://doi.org/10.3390/biology13110912
  • Budaraga, I. K., & Putra, D. P. (2019). Liquid smoke antimicrobial test of cocoa fruit peel against Eschericia coli and Staphylococcus aureus Bacteria. Presented in the International Conference on Agricultural Technology, Engineering and Environmental Sciences. 21-22 Augustus, Banda Aceh, Indonesia. IOP Conference Series: Earth and Environmental Science, 365, 012049. https://doi.org/10.1088/1755-1315/365/1/012049
  • Chukeatirote, E., & Jenjai, N. J. (2018). Antimicrobial activity of wood vinegar from Dimocarpus longan. Environment Asia, 11(3), 161–169. https://doi.org/10.14456/ea.2018.45
  • de Souza Araújo, E., Pimenta, A. S., Feijó, F. M. C., Castro, R. V. O., Fasciotti, M., Monteiro, T. V. C., & de Lima, K. M. G. (2018). Antibacterial and antifungal activities of pyroligneous acid from wood of Eucalyptus urograndis and Mimosa tenuiflora. Journal of Applied Microbiology, 124(1), 85–96. https://doi.org/10.1111/jam.13626
  • Deliephan, A., Dhakal, J., Subramanyam, B., & Aldrich, C. G. (2023). Effects of liquid smoke preparations on shelf life and growth of wild type mold and Aspergillus flavus in a model semi moist pet food. Frontiers in Microbiology, 14, 1154765. https://doi.org/10.3389/fmicb.2023.1154765
  • Gama, G. S. P., Pimenta, A. S., Feijó, F. M. C., Aires, C. A. M., de Melo, R. R., dos Santos, C. S., de Medeiros, L. C. D., da Costa Monteiro, T. V., Fasciotti, M., de Medeiros, P. L., de Morais, M. R. M., & de Azevedo, T. K. B. (2024). Antimicrobial impact of wood vinegar produced through co-pyrolysis of eucalyptus wood and aromatic herbs. Antibiotics, 13(11), 1056. https://doi.org/10.3390/antibiotics13111056
  • Hossain, M. A., Lee, S. J., Park, N. H., Mechesso, A. F., Birhanu, B. T., Kang, J., Reza, M. A., Suh, J. W., & Park, S. C. (2017). Impact of phenolic compounds in the acyl homoserine lactone-mediated quorum sensing regulatory pathways. Scientific Reports, 7, 10618. https://doi.org/10.1038/s41598-017-10997-5
  • Hou, X., Qiu, L., Luo, S., Kang, K., Zhu, M., & Yao, Y. (2018). Chemical constituents and antimicrobial activity of wood vinegars at different pyrolysis temperature ranges obtained from Eucommia ulmoides Olivers branches. RSC Advances, 8(71), 40941–40949. https://doi.org/10.1039/C8RA07491G
  • Ikenganyia, E. E., Anikwe, M. A. N., Omeje, T. E., & Adinde, J. O. (2017). Plant tissue culture regeneration and aseptic techniques. Asian Journal of Biotechnology and Bioresource Technology, 1(3), 1–6. https://doi.org/10.9734/ajb2t/2017/31724
  • Mappapa, I. A., Salim, R., Yuliansyah, A. T., & Budiman, A. (2019). Characterization of hydrothermal liquid product of red meranti (Shorea leprosula miq.) sawdust for wood preservative. Materials Science Forum, 948, 169–174. https://doi.org/10.4028/www.scientific.net/msf.948.169
  • Ji, Q. Y., Wang, W., Yan, H., Qu, H., Liu, Y., Qian, Y., & Gu, R. (2023). The effect of different organic acids and their combination on the cell barrier and biofilm of Escherichia coli. Foods, 12(16), 3011. https://doi.org/10.3390/foods12163011
  • Keryanti, Permanasari, A.R., Yulistiani, F., Sihombing, R.P., Wibisono, W. (2020). Applications of Liquid Smoke from Biomass on Food Products: A Review. Paper presented at the International Seminar of Science and Applied Technology (ISSAT 2020). Advances in Engineering Research, 198, 514–517. https://doi.org/10.2991/aer.k.201221.086
  • Konsue, W., Dethoup, T., & Limtong, S. (2020). Biological control of fruit rot and anthracnose of postharvest mango by antagonistic yeasts from economic crops leaves. Microorganisms, 8(3), 317. https://doi.org/10.3390/microorganisms8030317
  • Lee, C. L., Chin, K. L., Khoo, P. S., Hafizuddin, M. S., & H’ng, P. S. (2022). Production and potential application of pyroligneous acids from rubberwood and oil palm trunk as wood preservatives through vacuum-pressure impregnation treatment. Polymers, 14(18), 3863. https://doi.org/10.3390/polym14183863
  • Lingbeck, J. M., Cordero, P., O’Bryan, C. A., Johnson, M. G., Ricke, S. C., & Crandall, P. G. (2014). Functionality of liquid smoke as an all-natural antimicrobial in food preservation. Meat Science, 97(2), 197–206. https://doi.org/10.1016/j.meatsci.2014.02.003
  • Lobiuc, A., Pavăl, N. E., Mangalagiu, I. I., Gheorghiță, R., Teliban, G. C., Amăriucăi-Mantu, D., & Stoleru, V. (2023). Future antimicrobials: natural and functionalized phenolics. Molecules, 28(3), 1114. https://doi.org/10.3390/molecules28031114
  • Pino, J. A. (2014). Characterisation of volatile compounds in a smoke flavouring from rice husk. Food Chemistry, 153, 81–86. https://doi.org/10.1016/j.foodchem.2013.12.041
  • Ponce, A. G., Fritz, R., Del Valle, C., & Roura, S. I. (2003). Antimicrobial activity of essential oils on the native microflora of organic Swiss chard. LWT-Food Science and Technology, 36(7), 679–684. https://doi.org/10.1016/S0023-6438(03)00088-4
  • Rawdkuen, S., Suthiluk, P., Kamhangwong, D., & Benjakul, S. (2012). Antimicrobial activity of some potential active compounds against food spoilage microorganisms. African Journal of Biotechnology, 11(74), 13914–13921. https://doi.org/10.5897/ajb12.1400
  • Soares, J. M., da Silva, P. F., Puton, B. M. S., Brustolin, A. P., Cansian, R. L., Dallago, R. M., & Valduga, E. (2016). Antimicrobial and antioxidant activity of liquid smoke and its potential application to bacon. Innovative Food Science and Emerging Technologies, 38(Part A), 189–197. https://doi.org/10.1016/j.ifset.2016.10.007
  • Suresh, G., Pakdel, H., Rouissi, T., Brar, S. K., Fliss, I., & Roy, C. (2019). In vitro evaluation of antimicrobial efficacy of pyroligneous acid from softwood mixture. Biotechnology Research and Innovation, 3(1), 47–53. https://doi.org/10.1016/j.biori.2019.02.004
  • Suryani, R., Rizal, W. A., Pratiwi, D., & Prasetyo, D. J. (2020). Karakteristik dan aktivitas antibakteri asap cair dari biomassa kayu putih (Melaleuca leucadendra) dan kayu jati (Tectona grandis). Jurnal Teknologi Pertanian, 21(2), 106–117. https://doi.org/10.21776/ub.jtp.2020.021.02.4
  • Tiilikkala, K., Fagernäs, L., & Tiilikkala, J. (2010). History and use of wood pyrolysis liquids as biocide and plant protection product. The Open Agriculture Journal, 4, 111–118.
  • Trček, J., Mira, N. P., & Jarboe, L. R. (2015). Adaptation and tolerance of bacteria against acetic acid. Applied Microbiology and Biotechnology, 99, 6215–6229. https://doi.org/10.1007/s00253-015-6762-3
  • Wibowo, R. H., Sipriyadi, S., Darwıs, W., Sukmawinata, E., Masrukhin, M., Mashudi, M., Asril, M., Hidayah, T., & Trıanda, A. (2024). Bioprospecting of fragrant ginger (Zingiber aromaticum) endophytic bacteria from Enggano island, Indonesia as antimicrobial compounds producer. Yuzuncu Yıl University Journal of Agricultural Sciences, 34(2), 263–270. https://doi.org/10.29133/yyutbd.1429698
  • Yang, J. F., Yang, C. H., Liang, M. T., Gao, Z. J., Wu, Y. W., & Chuang, L. Y. (2016). Chemical composition, antioxidant, and antibacterial activity of wood vinegar from Litchi chinensis. Molecules, 21(9), 1–10. https://doi.org/10.3390/molecules21091150
  • Zinn, M. K., & Bockmühl, D. (2020). Did granny know best? Evaluating the antibacterial, antifungal and antiviral efficacy of acetic acid for home care procedures. BMC Microbiology, 20, 265. https://doi.org/10.1186/s12866-020-01948-8
There are 29 citations in total.

Details

Primary Language English
Subjects Agricultural Biotechnology (Other)
Journal Section Articles
Authors

Winda Shari This is me 0009-0003-9034-7488

Dina Erliana This is me 0009-0008-8842-257X

Khusnul Azizah This is me 0009-0007-3759-9853

Charles Banon This is me 0000-0002-5795-2227

Avidlyandi Avidlyandi This is me 0000-0003-0387-040X

Khafit Wiradimafan This is me 0009-0003-4941-1134

Salprima Yudha S. This is me 0000-0002-3095-5284

Morina Adfa 0000-0002-7944-3992

Project Number Contract number 3952/UN30.15/PT/2024
Early Pub Date September 30, 2025
Publication Date September 30, 2025
Submission Date December 15, 2024
Acceptance Date May 21, 2025
Published in Issue Year 2025 Volume: 35 Issue: 3

Cite

APA Shari, W., Erliana, D., Azizah, K., … Banon, C. (2025). Effectiveness of Cinnamomum porrectum Roxb. Kosterm Pyroligneous Acid and Its Compounds in Staphylococcus aureus Growth Inhibition. Yuzuncu Yıl University Journal of Agricultural Sciences, 35(3), 392-402. https://doi.org/10.29133/yyutbd.1601765
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.