Research Article
BibTex RIS Cite

Responses of Inbred (Zea mays indentata Sturt.) Lines to Different Salt Concentrations

Year 2025, Volume: 35 Issue: 3, 553 - 563, 30.09.2025
https://doi.org/10.29133/yyutbd.1614989

Abstract

This study was carried out at the Republic of Türkiye, Bursa Uludag University, Faculty of Agriculture, Department of Field Crops’ laboratory during December 2018. Five inbred lines (Zea mays indentata Sturt.) (Namely, A1, A3, A4, A7, and T2) and five different salt concentrations (0, 50, 100, 150, and 200 mM) were used. The experiment was set up in a randomized plot design with three replicates. Germination percentage (%), shoot length (mm), root length (mm), shoot fresh weight (mg), shoot dry weight (mg), root fresh weight (mg), root dry weight (mg), and their salt tolerance indexes were investigated. The obtained results showed that salt concentrations had a statistically significant effect on all the traits. It was observed that the values obtained for all traits decreased as the salt concentration increased. The salt concentratiıns higher than 50 mM had a significant adverse effect on the traits, and the lowest values were observed at a dose of 200 mM. A3 inbred line was more tolerant of salinity than the other lines in terms of the traits within the lines. To support our results, the detailed, larger pots or field studies should be established, and the obtained results should be evaluated at the level of soil analysis results according to areas.

References

  • Abdul-Baki, A. A., & Anderson, J. D. (1973). Vigor determination in soybean seed by multiple criteria. Crop Science, 13(6), 630–633. https://doi.org/10.2135/cropsci1973.0011183X001300060013x
  • Akay, H., Öztürk, E., Sezer, İ., & Bahadır, M. C. (2019). Effects of Different Salt Concentrations on Germination and Early Seedling Growth in Sugar Maize (Zea mays L. var. saccharata Sturt.) Cultivars. Turkish J Agriculture- Food Science and Technology, 7(2), 103-108.
  • Almansouri, M., Kinet, J.M., & Lutts, S. (2001). Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil, 231(2), 243–254.
  • Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006
  • Atta, K., Jespersen, D. ve diğerleri, 2023. Impacts of salinity stress on crop plants: Improving salt tolerance through genetic and molecular dissection. Frontiers in Plant Science, 14, 1241736. https://doi.org/10.3389/fpls.2023.1241736
  • Aydınşakir, K., Erdal, Ş., & Pamukçu, M. (2013). The Effects of different salt concentrations on germination and seedling parameters of silage maize (Zea mays L.) Varieties. Anadolu Tarım Bilimleri Derg., 28(2), 94-100.
  • Bayuelo-Jimenez, J., Craig, S. R., & Jonathan., P .L. (2002). Salinity tolerance of phaseolus species during germination and early seedling growth. Crop Science, 42(5),1584-1594.
  • Castroluna, A., Ruiz, O. M., Quiroga, A. M., & Pedranzani, H. E. (2014). Effects of salinity and drought stress on germination, biomass and growth in three varieties of Medicago sativa L. Avances en Investigación Agropecuaria, 18(1), 39-50.
  • Çarpıcı, E. B. , Çelik, N., & Bayram, G. (2009). Effects of salt stress on germination of some maize (Zea mays L.) cultivars. African Journal of Biotechnology, 8(19), 4918-4922.
  • Ekmekçi, E., Apan, M., & Kara, T. (2005). Effect of salinity on plant growth. OMÜ Ziraat Dergisi, 20(3), 118-125
  • FAO. (2019). Crops and livestock products statistical data base. https://www.fao.org/faostat/en/#data/QCL. Access date: 01.01.2020.
  • FAO. (2021). Global assessment of soil salinity and sodicity: Status, challenges and regional perspectives.https://www.fao.org/newsroom/detail/fao-launches-first-major-global assessment-of-salt-affected-soils-in-50-years/en. Access date: 10.04.2025
  • Farooq, M., Hussain, M., Wakeel, A., & Siddique, K. H. M. (2015). Salt stress in maize: effects, resistance mechanisms, and management. A review. Agronomy for Sustainable Development, 35, 461–481. https://doi.org/10.1007/s13593-015-0287-0
  • Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes. New Phytologist, 179(4), 945–963. https://doi.org/10.1111/j.1469-8137.2008.02531.x
  • Goldsworthy, A. (1994) Calcium and salinity. Appl. Biol., 4, 1–6.
  • Hassan, N., Hasan, K. M., Shaddam, O., Islam, S. M., Barutçular, C., & Sabagh, E.A. (2018). responses of maize varieties to salt stress with germination and seedling growth. International of Natural Sciences, 2300-9675(69), 1-11.
  • Hu, D., Li, R., Dong, S., Zhang, J., Zhao, B., Ren, B., Ren, H., Yao, H., Wang, Z., & Liu, P. (2022). Maize (Zea mays L.) responses to salt stress in terms of root anatomy, respiration and antioxidative enzyme activity. BMC Plant Biol., 22, 589. https://doi.org/10.1186/s12870-022-03972-4
  • Idikut, L. (2013). The Effects of light, temperature, and salinity on seed germination of three maize forms. Greener J Agricultural Sciences, 3(4), 246-253.
  • Islam, M. S., Islam, M. R., Hasan, M. K., Hafeez, A. G., Chowdhury, M. K., Pramanik, M. H., Iqbal, M. A., Erman, M., Barutçular, C., Konuşkan, Ö., Dubey, A., Kumar, A., & El Sabagh, A. (2024). Salinity stress in maize: Consequences, tolerance mechanisms, and management strategies. OBM Genet., 8(2), 232. https://doi.org/10.21926/obm.genet.2402232
  • Kacar, B., Katkat, A.V. & Öztürk, Ş. (2010). Plant Physiology. Nobel Yayın Dağıtım. 556p.
  • Khayatnezhad, M., & Gholamin, R. (2011). Effects of salt stress levels on five maize (Zea mays L.) cultivars at the germination stage. African J Biotechnology, 10(60), 12909-12915. https://doi.org/10.5897/AJB11.1568
  • Khodarahmpour, Z., İfar, M., & Motamedi, M. (2012). Effects of NaCl salinity on maize (Zea mays L.) at germination and early stage. African J Biotechnology, 11(2), 298-304. 10.5897/AJB11.2624
  • Kizilgeci, F., Mokhtari, N. E. P., & Hossain, A. (2020). Growth and physiological traits of five bread wheat (Triticum aestivum L.) genotypes are influenced by different levels of salinity and drought stress. Fresenius Environmental Bulletin, 29, (9) (A), 8592-8599.
  • Larcher, W. (1995). Physiological Plant Ecology, Published by Springer, ISBN 0-387-09795-3, New York, 506p.
  • Maas, E. V., Hoffman, G. J., Chaba, G. D., Poss, J. A. & Shannon, M.C.(1983) Salt sensitivity of maize at various growth stages. Irrig Sci, 4, 45–57. https://doi.org/10.1007/BF00285556
  • Maathuis, F. J. M. & Altmann, A. (1999). K+ nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratios. Ann. Bot., 10, 123-133.
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  • Negrão, S., Schmöckel, S. M., & Tester, M. (2017). Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119(1), 1–11. https://doi.org/10.1093/aob/mcw191
  • Okçu, G., Kaya, M. D. & Atak, M. (2005). Effects of salt and drought stress on germination and seedling growth of pea (Pisum sativum L.). Turkish J. Agr. Forestry, 29(4), 237-242.
  • Oral, E., Altuner, F., Tuncturk, R. & Tuncturk, M. (2019). The impact of salt (NaCl) stress on germination characteristics of gibberellic acid pretreated wheat (Triticum durum Desf.) seeds. Applied Ecology and Environmental Research, 17(5), 12057-12071. http://dx.doi.org/10.15666/aeer/1705_1205712071
  • Ouda, S. A. E., Mohamed, S. G. & Khalıl, F. A. (2008). Modeling the effect of different stress conditions on maize productivity using the yield-stress model. Int. J. Natural Eng. Sci., 2(1), 57-62.
  • Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety, 60(3), 324–349. https://doi.org/10.1016/j.ecoenv.2004.06.010
  • Pitman, M. G., & Läuchli, A. (2002). Global Impact of Salinity and Agricultural Ecosystems, Salinity: Environment-Plants-Molecules, Published by Kluwer Academic Publishers, ISBN 1-4020-0492-3, Dordrecht, The Netherlands, 522p.
  • Radic, V., Balalic, I., Jacımovic, G., Nastasic, J., Savic, J. & Marjanovic- Jeromela, A. (2019). Impact of drought and salt stress on seed germination and seedling growth of maize Hybrids. Genetika, 51(2), 743-756. 10.2298/GENSR1902743R
  • Rehman, S., Harris, P. J. C., & Bourne, W. F. (1996). The effect of sodium chloride on germination and the early seedling growth of three chickpea (Cicer arietinum L.) cultivars. Seed Science and Technology, 24(3), 429-437.
  • Roy, S. J., Negrão, S., & Tester, M. (2014). Salt resistant crop plants. Current Opinion in Biotechnology, 26, 115–124. https://doi.org/10.1016/j.copbio.2013.12.004
  • Scott, S. J., Jones, R. A. & Williams, W. A. (1984). Review of data analysis methods for seed germination. Crop Science, 24, 1192-1199.
  • Shtereva, L. A., Vassilevskla-Ivanova, R. D. & Karceva, T. V. (2015). Effects of salt stress on some sweet maize (Zea mays L. var. saccharata) genotypes. Archives Biological Sciences, 67(3), 9933-1000. http://dx.doi.org/10.2298/ABS150121062S
  • Soltani, A., Galeshi, S., & Zeinali, E. (2006). Modeling seedling emergence in chickpea as affected by temperature and water potential. Agricultural and Forest Meteorology, 138(1–4), 166–173. https://doi.org/10.1016/j.agrformet.2006.04.004
  • Turgut, İ. (2011). Uludağ Üniversitesi Ziraat Fakültesi Ders Notları No: 87: Cereals II (Warm Climate Cereals),11p.
  • Tuteja, N. (2007). Mechanisms of high salinity tolerance in plants. Methods in Enzymology, 428, 419-438.
  • Turk, M., & Eser Ö. (2016). Effects of salt stress on germination of some silage maize (Zea mays L.) cultivars. Scientific Papers. Series A. Agronomy, Vol. LIX.
  • Yıldız, M., & Er, C. (2002). The effect of sodium hypochlorite solutions on in vitro seedling growth of barley. Canadian Journal of Plant Science, 82(3), 465-467.
  • Zhao, S., Zhang, Q., Liu, M., Zhou, H., Ma, C. ve Wang, P., 2021. Regulation of plant responses to salt stress. International Journal of Molecular Sciences, 22(9), 4609. https://doi.org/10.3390/ijms22094609
  • Zhu, J. K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66–71. https://doi.org/10.1016/S1360-1385(00)01838-0
  • Zörb, C., Geilfus, C.M. ve Dietz, K.J., 2019. Salinity and crop yield. Plant Biology, 21(S1), 31–38. https://doi.org/10.1111/plb.12884
There are 46 citations in total.

Details

Primary Language English
Subjects Agronomy, Crop and Pasture Biochemistry and Physiology
Journal Section Articles
Authors

Gülçin Kahraman Demir 0000-0001-9707-1005

Gamze Bayram 0000-0003-2749-3573

İlhan Turgut 0000-0002-4383-991X

Early Pub Date September 30, 2025
Publication Date September 30, 2025
Submission Date January 7, 2025
Acceptance Date July 24, 2025
Published in Issue Year 2025 Volume: 35 Issue: 3

Cite

APA Kahraman Demir, G., Bayram, G., & Turgut, İ. (2025). Responses of Inbred (Zea mays indentata Sturt.) Lines to Different Salt Concentrations. Yuzuncu Yıl University Journal of Agricultural Sciences, 35(3), 553-563. https://doi.org/10.29133/yyutbd.1614989
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.